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ABSTRACT
Cloud infrastructure is the cornerstone of the modern IT
industry. However, managing this infrastructure effectively
requires considerable manual effort from the DevOps en-
gineering team. We make a case for developing AI agents
powered by large language models (LLMs) to automate cloud
infrastructure management tasks. In a preliminary study,
we investigate the potential for AI agents to use different
cloud/user interfaces such as software development kits
(SDK), command line interfaces (CLI), Infrastructure-as-Code
(IaC) platforms, and web portals. We report takeaways on
their effectiveness on different management tasks, and iden-
tify research challenges and potential solutions.

1 INTRODUCTION
Cloud computing has transformed the technology sector—
today, 94% enterprises use the cloud [1]. However, man-
aging the cloud infrastructure remains a challenging task.
Cloud tenants (e.g., EA Games, Home Depot) need to cus-
tomize their infrastructure for diverse workloads, but cloud
providers (e.g., Amazon/Microsoft/Google) only expose a
shim management layer to third-party users without reveal-
ing system internals. Management is also a continuous en-
deavor across the entire infrastructure lifecycle—provisioning
resources, runtime monitoring, and resource updates—each
with its own requirements and challenges.

To handle these tasks, tenants employ teams of DevOps
(i.e., Development/Operation) engineers to supervise their
cloud infrastructure. Four cloudmanagementmodalities have
gained popularity, tuned for DevOps engineers with different
experience and perferences: (i) cloud software development
kits (SDK) libraries, used for imperative programming; (ii)
command line interface (CLI) embedded into user terminals;
(iii) infrastructure-as-code (IaC)[11] configurations that en-
code cloud resources in a declarative manner; as well as (iv)
web portal clicks (ClickOps), the “no-code/low-code” option.
Although these options are all built atop low-level REST-
ful cloud APIs, they present higher-level interfaces and are
easier to use than RESTful API invocations.

Nevertheless, the complexity of the cloud ensures that all
of these options still come with a substantial learning curve.
Lifecycle management remains tedious and error-prone, of-
ten requiring manual trial-and-error steps. DevOps engi-
neers often find themselves performing repetitive tasks such
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as reading cloud documentation, understanding user require-
ments, debugging failures, and checking policy compliance
(e.g., GDPR). Management challenges further intensify as
more and more organizations embrace multi-cloud deploy-
ments [12, 18] to avoid vendor lock-in. This additionally
requires DevOps engineers to master significantly different
cloud environments, which creates further burden.
We present a vision where human engineers are assisted

by AI for cloud management. Recent advances in AI agents
built on top of large language models (LLMs) have shown
great promise in carrying out complex tasks. AI agents en-
hance LLMswith additional capabilities—e.g., reasoning loops
[19, 36], external tool usage [28], and memory management
[25]—to interpret user instructions, make complex decisions,
generate execution plans, and invoke external services to
interact with the environment. As AI agents become increas-
ingly powerful, we believe that now is the right time to
rethink DevOps engineering in light of this trend.

We are motivated by several questions along this direction:
Can AI agents potentially serve as cloud DevOps engineers,
reducing human burden and improving productivity? What
types of tooling might be the best fit for cloud AI agents?
What are the research challenges that we must overcome in
developing these agents, and what are some potential solutions?

We believe that cloud management has a few characteris-
tics that are a suitable match for an agentic design. First, com-
pared to traditional software engineering tasks, cloud man-
agement tasks are highly structured and repetitive, which
helps constrain the problem search space of agents. The out-
come of cloud management is also easier to analyze and
validate [20], especially when compared with existing code
generation tasks that rely on large amounts of test cases to
cover various program paths. Compared to popular use cases
of AI agents such as web automation, cloud management
already presents a range of programmable interfaces, making
it an ideal fit for interaction with coding agents. Moreover,
cloud providers also offer extensive documentation for their
services, a treasure trove for agents to distill domain knowl-
edge (e.g., using RAG [21] or web-based search [6]).

