
Lecture 1 Introduction

Prof. Yunming XIAO
School of Data Science

Introduction to Computer Science:
Programming Methodology

Outline

• Tuesday
• Introduction & logistics
• Overview of modern computers

• Thursday
• Preliminary knowledge for computer programming

• Boilers for next week
• Python Basics

2

Outline

• Tuesday
• Introduction & logistics
• Overview of modern computers

• Thursday
• Preliminary knowledge for computer programming

• Boilers for next week
• Python Basics

3

About me

• Background
• Education: B.Eng. BUPT (2019) & Ph.D. Northwestern U (2024)
• Work Experience

• Intern: ByteDance (2019), Bell Labs (2021), HPE Labs (2022), Google (2023)
• Research Fellow (2024-2025), University of Michigan—Ann Arbor
• Assistant Professor (2025.7-Present), SDS, CUHK-Shenzhen

• Research: computer systems, networks, and security

• Contact
• Email: yunmingxiao@cuhk.edu.cn
• Office: Zhi Xin Building 403a
• Office Hour: 5pm-6pm Tuesday (except holidays)

4

mailto:yunmingxiao@cuhk.edu.cn

Useful materials

• Personal website:
• https://yunmingxiao.github.io

• Course website: https://yunmingxiao.github.io/csc1001-
25fall/schedule.html
• Blackboard: https://bb.cuhk.edu.cn

• Online resources/books:
• W3School Python Tutorial (https://www.w3schools.com/python/)
• A Practical Introduction to Python Programming, by Brian Heinold
• How to think like a Computer Scientist, by Peter Wentworth, Jeffrey

Elkner, Allen B. Downey, and Chris Meyers 5

mailto:yunmingxiao.github.io
https://yunmingxiao.github.io/csc1001-25fall/schedule.html
https://yunmingxiao.github.io/csc1001-25fall/schedule.html
https://bb.cuhk.edu.cn/
https://www.w3schools.com/python/
https://www.brianheinold.net/python/A_Practical_Introduction_to_Python_Programming_Heinold.pdf
https://openbookproject.net/thinkcs/python/english3e/

About this course

• This course is a required course for all SDS students, and we
welcome students from other schools

• Need to synchronize between other 5 parallel sessions
(schedules, assignments, exams)

6

Learning objectives

• This course will introduce the key programming concepts using
Python language as examples

• Students will learn basic elements of modern computer
systems, key programming concepts, problem solving, and
basic algorithm design

7

Assessment

8

Activity Grade

Assignments × 4 10% × 4

Mid-term quiz 20%

Final exam 40%

Assessment

9

Assignment
Number

(Intended)
Start Date

(Intended)
Due Date

#1 9.30 10.20

#2 11.5 11.19

#3 12.25 12.10

#4 12.12 12.26

Course components

10

Activity Hours/week

Lecture 90min × 2

Tutorial 60min × 1

A message for freshmen:

• University courses are very different from what you might have been
familiar with in your high school
• Languages
• Assignments
• Exams

• In your future university life, there are no more head teachers (班主任)
• No one is watching you to finish the assignments
• It is the right time to start being mature and independent
• Make best use of tutorials (starting next week)
• Check your emails often
• Assignments and important course announcements will be sent out via emails
• Motivation!

11

Indicative teaching plans

12

Week Content/ topic/ activity

1 Introduction to modern computers
Preliminary knowledge for computer programming

2
Basic introduction to Python language
Data types and operators in Python language
Input/output

3 Flow control and loop
4 Function

5 & 6 Basic data structures
7 Introduction to object-oriented programming, part I
8 Review for mid-term quiz
9 Introduction to object-oriented programming, part II

10 Data Structure, part I
11 Data Structure, part II
12 Introduction to algorithm design, part I
13 Introduction to algorithm design, part II
14 Review for final exam

Outline

• Tuesday
• Introduction & logistics
• Overview of modern computers

• Thursday
• Preliminary knowledge for computer programming

• Boilers for next week
• Python Basics

13

Why learning programming?

• Computers are built to help people solve problems

14

Input: ABCDE……
Output: SDFQA……

Why learning programming?

• Computers are built to help people solve problems

• Computers do not understand what we say

•We need to communicate with computers using their
languages (computer programming language)

15

Why learning programming?

• Computers are built to help people solve problems

• Computers might seem to understand what we say, but they
still process everything using code under the hood

• Understanding programming is key to finding and solving
problems
• Programming is a way of thinking

16

Alan Turing has proved that a computer, in
theory, can compute anything that is computable

The success of AI imply
that human intelligence
is computable?

Why computer science?

