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Abstract
Remote Direct Memory Access (RDMA) is emerging as a critical util-
ity for large-scale datacenters, delivering significant performance
improvements over the traditional TCP networking stack. Recent
studies indicate that numerous applications can benefit from RDMA
integration, and RDMAhardware resources are being shared among
these diversifying applications. However, today’s RDMA frame-
works mostly view their software and hardware stacks as two
independent subsystems, making it difficult for developers to align
the performance objectives of RDMA applications with the limited
resources in RDMA hardware.

We are developing a framework called SwiftRDMA, with the
vision of enabling software-defined RDMA scheduling. SwiftRDMA
views RDMA resource sharing as a scheduling problem. SwiftRDMA
pinpoints the root causes of RDMA resource contentions and SLO
violations, linking them to a set of trackable signals and control-
lable actions. A software scheduler then translates various operator
demands into scheduling policies, which leverage the exposed sig-
nals and actions to achieve intended performance objectives. We
describe our progress so far, and demonstrate the potential benefits
of our approach.
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1 Introduction
Remote Direct Memory Access (RDMA) has been widely adopted
in modern datacenters to provide high-performance networking
with minimal CPU overhead [1, 6, 7]. As the scale of RDMA de-
ployment grows, the range of workloads that share RDMA-enabled
servers has also expanded. Notable applications consist of model
inference and training, distributed storage, and graph computa-
tions [2, 8, 9, 13, 36, 38], each possessing unique performance
characteristics and service-level objectives (SLOs). To improve the
hardware utilization, leading datacenter operators such as Alibaba
and Google are colocating diverse workloads on the same end
hosts [20, 31, 32]. This growing trend has led to significant concerns
about the coordination of multiple workloads on shared RDMA
hardware, with recent work attempting to avoid inter-workload
resource contention via better performance isolation [16, 18, 29]
and message scheduling [33, 39] mechanisms.

However, existing efforts lack a principled design for how RDMA
software can best utilize the underlying RDMA hardware to meet di-
verse application performance goals. Today, application developers
generally perceive RDMA hardware (e.g., RNICs) as opaque entities
that are hard to control, while the hardware treats applications as
non-cooperative parties vying for resources. This creates a context
gap which can lead to a mismatch between an application’s perfor-
mance goals and how the RNIC handles the application’s demands.
Developers may want to cooperatively schedule applications based
on their demands, thus optimizing overall performance, but the
RNIC only provides performance isolation interfaces that trade
efficiency for fairness; developers may have customized applica-
tion quality of service (QoS) objectives [4, 20], but such intentions
are oblivious to the RNIC internals. This context gap could easily
introduce resource under-utilization or over-subscription.

In this position paper, we argue for a vision that we call software-
defined RDMA scheduling. Our insight is that RDMA resource sharing
can be modeled as a scheduling problem, where applications coordi-
nate with each other to optimize for global objectives. As a concrete
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Figure 1: Existing RDMA frameworks vs. our vision—
Software-defined RDMA Scheduling.

example, best-effort workloads can yield RNIC resources to latency-
sensitive applications during traffic bursts to achieve SLO-aware
scheduling. To realize this vision, RNIC should expose controllable
actions (e.g., QP reuse) and useful signals (e.g., cache miss rate) to
the scheduler, and the scheduler should be able to meet global (e.g.,
hardware utilization) and application-specific (e.g., QoS) demands
by automatically tuning action knobs according to relevant signals.
This would allow applications to share RNIC resources in a context
aware and cooperative manner, bringing significant performance
improvements while meeting customized developer requirements.