However, developing AI agents for cloudmanagement also
creates significant challenges. Given the criticality of cloud
infrastructures, AI automation must not compromise on ef-
ficiency, reliability, and scalability of cloud operations. An
agentic design needs to go beyond simply prompting an LLM
model and hoping for the best; rather, various guardrails and
a combination of neural and symbolic steps are needed for
high assurance. Furthermore, different cloud management
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Figure 1: Four cloud/user interaction modalities, with simplified code snippets for API SDK, CLI, and IaC, alongside
a screenshot of the web portal. We built several AI agents each targeting one of these modalities.

modalities may present different opportunities and hurdles
for an agentic design. Agent effectiveness could further de-
pend on the nature of the task (e.g., resource creation vs.
update). This paper represents an initial foray into this direc-
tion, presenting our recent study and discussing the lessons
learned. In the rest of this paper, we start by showcasing a
“battle” among several preliminary AI agents operating in
different modalities, and identify where they work well or
fall short. We then discuss research challenges and potential
roadmaps for an effective agentic design. We hope that this
work would spur additional discussion in the systems com-
munity, leading to future work on the next generation of AI
agent-based cloud management tools that achieve unprece-
dented levels of automation.

2 BATTLE OF THE AGENTS
In this section, we present the current cloud management
practice by introducing the four classes of cloud/user inter-
faces, then examine a typical lifecycle of cloud infrastructure,
and finally, conduct a preliminary case study on AI agents’
effectiveness on management tasks. These lessons help us
build intuition on the design gaps and research directions.

2.1 The warriors: management modalities
The four most popular modalities of cloud management,
shown in Figure 1, are built on a common layer—RESTful
APIs exposed by cloud providers. The RESTful APIs manip-
ulate cloud resources as data objects via HTML methods—
e.g., get APIs retrieve cloud data (e.g. resources, cost, logs)
in JSON format, while post, put, and delete create, up-
date, and destroy resources, respectively. Cloud-level REST-
ful APIs effectively form the “system call” layer of cloud/user
interaction—if the cloud allows users to perform any task,
that task must eventually map to some API invocations. Un-
derneath this API layer, cloud providers implement their ser-
vices in a vendor-specific manner, with few details exposed
to the tenants. However, leveraging RESTful APIs requires
users to directly handlr raw HTTP requests—e.g., processing
request headers, initiating authentication, parsing responses,
and dealing with low-level concerns like rate-limiting, re-
tries and asynchronous polling. Even the deployment of a

single cloud resource could involve a complex sequence of
API invocations and auxiliary scripts. Therefore, DevOps
engineers typically interface with higher-level management
modalities, described below.
Software development kits (SDK). All major cloud

providers offer SDKs for popular programming languages
(e.g., Python, Java, Go), which wrap the raw RESTful APIs
into easier-to-use libraries for DevOps engineers. For in-
stance, as shown in Figure 2(a), with the Azure Python SDK,
a single library call can create and configure virtual ma-
chines (VMs), hiding multiple RESTful operations behind
this method. SDK programs are an imperative approach to
cloud management, allowing developers to use their familiar
programming languages to manipulate cloud resources.
Command line interfaces (CLI). Another modality is

to embed common cloud commands into an intuitive, shell-
like CLI interface. In Figure 2(b), the Azure CLI provides the
‘az create’ family for creating resources (e.g., VMs, subnets,
network interface cards); likewise, the ‘az list’ command re-
trieves existing cloud states, and ‘az monitor’ manages log
events and performance metrics. CLI is well suited for inter-
active, one-off tasks such as small-scale “canned” tests and
queries, while full-fledged cloud management applications
requires more programmatic control and object-oriented
integrations, e.g., as provided in the SDK.

Infrastructure-as-Code (IaC). IaC tools provide a higher
level of abstraction, shielding even more complexities from
the developer via a state-centric design. Popular IaC frame-
works include Terraform [10], OpenTofu [8], Pulumi [9],
Crossplane [4], and CloudFormation [3], with Terraform
leading the market. An IaC program (e.g., a snippt shown
in Figure 2(c)) declares the intended cloud state, such as an
infrastructure with a certain number of Azure virtual ma-
chines, connected with network interface cards and guarded
by firewalls. IaC tools compile the program into sequences
of RESTful API invocations to automatically move the cloud
infrastructure from its current state to the intended state.
This reduces the cognitive burden not only because users
no longer need to reason about the step-by-step execution
for a given task (e.g., which APIs to use in order to create or



update a resource), but also because most IaC tools are in-
herently cloud-agnostic—that is, its program syntax remains
the same across different cloud providers. An IaC developer
can therefore manage their multi-cloud deployments (e.g.,
in AWS and Azure) using the same framework.