• AI, Data Science, Cybersecurity, HCI, etc., all stem from CS
• Without understanding algorithms, systems, and theory,

people risk becoming tool users rather than innovators

• Programming and CS aren’t just skills but a way of
(computational) thinking

• CS evolves: many "hot" fields today may look very
different in 10 years, but the core principles of CS remain
• With a CS foundation, you can branch into any area

17

csrankings.org

Programmer

• Professional programmer writes computer
programs and develops software

• A junior programmer gets a salary of
300k+ RMB in an Internet company like
Google
• A programmer can earn up to 500k – 1m

USD in Google!!

• Software, Internet, and
AI are huge industries

18……

Non-programmer

• Even if you are NOT in the IT industry, programming is
pervasive in your life,
• Electrical/electronic engineer – control program
• Finance/economist – mathematical modeling
• Salesman – analyzing sales data
• …

• Programming is becoming a foundation of the world today.
Learning programming allows you to understand one of the
foundation of the world

19

Modern computers

20

ENIAC @ University of Pennsylvania

Digital world

21

User Interface

Programmer

Program

What is code, program, and software?

• Code (sentence): text written by humans in a programming
language (e.g., Python, Java) to tell the computer what to do
• Program (recipe of one dish): a set of code that performs a

specific task at runtime (code with purpose)
• Software (cookbook): a collection of programs and data

• Software is compiled into instructions and executed by
computers
• It is a little piece of our intelligence in the computer
• Intelligence that is re-usable

22

Computers are good at following instructions

• Humans can easily make mistakes when following a set of
instructions
• On the contrary, computers (almost) do not make mistakes,

regardless of they are given 10 or 10 billion instructions!!

23

“Humans are the weakest link in any security system”
– The Art of Deception, by Kevin Mitnick

Theoretical foundation of CS

24

• The theoretical foundation of computer
science are built by Alan Turing

• Father of theoretical computer science
and artificial intelligence

• Computability theory and Turing test

• ACM Turing Award is the highest
honour in computer science

A movie about Turing

25

What is the common in them?

26

ENIAC @ University of Pennsylvania

Von Neumann architecture

27

• The modern computer architecture is
proposed by John Von Neumann
• It is one possibility to build computer

defined by Turing (aka Turing machine)

A side note

28

Key hardware components in a computer

• Central processing unit (CPU): program
execution

•Memory unit: store instructions and data

• Input device: take inputs from users or
other devices

• Output device: output information to
users or other devices

29

Central Processing Unit (CPU)

• A processor contains two units, a
control unit (CU) and an
arithmetic/logic unit (ALU)

• Control Unit (CU) is used to fetch
commands from the memory

• Arithmetic/Logic Unit (ALU) contains
the electric circuits which can execute
commands

30

Central Processing Unit (CPU)

31

• Processor manufacturer: Intel, AMD, ARM, etc

Memory/Storage

• High-speed cache

• RAM

• ROM

• Flash

• Hard disk
32

(~36MB)

(16GB)

(N/A)

(2TB SSD)

(N/A)

Input/output devices

• Input devices: mouse, keyboard, panel,
touch screen, audio input, mind reading,
etc

• Output devices: screen, audio output, etc

• Research field
• human-machine interaction (HCI)

33

Any other input devices?

34

Any other output devices?

35

VR/AR/MR/XR Holographic projection

How the hard disk works

36

http://v.youku.com/v_show/id_XNjA4NzMxNDk2.html?from=s
1.8-1-1.2

What can a computer actually understand?

• The computers used nowadays can
understand only binary number (i.e.,
0 and 1)

• Computers use voltage levels to
represent 0 and 1

• NRZL and NRZI coding

• The instructions expressed in binary
code is called machine language

37

Programing language

38
https://www.quora.com/I-am-an-11th-grader-I-find-it-quite-difficult-to-write-C++-code-especially-when-the-only-way-to-practice-is-to-solve-maths-problems-Should-I-
keep-learning-C++-or-drop-it-for-C

Low-level language – Assembly language

• An assembly language is a low-level
programming language, in which
there is a very strong (generally one-
to-one) correspondence between the
language and machine code
instructions.