In pursuing this vision, we are faced with a set of domain-specific
challenges. To begin with, we must identify why today’s RDMA
deployments struggle to meet various demands by pinpointing the
root causes of RDMA resource contentions [14] and SLO violation.
This necessitates a thorough understanding of the intrinsics re-
lated to RDMA NIC hardware. Moreover, we need to link these
root causes to trackable signals and controllable actions that the
software stack can use for efficient scheduling. Since we aim at com-
modity RDMA stack (meaning no reliance on specialized ASICs
such as DPUs or FPGAs, nor changes to RNIC driver or verb seman-
tics), we cannot easily instrument customized signals or actions
out of the box. This is compounded by the fact that, unlike CPU
scheduling, RDMA NICs do not expose direct actions to allocate its
resource units, requiring us to systematically explore indirect ones.
Finally, it is crucial for the proposed scheduler to automatically con-
vert developer objectives (such as application QoS requirements)
into hardware scheduling strategies. This enables the scheduler
to effectively interpret incoming signals and swiftly enforce ac-
tions to adapt to evolving workload dynamics. This process should
also remain transparent to existing applications, so that no drastic
changes are needed to adopt the framework.

The rest of this paper outlines our technical roadmap to address
these challenges, along with some initial evidence from our proto-
type implementation. Concretely, we (1) provide an architecture
overview of software-defined RDMA scheduling with software-
hardware co-design (§2.3); (2) give a comprehensive dissection into
RNIC resource contention points, and innovatively link them to a
set of novel signals and actions as the basic building blocks (§3);
and (3) demonstrate a case study where software demands could
be translated into hardware scheduling policies (§4).

2 Motivation
In this section, we discuss the trend of RDMA resource sharing,
highlight the problems of current efforts, and outline the workflow
for software-defined RDMA scheduling.
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Figure 2: The limited internal resources of RDMANIC (RNIC)
subsystems and their interactions.

2.1 Background: RDMA resource sharing
To improve hardware efficiency, datacenter operators [20, 31, 32]
are increasingly colocating multiple workloads on the same RDMA-
enabled end hosts. These collocated workloads present diverse
Service-Level Objectives (SLOs). On the one hand, high-performance
data stores such as Redis [30] are typically classified as latency sen-
sitive applications, which come with strict latency requirements
(e.g., 99th percentile tail latency of ≤50𝜇s). On the other hand, ma-
chine learning model (e.g., DLRM [11, 24]) inference prioritizes
latency-bounded throughput, demanding higher throughput un-
der a less strict tail latency constraint (e.g.,≤100ms). This is fur-
ther complicated by low-priority best-effort workloads that do not
have performance objectives, yet still consume large amounts of
resources if not controlled.

Inherently, when colocated RDMA workloads share resources,
they encounter a "noisy neighbors" issue: Colocated workloads
make concurrent invocations to RDMAcontrol verbs (e.g., ibv_crea
te_qp()) and data verbs (e.g., ibv_post_send()), which compete
for shared RNIC resource units, causing significant performance
interference in terms of latency and bandwidth. As Figure 2 shows,
RNIC contains many hardware components, such as NIC process-
ing units (PU) that drive control, send, and receive pipelines, user
access region (UAR) that manages doorbell and blue flame registers,
NIC cache that preserves frequently accessed RDMA context meta-
data, and NIC ports that interact with network fabric. All of these
components can independently cause resource contentions. As an
example, suppose we are colocating Redis workload with DLRM
inference, the latter, which requires many fan-out requests to re-
mote parameter servers, has to establish large amounts of RDMA
connections, occupying a major portion of NIC cache space and
making it hard for the former to meet its SLO.

The challenge of RDMA resource sharing is well recognized in
both industry and academia, particularly in multitenant scenarios,
where multiple virtual machines belonging to different users are
hosted on the same end host and utilize a common RNIC. This has
led to extensive work on RNIC performance isolation [16, 18, 29],
which attempts to guarantee fairness among tenants in terms of
bandwidth or latency. These methods operate on the premise that
different tenants are non-cooperative parties or even malicious
competitors unaware of each other’s demand. Our work instead
focuses on scheduling workloads in an SLO-aware manner so that
they can share RNIC resources cooperatively.

2.2 State-of-the-art & limitations
How to orchestrate the interactions between application compute
logic and RDMA hardware has been a long-standing discussion.
As shown in Figure 1(a), early-day RDMA applications [6, 15, 19,
21] leveraged a monolithic model, where the compute logic and
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Figure 3: Software-defined RDMA scheduling.