ClickOps. Last but not least, as shown in Figure 2(d), cloud
providers also expose orchestration capabilities via web por-
tals, which are graphic user interfaces (GUI) that visualize
cloud configurations, accepting UI clicks to interact with the
cloud. This option is commonly known as “ClickOps,” as the
DevOps engineers have to click through the web portals to
manage their infrastructure. As an advantage, GUIs do not re-
quire any programmatic interactions, so even operators with
no coding experience will find them accessible. However,
ClickOps may not be as efficient since it requires multiple
clicks—often in a precise order—to accomplish a task. This
is restricted by the speed at which humans can think and
interact with their portals. With multi-cloud deployments,
each cloud structures its portals/menus differently, which
could further increase the cognitive burden.

2.2 The battleground: management tasks
We describe typical lifecycle stages of cloud infrastructure
management, with three representative categories that we
will use in Section 2.3 to drive our case study.

Cloud infrastructure comes into being after a resource
provisioning stage, where DevOps engineers instantiate a
desired infrastructure by creating its constituent resources
(e.g., virtual private clusters (VPCs), subnets, routing tables,
virtual machines, and gateways) and interconnecting them
to function as a whole. This requires not only configuring
the attributes of each resource individually (e.g., choosing
a memory-optimized VM with spot priority), but also their
dependencies (e.g., a NIC depends on its VM).
Cloud infrastructure is long-lived, so DevOps engineers

need to perform periodic updates tomodify the infrastructure
for changing requirements (e.g., adding resources, dynamic
scaling). Whereas some resources can be modified in a live
manner (e.g., attaching an additional disk to the VM), other
modifications will tear down and recreate the resources (e.g.,
changing the VM type from ‘standard’ to ‘spot’). Modifying
one resource also needs to account for its dependencies on
other resources, which may require propagating the changes
to a larger update radius. Application-level policies, such as
fault tolerance or performance objectives, are also important.

At any time, cloud infrastructure needs runtime monitor-
ing to track the fleet status (e.g., resource utilization, system
performance) and ensure its health (e.g., by collecting teleme-
try data, diagnosing problems, and rolling out fixes). Quite
often, the raw telemetry data needs to be converted in to
easier-to-digest formats (e.g., visualization) to further assist
DevOps engineers to quickly locate the relevant trends.

Provisioning Updates Monitoring
Agents SR #steps SR #steps SR #steps

SDK 0.67 4.5 0.67 2.0 0.80 1.25
CLI 1.0 1.6 0.67 3.0 0.80 1.0
IaC 1.0 2.0 0.33 5.0 0.40 2.5
Web 0.33 46.0 0.67 20.0 1.0 2.75

Table 1: Agent performance (success rate (SR) and the
average number of steps) on VM management tasks.
We highlight in bold the best-performing agent—first
ranked by SR, and then the number of steps.

2.3 Tales from the battlefield
We present a case study focused on management operations
on a core cloud resource: virtual machines (VMs). We devel-
oped and adapted four preliminary AI agent prototypes for
each of the four management modalities.

• SDK agent: This agent relies on Azure’s Python SDK
to generate code, leveraging LLMs’ strengths in code
generation, especially Python programs [37].

• CLI agent: It writes Shell scripts that interact with the
cloud through Azure’s “cloud shell,” which provides
canned CLI commands.

• IaC agent: It uses Terraform [10], one of the most
popular IaC tools, and generates Terraform programs
to perform management tasks.

• ClickOps agent: It navigates the web UI, leveraging
screenshots and accessibility tree or AXTree [45] to
perform tasks via the cloud provider’s console.

The SDK, CLI, and IaC agents use Azure Copilot [7] as the
model, which is based upon GPT-4 but specifically tuned
for the Azure cloud. The ClickOps agent implementation
was adopted from WorkArena [17], and is powered by GPT-
4o [24], which is known as an effective model for web-based
agents. Table 1 summarizes our findings, as detailed below.
Battle #1: Provisioning.We performed three different

tasks with the agents—creating a single VM; creating three
VMs under the same network; and connecting the three VMs
to a load balancer. For each task we perform eight trials
with different prompts to account for stochasticity in agent
behavior. For each successful trial, we measure the number
of steps that each agent takes on average to complete the
task—each step is a single action taken by the agent, such
as generating code or executing a browser click. A trial is
considered unsuccessful if it takes over 100 steps for the task.

