
Lecture 6 Object-Oriented Programming
(Additional Note)

Prof. Yunming XIAO
School of Data Science

Introduction to Computer Science:
Programming Methodology

Mutable objects

2

Practice

3

• What would be the output of the above program?

Diving into mutable/immutable objects (I)

4

Memory

variable

c (main)

mutable

class Count, id=1,
self.count = 1

immutable

Diving into mutable/immutable objects (I)

5

Memory

variable

c (main)

n (main)

mutable

class Count, id=1,
self.count = 1

immutable

1 (class int, id=10)

Diving into mutable/immutable objects (I)

6

Memory

variable

c (main)

n (main)

c (m)

n (m)

mutable

class Count, id=1,
self.count = 1

immutable

1 (class int, id=10)

Revisit: constructing objects

7

• Once a class is defined, you can create objects from the class
with a constructor. The constructor does two things:

üIt creates an object in the memory for the class
üIt invokes the class’s __init__() method to initialize the object

Diving into mutable/immutable objects (I)

8

Memory

variable

c (main)

n (main)

c (m)

n (m)

mutable

class Count, id=1,
self.count = 1

class Count, id=2,
self.count = 5

immutable

1 (class int, id=10)

Diving into mutable/immutable objects (I)

9

Memory

variable

c (main)

n (main)

c (m)

n (m)

mutable

class Count, id=1,
self.count = 1

class Count, id=2,
self.count = 5

immutable

1 (class int, id=10)

Diving into mutable/immutable objects (I)

10

Memory

variable

c (main)

n (main)

c (m)

n (m)

mutable

class Count, id=1,
self.count = 1

class Count, id=2,
self.count = 5

immutable

1 (class int, id=10)

3 (class int, id=11)

Diving into mutable/immutable objects (I)

11

Memory

variable

c (main)

n (main)

mutable

class Count, id=1,
self.count = 1

immutable

1 (class int, id=10)

3 (class int, id=11)

Diving into mutable/immutable objects (I)

12

Memory

variable

c (main)

n (main)

mutable

class Count, id=1,
self.count = 1

immutable

1 (class int, id=10)

3 (class int, id=11)

Diving into mutable/immutable objects (I)

13

Memory

variable

c (main)

n (main)

mutable

class Count, id=1,
self.count = 1

immutable

1 (class int, id=10)

3 (class int, id=11)

Diving into mutable/immutable objects (II)

14

Memory

variable

c (main)

mutable

class Count, id=1,
self.count = 1

immutable

c.count = 5

Diving into mutable/immutable objects (II)

15

Memory

variable

c (main)

n (main)

mutable

class Count, id=1,
self.count = 1

immutable

1 (class int, id=10)

c.count = 5

Diving into mutable/immutable objects (II)

16

Memory

variable

c (main)

n (main)

c (m)

n (m)

mutable

class Count, id=1,
self.count = 1

immutable

1 (class int, id=10)

c.count = 5

Diving into mutable/immutable objects (II)

17

Memory

variable

c (main)

n (main)

c (m)

n (m)

mutable

class Count, id=1,
self.count = 5

immutable

1 (class int, id=10)

c.count = 5

Diving into mutable/immutable objects (II)

18

Memory

variable

c (main)

n (main)

c (m)

n (m)

mutable

class Count, id=1,
self.count = 5

immutable

1 (class int, id=10)

3 (class int, id=11)

c.count = 5

Diving into mutable/immutable objects (II)

19

Memory

variable

c (main)

n (main)

mutable

class Count, id=1,
self.count = 5

immutable

1 (class int, id=10)

3 (class int, id=11)

c.count = 5

Diving into mutable/immutable objects (II)

20

Memory

variable

c (main)

n (main)

mutable

class Count, id=1,
self.count = 5

immutable

1 (class int, id=10)

3 (class int, id=11)

c.count = 5

Diving into mutable/immutable objects (II)

21

Memory

variable

c (main)

n (main)

mutable

class Count, id=1,
self.count = 5

immutable

1 (class int, id=10)

3 (class int, id=11)

c.count = 5

Revisit is operator

22

• The is operator checks whether two variables are
references to the same object address

• Difference between mutable & immutable objects
• Immutable objects do not change throughout the lifecycle of a

program, so we don’t need to create multiple copies of the
same value. All variables with the same value reference the
same memory address

• Mutable objects’ data fields may change during the program
execution, so whenever a new object is created, a new memory
space is allocated. Each mutable objects are different, even
though they might have the same value during some periods

Memory

mutable

class Count, id=1,
self.count = 5

immutable

1 (class int, id=10)

3 (class int, id=11)

Practice

23

• Verify the above contents using id()

Thanks