RDMA I/O are tightly coupled on the same set of run-to-completion
CPU cores. This model offers ultra-low latency as it minimizes the
context switch between software and hardware, at the cost of lower
resource efficiency: The RDMA I/O has to wait for the compute
logic to complete, resulting in head-of-line blocking.

Consequently, modern-day RDMA application deployments [12,
13, 38] are instead dominated by what we call a separate model as
shown in Figure 1(b), where the application compute logic runs
on a set of task cores, and RDMA I/O runs on a separate set of
communication cores. This allows for the efficient reuse of RDMA
software resources across multiple applications, thereby removing
head-of-line blocking caused by the execution of compute logic.
Nonetheless, the vanilla separate model still exhibits considerable
drawbacks in addressing hardware resource contentions and fulfill-
ing application-specific needs. This stems from its inability to pro-
vide adequate coordination among application workloads, RDMA
I/O and RNIC resources, leaving a substantial amount of untapped
performance potential.

To improve this status quo, recent work has explored how the
software stack can actively control the behavior of the RNIC hard-
ware [33, 39], so that applications can share the underlying RNIC
resources more efficiently. For instance, projects on RDMAmessage
scheduling [33] attempted to reorder or slice work requests (WR) in
the RNIC drivers so that messages with higher priority could be put
into the RNIC before others. As another example, efforts on RDMA
performance isolation [16, 18, 35, 40] aimed to rate limit traffic from
different tenants or applications so that they do not oversubscribe
to RNIC resources reserved for other parties. However, they typi-
cally require substantial changes to existing RDMA practices, either
by changing the RNIC driver and the RDMA verb semantics, or
by making use of hardware accelerators such as SmartNICs [40],
programmable switches [18], and FPGAs [16, 35].

2.3 SwiftRDMA: An extensible framework for
software-defined RDMA scheduling

As illustrated in Figure 1(c), SwiftRDMA is designed to establish
a development framework in which a central scheduler orches-
trates the interaction between application workloads, RDMA I/O,
and RNIC resources. Figure 3 further provides an overview of the
SwiftRDMA system architecture. The scheduler initially takes a set
of user-defined policies (e.g., maximizing throughput or ensuring
QoS) as input. It then gathers RNIC signals and application SLOs to
understand the hardware contention level along with workload re-
quirements. Once the scheduler decides that the current RNIC state
or I/O runtime no longer meets user-defined policies, it invokes a set
of actions to actively navigate away from the situation. Specifically,
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the scheduler leverages RDMA control verbs (e.g., ibv_create_qp) to
enforce control-path actions (e.g., load-balancing QPs across UARs),
and manipulates RDMA data verbs (e.g., ibv_post_send) to roll out
data-path actions (e.g., controlling enqueue rate of workloads). To-
gether, this forms a reasoning loop that enables context-aware and
cooperative RDMA resource sharing.

3 Linking RNIC Contentions to Signals and
Actions

In this section, we identify 5 types of RNIC contentions and link
their root causes to the corresponding trackable signals and con-
trollable actions, leveraged as the basic building blocks of software-
defined RDMA scheduling.