We found the CLI agent to be the most efficient, complet-
ing the tasks in 1.6 steps on average, with a high success rate
by generating the required command in a single step in most
cases. The SDK agent took 4.5 steps on average to generate
and execute the Python program at about 67% success rate.
The IaC agent took two steps on average to generate the cor-
rect Terraform configuration—one step to generate the IaC
program, and another to deploy the resources to the cloud.
In contrast, the ClickOps agent needed around 30× more



steps than the CLI agent, as each click in the cloud console
triggered updates to the web, which then prompted another
agent interaction for the next step; overall, the ClickOps
approach is the slowest and the most costly for this task.

With more complex provisioning tasks (e.g., creating three
VMs under the same virtual network), the ClickOps agent
failed to generate the correct sequence of steps. After re-
peated failures, it eventually reached the maximum step
limit we enforced, and terminated without completing the
task. This is because provisioning more resources requires
more web-based interactions, which amplify the probability
of errors. The coding-based agents, however, can program-
matically generate code largelt in the same way, regardless
of how many resources are contained in the program.

Observation #1: Although AI agents have stochastic be-
haviors, our preliminary experiment shows that they are
rather reliable with smaller tasks. However, errors increase
for management tasks that require multiple steps. The
ClickOps agent is particularly slow and error-prone for
resource creation tasks.

Battle #2: Updates. The agents then attempted three
update tasks: two in-place (i.e., live) updates: attaching an
additional disk to an existing VM; enabling boot diagnostics
for the VM; and a third update that modifies the VM type
from ‘standard’ to ‘spot,’ which requires tearing down the
existing VM and creating a new instance.
We found that the ClickOps agent benefits from the con-

sole’s natural presentation of existing VM configurations,
which helps reduce errors, achieving a much higher suc-
cess rate (67%) compared to provisioning tasks where they
did not “see” a preexisting cloud state. However, it required
many (avg=20) clicks to accomplish the tasks. IaC agents,
on the other hand, have a state-centric design and always
keep a copy of the previous cloud state; in principle, this
would help with resource updates, but due to the context
window constraints this agent could not pass its entire state
to the model. As a result, the IaC agent only achieved 33%
success rate; we hypothesize that its effectiveness would
increase with longer context windows. The CLI and SDK
agents needed additional commands to retrieve state infor-
mation, and these extra steps increase their error rates and
operational overhead compared to resource creation tasks.
As another finding, in-place/live updates (e.g., attaching

disks, enabling boot diagnostics) had higher success rates,
while updates that required resource recreation tend to trig-
ger failures due to the extra complexity. For instance, modi-
fying an Azure VM from a ‘standard’ type to a ‘spot’ instance
requires destroying the current resource and creating a new
one. The IaC agent outperformed others because such an
update only requires modifying a single VM attribute in the
IaC program—the teardown and recreation steps are auto-
matically handled by the Terraform framework. However,

the SDK, CLI, and ClickOps agents need to navigate each
step (i.e., saving the current VM image, destroying the VM,
and then creating another using the saved image), and en-
countered higher failure rates. Concretely, they failed when
attempting to save the existing VM’s image.

Observation #2: AI agents’ ability to access and reason
about cloud state is important for resource update tasks,
which modify an existing state. This is strongly influenced
by the interaction modalities, which directly impact agent
effectiveness.

Battle #3: Monitoring. We compared the agents on five
different monitoring tasks—obtaining the VM status (e.g.,
running/stopped), obtaining its public IP, and fetching the
state of all attached disks (e.g., size and type). We found that
retrieving resource information via different management
modalities differs in complexity. For example, obtaining disk
information required one step for both SDK and CLI agents,
two steps for ClickOps, and as many as eight steps for IaC.
On average, the CLI and SDK agents performed similarly,
achieving around 80% success rates within one step on aver-
age. However, the IaC agent was poorly suited formonitoring
tasks, with only 40% success rate,. We found that this agent
encountered numerous bugs in the monitoring tasks, such
as hallucination that generated non-IaC languages or invo-
cation of deprecated methods. Complex monitoring tasks,
such as retrieving a resource dependency graph, are natu-
rally suited to the web interface (2 steps), which provides
visual representations not present in SDK/CLI modalities;
the ClickOps agent performed almost perfectly on these
tasks. As another interesting finding, there exists monitoring
services, such as real-time service health checks, that are
only available in the web portal; for instance, the Azure Ser-
vice Health dashboard provides insights into cloud region
outages, maintenance, and historical incidents, but other
modalities have no such support.

