Check for
Updates

Enabling Anonymous Online Streaming Analytics at the Network Edge

YUNMING XIAQO?, University of Michigan, Ann Arbor, United States

YANQI GU, University of California Irvine, Irvine, United States

YIBO ZHAO, Boston University, Boston, United States

SEN LIN, Northwestern University, Evanston, United States

ALEKSANDAR KUZMANOVIC, Northwestern University, Evanston, United States

In recent years, content hyper-giants have increasingly deployed server infrastructure and services close to end-users within
"eyeball" networks. Still, online streaming analytics has largely remained unaffected by this trend. This is despite the fact
that most of the “big data” is received in real-time and is most valuable at the time of arrival. The inability to process data at
the network edge is caused by a common setting where user profiles, necessary for analytics, are stored deep in the data
center backends. This setting also carries privacy concerns as such user profiles are individually identifiable, yet the users
are almost blind to what data is associated with their identities and how the data is analyzed. In this paper, we revise this
arrangement, and plant encrypted semantic cookies at the user end. By redesigning the cookie content without altering
existing protocols, semantic cookies enable the capture and pre-processing of user data at edge ISPs or CDNs while preserving
user anonymity. Additionally, lightweight cryptographic algorithms like partially homomorphic encryption can protect web
providers’ proprietary data from CDNs. We present Snatch, a QUIC-based streaming analytics prototype that achieves up to
200x faster user analytics, with common-case improvements of 10-30x.!
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1 Introduction

The ability to extract user analytics in a timely manner, i.e.,, as quickly as possible, is of critical importance for
numerous online applications [80]. An ad provider can more promptly adjust its ad layout to capture more clicks
based on the user analytics extracted over short time scales. Many online services are utilizing machine learning
systems to “learn on the fly” and either adjust content presentation (e.g., return search results tailored towards a
given user profile) or optimize system performance. Still, such machine learning systems fundamentally depend
on analytics “triggers,” which again, if available sooner or over short timescales, are more valuable.

Currently, the streaming analytics “machinery” typically resides in data centers. On the one hand, the analytics
servers are fed by streams from web server clusters, which typically serve tens of thousands of clicks arriving on
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average every second. On the other hand, given that user web requests alone are semantic-oblivious, i.e., carrying
no direct information about users, such information first needs to be obtained from associated user-profile
databases. The analytics servers thus aggregate data streams from the web servers and user databases to provide
advanced analytics.

This approach, however, suffers from two main drawbacks. The first drawback comes from the trend of
infrastructure migration towards the network edge. In particular, content and service providers have been
continuously pushing their systems and content to the users, from the content delivery networks (CDNs) to the
off-nets — servers outside their own autonomous systems (ASes) — which have become a common approach to
expanding the footprint of content hypergiants [72]. Nevertheless, the semantic-oblivious requests cannot be
analyzed before they reach the data centers that are distant from these edge systems/contents:

The second drawback is disrespect for user privacy, which has raised increasing attention and concerns in
recent years [42, 58, 116]. More concretely, the semantic-oblivious requests, while simple in design and hence
commonly adopted, carry individually identifiable information, e.g., user IDs. The user IDs have allowed the
service providers to record any information about the individual users as much as they can for an indefinite
duration as long as the users do not actively clean up — and most users are not aware of it at all.

In this paper, we explore the potential of catching and pre-processing user clicks early, much sooner than
when they reach the data centers while preserving user privacy to the largest extent. In particular, we look at the
content providers’ network and off-nets, as well as edge ISPs. Our goal is to design a system to make early click
catching, in-network processing, and anonymity preserving analytics possible, and to quantify the achievable
performance benefits.

To enable this approach, we propose semantic cookies, encrypted data structures set by the server and then kept
at the user. Contrary to widely-used state-of-the-art HT TP cookies, which are effectively pointers to semantic user
databases (typically hosted at data center back-ends), we plant semantic user information that is not individually
identifiable directly into the cookies themselves. This enables collaborating edge components, mostly edge servers
but also switches, to analytically process the user requests. Importantly, semantic cookies can be seamlessly
deployed without altering any of the existing protocols.

We design and implement Snatch, the first prototype of our edge-network analytics system. We explore two
designs. The first one places semantic cookies at the application layer, HTTPS, and processes them at the off-net’s
or CDNs’ edge servers. In this design, the semantic cookies can be processed either in plaintext, where the cookie
content is visible to the edge servers, or in encrypted form, where the edge servers operate on encrypted data.
The plaintext approach is more efficient, while the encrypted approach provides an additional layer of protection,
as web servers may be unwilling to share user profiles with edge servers.