3.1 Cause 1: UAR Contention
User Access Region (UAR) is a critical but scarce memory region
provided by RNICs. It is mapped into the software layer and al-
lows CPUs to access RNIC resources, such as ringing DoorBells,
from userspace. The UAR contains a limited number of pages.
For example, only 16 UAR pages are exposed in every Mellanox
ConnectX-6 RNIC device context [22]. Each time an applications
uses ibv_create_qp() to create an RDMA Queue Pair (QP), the
RNIC places the QP in a UAR page, the index of which is typically
decided in a random or round-robin manner.
Root cause. Concurrent QPs sharing the same UAR page can intro-
duce non-negligible data-path overheadwhen they are driven by dif-
ferent CPU cores. As Figure 6 shows, QP1 and QP2 share UAR page1
but are driven by CPU1 and CPU2, respectively. When QP1 and QP2
concurrently post work requests via data verb ibv_post_send(),
their CPUs first issue Memory-Mapped IO (MMIO) write to UAR
page1 to ring the DoorBell, so that RNIC PU is notified to fetch QPs’
context metadata and then read Work Requests’ (WR) payloads via
DMA. However, this causes multiple CPUs to compete for the same
UAR page protected by a lock [23], causing workload performance
degradation. In our key value store benchmark, the throughput of
a get workload is reduced by up to 57% due to UAR contention.
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UAR-aware QP scheduling. Resource domain is an efficient RDMA
resource management abstraction that contains a set of RDMA
resources (e.g., UAR, QP) and allows them to be accessed from
the same execution context. In our case, the resource domain is
leveraged as a control knob to make newly created RDMA QPs
boundwith a specific in-RNICUAR page. Every CPU core for RDMA
IO runs over a resource domain and exclusively uses the context-
specific UAR page to manage its QPs. Next, we present the initial
evidence on the effectiveness of the proposed solution. Clients
synthesize the key-value get workload with 512B key-value size
over 64 RDMA QPs to key-value servers. We vary the number of
threads each pined with one CPU core to evenly drive QPs. We
measure the aggregate message rate (that is, get operations per
second). The paper uses the same testbed, which includes two
interconnected servers each equipped with 32 Intel Xeon CPUs,
128GB memory, and a 100Gbps Mellanox CX-5 RNIC. The vanilla
case with the worst-case UAR contention is used as the baseline.
As Figure 4 illustrates, SwiftRDMA outperforms vanilla by up to
2.22×, significantly mitigating the contentions over UAR.
Signals and actions. To resolve the runtime load imbalance across
different UAR pages, we first identify three available signals that
can be combined to indicate imbalances: (i) the congestion level (e.g.,
doorbell ringing) per UAR page, (ii) the number of active RDMA
QPs per UAR page, and (iii) the Work Request rate (e.g., WRs per
second) per QP. The first signal, which can be detected from the
doorbell congestion event in RNIC event queues by enabling event
reporting [22], reveals the rate of doorbell ringing on UAR pages.
If this rate is higher than the rate that the RNIC can handle, then
it becomes a contention source. The second signal, which can be
indirectly tracked using a connection counter per resource domain,
manifests the load pressure by counting the number of connections.
The third signal is used mainly to identify the most overloaded QP
as a target for taking actions, which can be computed from the per
QP WR counter.

To mitigate the UAR load imbalance, we abstract away two criti-
cal actions: (i) assign new QPs into a UAR page with lighter load for
latency sensitive workloads, and (ii) migrate an overloaded QP from
high-load UAR page to low-load UAR page. For example, when a
QP from latency sensitive workload is scheduled to be created, we
could take the first action based on signals (i) and (ii), ensuring its
service-level latency objective. When an overloaded QP is detected
running on a high-load UAR page using signals (i)/(ii)/(iii), the sec-
ond action could be taken to identify a low-load UAR page (using
signal (i)) and then migrate the QP to it.

3.2 Cause 2: RNIC Cache Contention
The on-chip cache in RNIC is another performance-critical but
scarce resource. When processing send work requests (WR) from
QPs, the RNIC PU directly interacts with the cache to query the
QP context metadata and memory region (MR) information from
QP Context (QPC) table and Memory Translation/protection Table
(MTT) respectively. A cache hit avoids the overhead of RNIC PU
fetching metadata from host memory. Besides QPC and MTT, RNIC
cache also needs to maintain other essential metadata, including
Completion Queue Context (CQC), and Event Queue Context (EQC).
However, the RNIC cache size is quite limited (the cache size of

Cause 2: RDMA Data Verbs Cause Severe NIC Cache Contention

NIC PUs

PCIe RNICSW

UAR
Mem Transl. Tab

QP Context NIC 
ports

RDMA Write
different MRs 

QP

Query CTX

contention
Heavy Cache Missdata path

RDMA Stall on TX PU 

4

CPU

NIC Cache 

Figure 7: RDMA data verbs cause severe RNIC cache con-
tention.

commodity Mellanox CX-5 is ∼2MB[13]), and cannot scale well as
the number of RDMA entities (e.g., QP, MR, CQ) grow.
Root cause. As Figure 7 shows, suppose that a large amount of
RDMA QPs and Memory Regions (MRs) have been used and over-
flow the RNIC cache [34]. When processing a RDMA Write WR
from a QP, the PUs first attempt to query the context metadata from
the NIC cache but fails, leading to large amount cache misses. The
metadata have to be fetched from host via DMA read, introducing
an extra PCIe round-trip. Meanwhile, RDMA PU is stalled to wait
for the metadata. In one of our microbenchmarks, the throughput
of the workload degrades from 96.6Gbps to 48Gbps as the cache
miss rate increases from 17.2% to 49.1% [14].