Observation#3:Monitoring tasks require the agents to
obtain real-time resource/state information. Modalities
vary in how well they expose the current state; IaC’s state-
centric design only captures the infrastructure composi-
tion, but cannot easily retrieve runtime telemetry; thereby
struggling the most for monitoring tasks.

Summary: Even though these AI agents are preliminary
prototypes, they demonstrated promising results, especially
on simpler tasks. That said, agentic failures were still quite
common, especially with complex provisioning/update tasks
and monitoring tasks. We observed a variety of reasons for
failure across different tasks. For coding agents (i.e., SDK/-
CLI/IaC), many failures occur due to incorrect resource at-
tributes or an invalid sequence of commands. Upon repeated
trials, the agents are sometimes capable of retrieving the er-
ror logs to correct these mistakes. For the no-code/low-code
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Figure 2: The radar chart summarizes our initial case
study of AI agents interacting with the cloud across
different modalities. Level of abstraction denotes the
amount of details exposed; interoperability denotes
the support for cross-cloud operations; observability
refers to ease of tracing task execution; success rate
denotes the accuracy of task completion; and efficiency
denotes the number of steps needed by AI agents to
complete the given tasks.

ClickOps agent, misclicks and inability to locate the right
click sequence often prevent them from making progress.
However, GUI-based automation has proven quite effective
for monitoring tasks—the click sequences tend to be simpler
and cloud provider portals specifically optimize for monitor-
ing and visualization. Figure 2 summarizes our comparison.

Observation #4: AI agents’ ability to handle errors varies
by modality. Programmable interfaces like SDK, CLI, and
IaC offer precise feedback (e.g., return codes and error
logs), while web interfaces often report UI-level errors that
are harder to interpret. Recall that for each task we have
tried different prompts. We found that carefully-crafted
prompt, which include both task-specific hints to sup-
port cloud reasoning and modality-specific instructions
to navigate environments, help improve task completion.

3 SOLUTION SKETCH
The cloud is a complex and dynamic environment with ever-
increasing services and features. New players (e.g., special-
ized AI cloud) are coming into the market, which will in-
crease management difficulty. We outline a solution sketch
for future cloud management agents and identify key re-
search directions and lay out a roadmap for cloud agent
design. Figure 3 shows our envisioned design.

3.1 Agent architecture
Since different modalities present different tradeoffs, we en-
vision a system architecture where the agent utilizes multiple

…

Figure 3: Envisioned agentic system architecture and
workflow for cloud infrastructure management.

modalities for different management tasks. Our proposed
architecture consists of three components.
User-agent interface. Cloud operations are safety-critical,
and mismatches between user intentions and agent actions
can cause severe infrastructure damage. For instance, Azure
requires destroying and recreating VMs to change their prior-
ity from standard to spot, but users might incorrectly assume
this update can be done in a live manner. To address these
problems, we propose to design a user-agent interface that
consumes user prompts, and then outputs advisory messages
to clarify user intention and alerts the user of potential side
effects of the action. The user can iteratively provide guid-
ance, e.g., using RLHF (reinforcement learning with human
feedback), to better align agent actions with user intention.
Agent-cloud interface. Our case studies highlighted that
CLI generally excels in efficiency, IaC in large-scale updates,
and web interfaces in monitoring.While mastering all modal-
ities creates an undue burden for human operators, an AI
agent should be able to easily select and combine interfaces
to optimize task execution. If we combine multiple modali-
ties, the agent-cloud interface must reconcile actions taken
via each modality. For instance, if not careful, this could lead
to resource drifts (e.g., ClickOps modifying IaC-managed re-
sources, without modifying IaC tools’ local state) or race con-
ditions (e.g., CLI and ClickOps updating the same resource
simultaneously) [30]. We propose that this interface should
present a unified cloud state and expose synchronization
primitives for cross-modality interactions (e.g., via locking
and transactions), for consistent management actions.
Multi-agent orchestration.Cloudmanagement tasks differ
in their complexity, and we believe a complexity measure is
needed to quantify task difficulty—e.g., using the number of
resources, interconnections, single- vs. multi-cloud, the size
of the existing cloud data, as some basic metrics. We can then
develop specialized “experts” backed by different models for
each type of tasks. Management tasks will be routed to the
appropriate agents by an orchestrator, depending on the



complexity of the task, the expected timeline for executing
the task, and the monetary budget.