• Each assembly language is specific to
a particular computer architecture

• Assembly language is converted into
executable machine code by a utility
program referred to as an assembler

39

C language (1969 - 1973)

• C was developed by Dennis Ritchie between 1969 and 1973 at Bell Labs

• One of the early high-level programming language

• Somewhere between assembly and other high-level languages

• Provide powerful functionalities for low level memory manipulations

• Have the highest efficiency within high level languages

• Very widely used in low level applications, such as operating systems,
embedded programming, super computers, etc

40

C++ language (1979)

• C++ was developed by Bjarne Stroustrup at Bell Labs since 1979

• Inherent major features of C

• An object-oriented programming language, supporting code reuse

• High efficiency and powerful in low level memory manipulation

• Still platform dependent

41

Java language (1995)

• Java was developed by James Gosling at Sun Microsystems
(which has since been acquired by Oracle Corporation) and
released in 1995

• A new generation of general-purpose object-oriented
programming language

• Platform independent, “write once, run anywhere” (WORA)

• Java is one of the most popular programming languages
currently in use

42

Python language (1991)

• Developed by Guido van Rossum in 1989, and formally
released in 1991

• An open source, object-oriented programming language

• Powerful libraries

• Powerful interfaces to integrate other programming
languages (C/C++, Java, and many other languages)

• In AI research, people mainly use Python
43

AI model prompt? (2022)

•Whether AI model prompt is
programming language is
debatable

• Primary issues:
• Lack of formal grammar
• Non-deterministic execution
• Low abstraction and formal

verification
• ……

44

Language efficiency v.s. development efficiency

• High-level languages cannot be executed directly

• High-level languages must be converted into low-level
languages first

• Lower-level languages have higher language efficiency (they
are faster to run on a computer)

• Higher-level languages have higher development efficiency (it
is easier to write programs in these languages)

45

Operating system

• The operating system (OS) is a low-level program,
which provides all basic services for managing and
controlling a computer’s activities

• Applications are programs which are built based
upon an OS

• Main functions of an OS:
üControlling and monitoring system activities
üAllocating and assigning system resources
üScheduling operations

• Popular OS: Windows, Mac OS, Linux, iOS, Android…

46
Learn more at CSC3150 (which I teach)!

Break

Slogan for Python

48

Life is short, use Python!

Review of last lecture

•Why programming and CS
• Von Neumann Architecture
• CPU and memory
• Input/output devices
• Programming language
• Operating system

49

Outline

• Tuesday
• Introduction & logistics
• Overview of modern computers

• Thursday
• Preliminary knowledge for computer programming

• Boilers for next week
• Python Basics

50

How do you like the movie?

51

Data representation and conversion

• We use positional notation (进位记数法) to represent or encode
numbers in a computer

• Data are stored essentially as binary numbers in a computer

• In practice, we usually represent data using either binary (二进制
), decimal (十进制), octal (八进制) or hexadecimal (十六进制)
number systems

• We may need to convert data between different number systems

52

The basic idea of positional notation

• Each positional number system contains two elements, a
base (基数) and a set of symbols

• Using the decimal system (十进制系统) as an example, its
base is 10, and the symbols are {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

•When a number “hits” 9, the next number will not be a
different symbol, but a “1” followed by a “0” (逢十进一)

53

Decimal number system

• In the decimal number system, the base is 10, the symbols include
0, 1, 2, 3, 4, 5, 6, 7, 8, 9

• Every number can be decomposed into the sum of a series of
numbers, each is represented by a positional value times a weight

• 𝑁 = 𝑎$×10$ + 𝑎$)*×10$)* + 𝑎$)+×10$)+ ……+ 𝑎-×10- +
𝑎)*×10)* + 𝑎)+×10)+ …

• 𝑎$ is the positional value (ranging from 0 to 9), while 10$
represents the weight

54

Binary number system

• In the binary system, the base is 2, we use only two symbols
0 and 1

• “10” is used when we hit 2 (逢二进一)

• 𝑁 = 𝑎$×2$ + 𝑎$)*×2$)* + 𝑎$)+×2$)+ ……+ 𝑎-×2- +
𝑎)*×2)* + 𝑎)+×2)+ …

• 𝑎$ is the positional value (ranging from 0 to 1), while 2$
represents the weight

55

Why use binary number?

• Easy to implement physically

• Simple calculation rules

• Easy to combine arithmetic and logic operations

56

Hexadecimal number system

• In the hexadecimal system, the base is 16, we use 16
symbols {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f}

• “10” is used when we hit 16 (逢十六进一)

• 𝑁 = 𝑎$×16$ + 𝑎$)*×16$)* + 𝑎$)+×16$)+ ……+
𝑎-×16- + 𝑎)*×16)* + 𝑎)+×16)+ …

• 𝑎$ is the positional value (ranging from 0 to 15), while 16$
represents the weight

57

Octal number system

58

Converting binary number into decimal number

59

Example

Practice (10110.11)+= (?)*-

Converting binary number into decimal number

60

Answer

Converting octal number into decimal number

61

Example

Practice (35.7)7= (?)*-

Converting octal number into decimal number

62

Answer

Converting hexadecimal -> decimal

63

Example

Practice (𝐴7𝐷. 𝐸)*;= (?)*-

Converting hexadecimal -> decimal

64

Answer

Converting other number system into decimal system

65

• Other number system can also be converted into decimal
system in a similar way

•We just need to change the corresponding base

Tests: converting into decimal system

66

• (110110)_2 = (?)_10
• (101011.11)_2 = (?)_10
• (120)_8 = (?)_10
• (34.01)_8 = (?)_10
• (BCA)_16 = (?)_10
• (E05.C)_8 = (?)_10