Practical mitigation. RNIC cache contention mainly results from
MTT and QPC cache misses. The principle of mitigating cache
contention is to reduce the number of cached RDMA objects, thus
reducing cache consumption. In terms of MTT cache, instead of
using 4KB page size by default, huge pages (e.g., 2MB and 1GB)
are well known to significantly reduce virtual-physical memory
translation entries. Our framework adopts a huge page pool by
default. In terms of QPC cache, QP reuse is often leveraged to
reduce the number of QPs. For instance, QPs that have identical
source and destination pairs might be optimized by combining them
into a single QP. However, QP reuse may hurt workload SLOs by
introducing queuing delays, thereby requiring a trade-off between
reducing cache miss rate and optimizing queuing delay.
Signals and actions.We recognize multiple available signals to
directly or indirectly indicate RNIC cache contentions: (i) QPC
cache miss rate and MTT cache miss rate, (ii) the total number of
active QPs, and (iii) tail latency of work request completion. The
first signal, which can be queried from RNIC hardware counters
using tools, shows the current contention level of the RNIC cache
in terms of amount of RDMA entities. The latter two signals can
be indirectly obtained through connection counter and completion
events in RDMA IO runtime, pointing to global RDMA QP and
work request states. Signal (iii) can help judge whether workload
SLOs are violated and whether a violation stems from RNIC cache
contention combined with the other two signals.

We further define two actions for cache contention mitigation:
(i) QP reuse, and (ii) QP scale up. When the scheduler detects a
high QPC cache miss rate (e.g., ≥30%) under total QP number ex-
ceeding a warning threshold (e.g., 512), and increased work request
completion tail latency, it could take action (i) by merging multiple
QPs to reduce the RNIC QPC cache contention guided by target
workloads’ SLOs; by contrast, when the QPC cache miss rate is low
(e.g., ≤15%) with a small amount of total QPs below a safety thresh-
old but the WR tail latency is approaching target workloads’ SLOs,
the scheduler could take action (ii) to create new QPs for higher
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parallelism and evenly distribute tasks to them, thus reducing WR
tail latency.

3.3 Cause 3: RX Pipeline PU Contention
Root cause. A third cause arises from an RNIC mechanism for han-
dling the Receive-Not-Ready (RNR) error in SEND/RECV primitives.
Specifically, when using SEND/RECV, the receiver-side CPU must
post RECV requests for the target QP before the data arrives. The
RNIC’s RX pipeline processes these requests, storing pointers to
available buffers. Upon receiving a SEND request, the RX pipeline
checks for a matching RECV request. If a valid RECV request is
available, the data is placed in the pre-registered buffer. However,
if no RECV request has been posted in advance, the RNIC cannot
accept the data, triggering an RNR error.

When an RNR error occurs, the RX pipeline PUs discard the
incoming SEND request and send an RNR NACK, prompting the
sender to retry after a backoff. Crucially, such error handling con-
sumes RX pipeline processing cycles. As Figure 8 shows, this leads to
resource contention and potentially stalling the entire RX pipeline.
As a result, not only is the workload associated with the RNR error
affected, but other workloads may also experience delays. Prior
studies [14] have demonstrated that RNR on one QP can drastically
reduce the bandwidth of another QP, dropping it from over 90 Gbps
to just 0.018 Gbps – only 0.02% of its original bandwidth.
Signals and actions. We identify two key signals for tracking
the RX pipeline PU contention: (𝑖) the length of RECV queues and
(𝑖𝑖) the RNR hardware counter in RNIC. The former is an indirect
signal that reflects delays in processing RECV requests, where both
excessively high and low values can be problematic, while the latter
is a direct signal that indicates whether an RNR error has occurred.