3.2 Agent workflow
We propose to divide a cloud agent workflow into two dis-
tinct phases: an exploration phase, focused on navigating
various execution strategies, and an exploitation phase, ded-
icated to completing cloud management tasks.
Separating exploration from exploitation. Cloud tasks
can involve sequences of slow and expensive provisioning op-
erations, making trial-and-error approaches inefficient both
in terms of time overhead and economic cost. The current
design philosophy of AI agents, which relies on multi-turn
retries to make progress, naturally comes with the risk of
further deteriorating the efficiency of cloud system manage-
ment. We borrow from the longstanding practice of cloud
system development, which advocates for the separation of
testing and production phases. Concretely, when assigned
the task of updating all VPC gateways within the current
subscription, AI agents should start with a bold exploration
phase that tests different execution strategies within a con-
trolled sandbox environment (e.g., create a newVPC gateway
in a test subscription and try out update plans). To further
improve interpretability and reliability, once the exploration
completes, the agents will articulate its knowledge in sym-
bolic rules. This will effectively form a “metaprogram” that
the agent intends to execute on the cloud infrastructure. This
symbolic program can be further subjected to type checking,
program verification, or testing, to achieve higher assurance.
Optimizing agent exploration. Data scarcity is a major
obstacle in advancing AI-driven cloud operations. Simula-
tion environments, or “gyms” [13], offer low-risk arenas for
agent exploration. Existing gyms typically focus on game-
play [26, 33] or synthetic tasks [14, 17, 45], where errors have
minimal consequences. These self-hosted environments use
controlled benchmarks to safeguard the exploration of AI
agents. In contrast, real-world cloud experiments are costly
and risky, making extensive trial-and-error or reinforcement
learning (RL) approaches impractical. We propose to build
cloud gyms and benchmarks that replicate the complexity of
real cloud setups (e.g., resources, functionalities, and billing
models) in a virtual, sandboxed environment, for safe and
efficient agent exploration.
Optimizing agent exploitation Cloud environments are
dynamic, with changing conditions such as load spikes, re-
source outages, or pricing fluctuations. The exploitation
phase must adapt in real time to these shifts, enabling effi-
cient resource allocation and cost management while main-
taining system performance and reliability under evolving
circumstances. We propose to leverage workflow learning
[33, 35, 44], which “caches” the knowledge gained from pre-
vious agent executions to improve the efficiency and agility
of the current exploitation phase. Once an agent successfully
performs and verifies a sequence of actions, it can extract

and save the workflow in agent memory for future reuse.
Memorizing validated workflows enables the agent to per-
form similar tasks more efficiently, alleviating the cold start
problem of the exploitation phase. Combined with reason-
ing [19, 36] and planning [41] techniques, the agent can
adapt these workflows to new contexts and execute cloud
tasks more effectively.