Tests: converting into decimal system

67

• (110110)_2 = (118)_10
• (101011.11)_2 = (43.75)_10
• (120)_8 = (80)_10
• (34.01)_8 = (28.015625)_10
• (BCA)_16 = (3018)_10
• (E05.C)_8 = (3589.75)_10

https://www.rapidtables.com/convert/number/hex-to-decimal.html

Converting decimal integer into binary integer

68

Example: (57)*-= (?)+

Higher position

Lower position

Converting decimal fraction into binary fraction

69

Example: (0.875)*-= (?)+

0.875 ×2 = 𝟏. 75 Integer part: 1
0.75 ×2 = 𝟏. 5 Integer part: 1
0.5 ×2 = 𝟏 Integer part: 1

Answer: (0.875)*-= (0.111)+
Practice: (0.6875)*-= (?)+

Lower position

Higher position

Converting decimal fraction into binary fraction

70

Answer:

0.6875 ×2 = 𝟏. 375 Integer part: 1
0.375 ×2 = 𝟎. 75 Integer part: 0
0.75 ×2 = 𝟏.5 Integer part: 1
0.5 ×2 = 𝟏 Integer part: 1

So, (0.6875)*-= (0.1011)+

Lower position

Higher position

Converting decimal fraction into binary fraction

71

• For a decimal number that has both integer and fractional
parts

• Convert the integer and fractional parts separately

• Example: (215.3125)*- = (?)+

Converting decimal fraction into binary fraction

72

Answer:

215 *- = 11010111 +
0.3125 *- = 0.0101 +

215.3125 *- = 11010111.0101 +

The one-to-one relationship between binary and
octal numbers

There is a “one-to-one” relationship between three digits
binary number and one-digit octal number

(0)7 = (000)+
(1)7 = (001)+
(2)7 = (010)+
(3)7 = (011)+
(4)7 = (100)+
(5)7 = (101)+
(6)7 = (110)+
(7)7 = (111)+

73

Converting octal number into binary number

74

• Convert each octal digit into binary number of three digits

• Keep the digit order unchanged

• Example: (0.754)7 = (?)+

• Practice: (16.327)7 = (?)+

Converting octal number into binary number

75

Answer:

76

Converting hexadecimal number into binary
number

• Convert each hexadecimal digit into binary number of four
digits
• Keep the digit order unchanged

• Example: (4𝐶. 2𝐸)*; = (?)+

• Practice: (𝐴𝐷. 7𝐹)*; = (?)+

77

Answer:

Converting hexadecimal number into binary
number

Converting binary number into octal number

• Starting from lower positions, convert every three digits of the integer
part into an octal digit

• When there is not enough higher positions in the integer part, fill with 0

• Starting from higher positions, convert every three digits of the fractional
part into an octal digit

• When there is not enough lower positions in the fractional part, fill with 0

• Keep the digit order unchanged

78

Converting binary number into octal number

79

Example:

Practice:

Converting binary number into octal number

80

Answer:

Converting binary number into hexadecimal number

• Starting from lower positions, convert every four digits of the integer part
into an octal digit

• When there is not enough higher positions in the integer part, fill with 0

• Starting from higher positions, convert every three digits of the fractional
part into an octal digit

• When there is not enough lower positions in the fractional part, fill with 0

• Keep the digit order unchanged

81

82

Example:

Converting binary number into hexadecimal number

The units of information (data)

• Bit: a binary digit which takes either 0 or 1

• Bit is the smallest information unit in computer programming

• Byte: 1 byte = 8 bits, every English character is represented by 1
byte

• Kilobyte (KB): 1 KB = 2^10 B = 1024 B
• Megabyte (MB): 1MB = 2^20 B = 1024 KB
• Gigabyte (GB): 1GB = 2^30 B = 1024 MB
• Terabyte (TB): 1TB = 2^40 B = 1024 GB

83

Note:
In computation, 2^10 is often
used to represent 1K because
computers operate in binary.

However, in storage and
networking, 1K = 1000 (based
on the metric system, SI units).

Memory and addressing

84

• A computer’s memory consists of
an ordered sequence of bytes for
storing data

• Every location in the memory has
a unique address

• The key difference between high-
and low-level programming
languages is whether
programmer has to deal with
memory addressing directly

Thanks