Our action plan is as follows: If the RECV queue length falls
below a predefined low threshold, it indicates a high likelihood of
RNR errors due to insufficient available RECV requests. Similarly,
an increasing RNR hardware counter signals that RNR errors have
already occurred. In either case, we proactively allocate and post a
batch of new RECV requests using ibv_post_recv(). Conversely,
if the RECV queue length stays above a high threshold for too long,
some QPs may be blocked from posting RECVs. To prevent this, we
selectively remove excess RECV requests to free up resources and
sustain RX pipeline health.

3.4 Cause 4: Inter & Intra QP Contention
Root cause. The final cause stems from QP contention, which can
occur both within a single QP (intra-QP contention) and across
multiple QPs (inter-QP contention). To illustrate this issue, we
consider three jobs with different QoS requirements, where Job1

Cause 4: Inter and intra QP RNIC Interference
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blocking, and (2) inter-QP port BW contention.

and Job3 share the same QP, while Job2 uses a separate QP, as
shown in Figure 9. For simplicity, we focus on the sender side.

At the RDMA I/O level, intra-QP contention arises because a
QP processes requests in a FIFO manner. Since Job1 and Job3 share
the same QP, their requests are processed sequentially based on
posting order, irrespective of their QoS requirements. This can lead
to head-of-line (HOL) blocking, where a low-priority request delays
a high-priority one, disrupting the intended QoS for both jobs.

Further contention arises within the RNIC due to inter-QP port
bandwidth (BW) contention. Modern RNICs support QP-level traffic
classes with priority queuing mechanisms [26], enabling differenti-
ation between workloads with varying QoS requirements. However,
our experience is that application developers often fail to properly
configure or be aware of RNIC priorities, resulting in unintended
QoS degradation despite the available hardware support.

Potential of proper inter-QP QoS. We evaluate the benefits of
using proper inter-QP QoS to and mitigate port BW contention. The
clientmachine generates latency-sensitive key-value getworkloads
with various key-value sizes to the server machine. Meanwhile,
we continuously generate 64KB requests and responses between
these two machines as background best-effort (BE) workloads. Our
baselines include (1) Vanilla only running key-value workload, and
(2) w/ BE running two workloads with the same traffic class (TC) of
QPs by default. SwiftRDMA assigns higher TC to the QPs used in
the key value workload when co-locating it with the BE workload.
As Figure 5 shows, SwiftRDMA achieves near Vanilla’s latency and
reduces average and P99 latency than baseline w/ BE by up to 35%
and 25%, respectively.
Signals and actions. We identify three signals for tracking the
intra-QP send queue contention: (𝑖) bandwidth utilization, (𝑖𝑖) queue-
ing latency of the QP, and (𝑖𝑖𝑖) the tail latency for high-priority
traffic. The first signal, which can be retrieved from hardware coun-
ters, indicates whether resources are fully utilized. For instance,
low bandwidth utilization suggests that resources are underutilized,
potentially pointing to send queue contention. The second and
third signals require computation, where high queueing latency
and increased tail latency for high-priority traffic suggest impend-
ing contention and QoS degradation. To mitigate these issues, we
introduce priority task queues before applications write to the QP
send queues, as illustrated in Figure 9. If bandwidth utilization re-
mains low while queueing latency and tail latency increase, we then
act to dynamically adjust the weights of traffic within the shared
QP to prioritize critical workloads.

For inter-QP port bandwidth contention, we track two key sig-
nals: (𝑖) bandwidth utilization and (𝑖𝑖) tail latency for high-priority
traffic. Unlike intra-QP contention, high bandwidth utilization in
this case signals potential port bandwidth saturation, which can
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lead to contention among QPs. Note that various forms of inter-QP
contention exist, but port bandwidth contention – our primary
focus here – only manifests when utilization is high. The second
signal further confirms whether this high utilization negatively
impacts high-priority workloads (e.g., latency-sensitive ones). If
both signals are high, our action is then to assign high-priority
traffic to elevated traffic classes supported by the RNIC, ensuring
better QoS differentiation.