3.3 Agent guardrails
We propose to investigate agents with different levels of au-
tonomy. While fully autonomous agents [22] will remain a
challenging goal, “co-pilot” agents that assist human oper-
ators, or semi-autonomous agents that perform multi-step
reasoning, are already within reach. Regardless of the level
of autonomy, agents will need strong guardrails and effective
mechanisms for fault tolerance.
Constraining agents with guardrails. Agent actions must
be checked and verified against up-to-date policies to pre-
vent unintended or harmful operations. Regulatory policies
(e.g., privacy requirements such as GDPR or data sovereignty
regulations) are an important goal in cloud management.
Furthermore, cloud providers often have their own require-
ments [29] and so do tenants (e.g., security best practices).
AI agents must ensure policy compliance when managing
the cloud resources. Whereas today many such policies are
stated in natural language, we envision encoding these poli-
cies in formal specifications and checking the metaprogram
against these specifications to ensure compliance. Further-
more, we propose equipping AI agents with different access
control privileges, constraining their actions. We will add
audit trails to agentic operations, such as detailed logs and re-
ports, so that changes can be attributed to certain operations
and misbehaviors can be detected precisely.
Fault tolerance. The stochastic nature of AI agents ensures
that failures will inevitably occur in some scenarios. For ex-
ample, our ClickOps agent often got stuck due to incorrect
steps taken earlier, entering a loop of repeated failures. WE
need to develop better fault-tolerance mechanisms so that AI
agents can handle and recover from failures effectively [30].
This includes implementing mechanisms for retrying opera-
tions, rolling back unsuccessful changes [27], and applying
error correction strategies. The audit trails mentioned above
will also provide a starting basis for rollback and recovery
mechanisms, allowing agents to diagnose what went wrong
and revert the system to a known-good state. Such safe-
guards will not only contain the blast radius of failures but
also enable self-healing mechanisms that allow agents to
recognize and recover from their mistakes.
Human-in-the-Loop supervision. Ensuring the safe de-
ployment of cloud AI agents requires a careful balance be-
tween autonomy and oversight. Frameworks should incorpo-
rate safeguards that allow agents to operate independently
for routine tasks while enabling escalation mechanisms for
human intervention in high-stakes scenarios. Agents should



also detect when they are stuck or unable to resolve errors,
such as repeated failures or inconsistent states, and return
control to the user. We propose to encode runtime checks on
agentic behavior, and trigger alarms when certain thresholds
have been exceeded, so as to minimize risks by combining
the efficiency of autonomous decision-making with the reli-
ability of human judgment for critical operations. In other
words, the traditional human-cloud interfaces should remain
available as a fallback solution, ensuring that users can al-
ways intervene and regain full control when necessary.

4 RELATEDWORK
Code generation. Existing LLM-based code generation tools
[38, 43] offer useful starting points for cloud management
tasks. However, cloud management often uses low-resource
languages (e.g., cloud SDK/CLI/IaC), whereas today’s LLMs
excel at more popular languages (e.g., Python/C). While ini-
tial progress has beenmade in generating IaC programs using
AI models [20], effective cloud operations also demand con-
tinuous monitoring and dynamic updates, beyond resource
creation. Likewise, although extensive studies exist in web
automation agents [23, 40] (e.g., for online shopping). Cloud
operations, by comparison, involve multi-layered dependen-
cies, higher failure impact, and long-horizon objectives like
cost optimization, security enforcement, and compliance as-
surance. As a result, existing code generation techniques fall
short in addressing the complexity, safety, and adaptivity
required for robust cloud automation.
AI agents. Building on top of large models, AI agents are
systems that can perform iterative decision-making while
interacting with external environments through tool use,
such as APIs, code execution, or command-line interfaces
[42]. Recent works have explored enhancing agent capa-
bilities through explicit planning [41] and learning from
feedback [32, 35] to improve performance and adaptivity.
However, current applications remain largely limited to sim-
plified domains such as web-based shopping [40] or sand-
boxed game environments [33], where the operational com-
plexity is lower and consequences of failure are not as large.
Other work investigates the security vulnerabilities of AI
agents, particularly through adversarial attacks [16, 34, 39].
AI agents for the cloud also need better understanding of
security risks, so that we can develop defense mechanisms
to ensure agent safety and robustness.
AIOps. LLMs have been applied to log analysis and inci-
dent diagnosis for cloud operations [14, 15, 31]. Unlike these
specialized tools, which primarily focus on data analytics,
our vision is to enable autonomous actions, e.g., tool use,
reasoning, that will help assist with a wider range of in-
frastructure management tasks. Cloud platforms are actively
integrating LLM-driven chatbots (e.g. Azure Copilot [7], GCP
Gemini [5], and AWS Amazon Q [2]) to enhance ClickOps
workflows. These tools often use on retrieval-augmented
generation to summarize cloud documentation, providing

guidance to users but still require them to manually interpret
and implement instructions.

5 SUMMARY
Cloud infrastructure management is a critical but tedious
task. In this paper, we have made a case for developing AI
agents to assist cloud DevOps engineers in these tasks. Our
preliminary study with several agents performing a variety
of tasks shows that AI agents are a promising candidate for
automation, although much more is needed to make them
safe, efficient, and reliable. We propose a technical roadmap
for addressing various research challenges that need to be
addressed for realizing this vision.
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