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Mutable objects
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Practice
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• What would be the output of the above program?



Diving into mutable/immutable objects (I)
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Memory

# variable

c (main)

# mutable

class Count, id=1, 
self.count = 1

# immutable



Diving into mutable/immutable objects (I)
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Memory

# variable

c (main)

n (main)

# mutable

class Count, id=1, 
self.count = 1

# immutable

1 (class int, id=10)



Diving into mutable/immutable objects (I)
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Memory

# variable

c (main)

n (main)

c (m)

n (m)

# mutable

class Count, id=1, 
self.count = 1

# immutable

1 (class int, id=10)



Revisit: constructing objects
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• Once a class is defined, you can create objects from the class 
with a constructor. The constructor does two things:

üIt creates an object in the memory for the class
üIt invokes the class’s __init__() method to initialize the object



Diving into mutable/immutable objects (I)
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Memory

# variable

c (main)

n (main)

c (m)

n (m)

# mutable

class Count, id=1, 
self.count = 1

class Count, id=2, 
self.count = 5

# immutable

1 (class int, id=10)



Diving into mutable/immutable objects (I)
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Memory

# variable

c (main)

n (main)

c (m)

n (m)

# mutable

class Count, id=1, 
self.count = 1

class Count, id=2, 
self.count = 5

# immutable

1 (class int, id=10)



Diving into mutable/immutable objects (I)
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Memory

# variable

c (main)

n (main)

c (m)

n (m)

# mutable

class Count, id=1, 
self.count = 1

class Count, id=2, 
self.count = 5

# immutable

1 (class int, id=10)

3 (class int, id=11)



Diving into mutable/immutable objects (I)

11

Memory

# variable

c (main)

n (main)

# mutable

class Count, id=1, 
self.count = 1

# immutable

1 (class int, id=10)

3 (class int, id=11)



Diving into mutable/immutable objects (I)
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Memory

# variable

c (main)

n (main)

# mutable

class Count, id=1, 
self.count = 1

# immutable

1 (class int, id=10)

3 (class int, id=11)



Diving into mutable/immutable objects (I)
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Memory

# variable

c (main)

n (main)

# mutable

class Count, id=1, 
self.count = 1

# immutable

1 (class int, id=10)

3 (class int, id=11)



Diving into mutable/immutable objects (II)
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Memory

# variable

c (main)

# mutable

class Count, id=1, 
self.count = 1

# immutable

c.count = 5



Diving into mutable/immutable objects (II)
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Memory

# variable

c (main)

n (main)

# mutable

class Count, id=1, 
self.count = 1

# immutable

1 (class int, id=10)

c.count = 5



Diving into mutable/immutable objects (II)
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Memory

# variable

c (main)

n (main)

c (m)

n (m)

# mutable

class Count, id=1, 
self.count = 1

# immutable

1 (class int, id=10)

c.count = 5



Diving into mutable/immutable objects (II)
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Memory

# variable

c (main)

n (main)

c (m)

n (m)

# mutable

class Count, id=1, 
self.count = 5

# immutable

1 (class int, id=10)

c.count = 5



Diving into mutable/immutable objects (II)
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Memory

# variable

c (main)

n (main)

c (m)

n (m)

# mutable

class Count, id=1, 
self.count = 5

# immutable

1 (class int, id=10)

3 (class int, id=11)

c.count = 5



Diving into mutable/immutable objects (II)
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Memory

# variable

c (main)

n (main)

# mutable

class Count, id=1, 
self.count = 5

# immutable

1 (class int, id=10)

3 (class int, id=11)

c.count = 5



Diving into mutable/immutable objects (II)
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Memory

# variable

c (main)

n (main)

# mutable

class Count, id=1, 
self.count = 5

# immutable

1 (class int, id=10)

3 (class int, id=11)

c.count = 5



Diving into mutable/immutable objects (II)
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Memory

# variable

c (main)

n (main)

# mutable

class Count, id=1, 
self.count = 5

# immutable

1 (class int, id=10)

3 (class int, id=11)

c.count = 5



Revisit is operator
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• The is operator checks whether two variables are 
references to the same object address

• Difference between mutable & immutable objects
• Immutable objects do not change throughout the lifecycle of a 

program, so we don’t need to create multiple copies of the 
same value. All variables with the same value reference the 
same memory address

• Mutable objects’ data fields may change during the program 
execution, so whenever a new object is created, a new memory 
space is allocated. Each mutable objects are different, even 
though they might have the same value during some periods

Memory

# mutable

class Count, id=1, 
self.count = 5

# immutable

1 (class int, id=10)

3 (class int, id=11)



Practice
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• Verify the above contents using id()



Thanks