4 Case Study: A QoS Scheduling Policy
As illustrated in Figure 3, the central scheduler is a core design of
SwiftRDMA: it optimizes RDMA resource sharing by monitoring
both software and hardware signals while considering application
SLOs. This is achieved by enforcing pre-defined policies through
adaptive actions. Policies, defined as state-action pairs, bridge ap-
plication intent to concrete actions. A state is determined by job
SLOs and real-time system signals, while actions involve control-
path and data-path adjustments, as detailed in Section 3. Policies
are created by operators (e.g., cloud providers) or users, and the
scheduler enforces them to achieve the intended behavior.

We demonstrate a case study of a QoS scheduling policy. Using
the setup from Section 3.4, we consider three jobs with different
SLOs: throughput-sensitive (𝑇𝑆) job 𝑗1, latency-sensitive (𝐿𝑆) job 𝑗2,
and latency-throughput-balanced (𝐿𝑇 ) job 𝑗3. Here, the application
QoS intention is 𝑗2 > 𝑗3 > 𝑗1. Note that SLOs can be expressed in
different ways, such as priority levels or concrete specifications
(e.g., the 99th percentile latency should remain below 10𝜇s), as long
as they align with policy definitions.

Let 𝑢𝑝 denote the bandwidth utilization for port 𝑝 and 𝐿𝑞𝑝 rep-
resent the queueing latency of QP 𝑞𝑝 . The 99th percentile latency
of job 𝑗 is denoted as 𝐿99

𝑗
, with 𝐿99

′
𝑗

representing its last reading.
Let𝑤 𝑗 represent job 𝑗 ’s weight in the task queue𝑤 𝑗 , and 𝑐 𝑗 denote
its assigned traffic class.

To mitigate intra-QP head-of-line (HOL) blocking, we have the
following formally-defined policy:


STATE:

(𝑇𝑆 = { 𝑗1}, 𝐿𝑆 = { 𝑗2}, 𝐿𝑇 = { 𝑗3}) ∧

((∃ 𝑗 ∈ 𝐿𝑇 ∪ 𝐿𝑆, 𝐿99𝑗 > 𝐿99
′

𝑗 )
∧ (𝑗 ∈ 𝑝,𝑢𝑝 < 80%) ∧ (𝑗 ∈ 𝑞𝑝, 𝐿𝑞𝑝 > 5𝜇𝑠))

ACTION: 𝑤𝑗 ← 𝑤𝑗 + 1

This policy first specifies job classifications and their SLOs, then out-
lines the example conditions under which intra-QP HOL contention
is detected. When the specified state is met, the corresponding ac-
tion is to increase the affected job’s task queue weight to prioritize
its processing. This adjustment may be applied iteratively until HOL
blocking is resolved, ensuring that latency-sensitive and latency-
throughput workloads take precedence over throughput-sensitive
ones.

Similarly, a policy for resolving inter-QP port bandwidth con-
tention can be written as:

STATE:
(𝑇𝑆 = { 𝑗1}, 𝐿𝑆 = { 𝑗2}, 𝐿𝑇 = { 𝑗3}) ∧

((∃ 𝑗 ∈ 𝐿𝑆, 𝐿99𝑗 > 𝐿99
′

𝑗 ) ∧ (𝑗 ∈ 𝑝,𝑢𝑝 > 80%))
ACTION: 𝑐 𝑗 ← 𝑐 𝑗 + 1

Policy compilation. The above policies should be automatically
compiled from high-level application QoS intentions and contention
criteria, translating abstract user-defined goals into enforceable
scheduling decisions. In future work, we aim to explore this compi-
lation process, ensuring efficient and automated policy generation.
Moreover, real-world scenarios often involve multiple simultaneous
contention issues in Section 3, which we plan to investigate further.
Scheduling loop. The scheduler runs in a continuous loop, where
each iteration efficiently gathers runtime signals and evaluates
predefined policies. It systematically checks for conditions that
require action and, if met, executes the corresponding actions to
adjust resource allocation. Our goal is to implement the scheduler
using a single CPU core while achieving fast decision making as
timely as possible.

5 Discussion
Interaction with virtualization and cluster-level scheduling.
In modern datacenters, RDMA scheduling can interact with sur-
rounding environments in complex ways. As an example, Single
Root IO Virtualization (SR-IOV) [25] can affect SwiftRDMA by
evenly partitioning a RNIC’s resources into multiple virtual in-
stances. If the partitions are known to be static, then SwiftRDMA
can be applied seamlessly. But if the setting involves dynamic repar-
titioning of RNIC resources (e.g. due to container autoscaling), then
its interaction with SwiftRDMA becomes an interesting direction
for future works. Across machines/RNICs, cluster-level schedul-
ing decisions may also affect the behavior of SwiftRDMA, even if
SwiftRDMA focuses on lower-level scheduling. Thus, developing
hierarchical techniques that integrate cluster-level scheduling with
SwiftRDMA is also a promising direction for further exploration.
New scheduling policies. The software-defined RDMA schedul-
ing framework should be extensible, supporting various policies
across application workloads and RNIC hardware. In particular, as
multi-path transport is increasingly adopted in AI/storage work-
loads [5], SwiftRDMA should enable software-defined multi-path
hashing policies to enhance load balancing across RDMA links. The
trend toward dual RNICs and ports in the host further introduces
the need for workload-specific reliability policies, such as RNIC
backup and TCP fallback [6, 17]. Extending SwiftRDMA from single
RNIC scheduling to dual RNIC scheduling would be an interesting
research endeavor. Moreover, SwiftRDMA should enable policies
that narrow the gap between heterogeneous RNIC hardware— those
from different generations or vendors. All of these go beyond the
QoS guarantee policy that SwiftRDMA has tested, and we leave
their development to future work.
Extending to other emerging hardware.While SwiftRDMA fo-
cuses on RDMA hardware resource scheduling, we believe that its
core paradigm—software-defined scheduling for domain specific
hardware resources— can be effectively extended to other emerg-
ing hardware platforms, such as XPU [28, 37], and PCIe intercon-
nect [3, 10]. This paradigm converts hardware resource scheduling
from traditional black-box modeling to a gray-box approach, sub-
stantially narrowing the context gap between low-level hardware
behavior and high-level application objectives. As an example, it
could turn GPU workload colocation into a scheduling problem: we
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start by profiling various forms of GPU contention at the microar-
chitecture level (e.g., streaming multiprocessors, high-bandwidth
memory and GPU cache), accompanied by identifying accurate con-
tention signals via GPU hardware counters and job-level metrics,
then derive effective mitigation actions from composable CUDA
programming abstractions. Therefore, we believe co-designing the
software scheduler with other domain-specific hardware represents
a broad direction for future exploration.
Integration with collective communication over RDMA.We
reckon that as the RDMA-based collective communication frame-
works (e.g., NCCL) continue to scale up in AI training and inference
workloads, smarter scheduling mechanisms become increasingly
crucial, especially for the purpose of addressing the RNIC con-
tentions arising from collective operations. For example, NCCL em-
ploys several multi-GPU parallelization techniques, including those
that involve multi-thread and multi-process [27] models, making
SwiftRDMA well suited to mitigate related RNIC contentions and
enhance the performance of collective primitives such as all-reduce.
We plan to integrate SwiftRDMA into RDMA-based collective com-
munication systems in the future.

6 Conclusion & Future Work
This paper presents SwiftRDMA, a software-defined RDMA sched-
uling framework that ensures co-located workloads meet their SLOs
while maintaining hardware efficiency. RDMA resource manage-
ment is challenging due to the opaque nature of commodity RNICs.
To address them, SwiftRDMA dissects the root causes of various
RNIC contentions, links them to various control signals and actions,
and converts user demands into scheduling policies. The case study
and preliminary results demonstrate the potential of SwiftRDMA
in mitigating RNIC contention and meeting application SLOs.

For future work, we plan to: (1) define a declarative policy and
task QoS programming model, (2) develop lightweight components
for signal gathering, decision-making, and action enforcement, and
(3) explore more use cases of extensible SwiftRDMA in a plug-and-
play manner. This work does not raise any ethical issues.
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