The second design places semantic cookies at the transport layer, QUIC, which enables processing them at ISP
switches. The underlying trade-off is that application-layer semantic cookies provide high flexibility in terms of
the number of user features, while transport-layer cookies provide faster analytics. It is noteworthy that both
types of cookies could be utilized simultaneously when needed.

Snatch is a two-tier analytics system. The first tier consists of either edge servers, which handle application-
layer semantic cookies, or LarkSwitches, which handle transport-layer semantic cookies. The second tier consists
of AggSwitches, which inspects all the incoming packets to the analytics server. The first-tier devices early
re-direct semantic data to the state-of-the-art analytics servers. Optionally, the two tiers coordinate to enable
in-network analytics. The number of supported operations available at switches is considerable (see Appendix A);
hence, it provides valuable in-network analytics support. Snatch augments existing online analytics systems in a
fully cooperative manner.

We implement Snatch and evaluate it in a testbed. To fully understand the performance gains that Snatch
can achieve on the Internet, we conduct a large-scale measurement study. In particular, Snatch involves several
components: the edge server, ISP switch, web server, and analytics server. To study the performance of these
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entities in practice, we host HTTPS websites using AWS EC2 instances. In addition, we purchase CDN services
from Cloudflare and AWS CloudFront. Finally, we utilize over 2,000 residential nodes from the Mysterium VPN,
spread around the world, as users. These measurements enable us to accurately estimate network latencies among
users, edge ISPs, off-nets and CDNSs, and data centers, and evaluate performance gains achievable by Snatch.

We find that Snatch brings significant speed-ups, particularly in scenarios when all calculations can be done
in the network. Specifically, in-network analytics reduces latency by 5x relative to the scenario when only
redirections are enabled. Processing semantic cookies at the transport layer is 3-8x faster than at the application
layer. When users are spread across the world, Snatch manages to speed up user analytics by 10x compared to
existing analytics systems, while the speedup climbs to 30x when users are located on a single continent, e.g.,
North America.

Finally, when partially homomorphic encryption is used, allowing edge servers to process data without knowing
its contents, there is a reduction in performance benefits. For instance, it provides similar performance to scenarios
where in-network analytics is disabled. It is noteworthy that this reduction does not result in performance worse
than current practices. In return, it provides enhanced privacy guarantees, making ita potentially worthwhile
trade-off depending on the demands of the Web providers.

2 Background And Motivation
2.1 Streaming Analytics

Data streaming analytics targets enormous data that arrive continuously in time. Efficient data streaming analytics
is essential to many important real-time applications, e.g., social networks [53], ad campaigns [56], and beyond [61].
Early streaming analytics systems use dataflow models [39, 51, 52]. With the increasing demand for streaming
analytics, the last decade has witnessed a thriving of proposals: MillWheel [36], Storm [112], Heron [83], Puma [53],
Spark Streaming [17, 38, 124], Apache Flink [14], and more. Among them, Spark Streaming [124] started to
aggregate the streaming data over a short interval and perform batch analytics in a Map-Reduce fashion [62].
The state-of-the-art streaming analytics produce results at a timescale of ~1 to ~10 seconds [27, 56, 124].

The above-mentioned work focuses on streaming analytics in a single cluster environment, leaving the arrival
of data out of scope. In this paper, we make the arrival of data a central topic of our research. For example,
message queues [15, 16, 21, 29] are usually adopted in real-world production to link the data ingestion pipeline
and the streaming analytics systems [56].We include the message queues when discussing the streaming analytics
systems in this paper.

Yet, the message queues-and the streaming analytics systems do not depict the whole picture. While some
applications analyze only internal data, i.e., stored or generated inside the data center, many applications analyze
data from outside the data center, e.g., the users’ requests, generated from end-user networks scattered around
the world. Further, in online applications scenarios, the application-level streaming data is typically sent to the
analytics servers only after it reaches web server endpoints in data centers. Hence, rather significant latency can
be added to the user requests after they are generated by end users.

The time cost incurred before data arrives at the analytics server is nontrivial (see § 2.3), however, it is often
disregarded. To depict a comprehensive picture, we consider an entire online streaming analytics cycle. The
cycle includes the streaming data generation and transmission, i.e., users send requests to the servers and the
servers process the requests, data processing, i.e., by message queues and event processors [27]. Finally, the cycle
terminates with a traditionally-defined streaming analytics system, e.g., Spark Streaming [17].

ACM Trans. Comput. Syst.



4 « Y.Xiaoetal.

@ user_id ad_id event_type
0xff01 0x02 0x00

n - ‘user feature/# user. featureBl ad_id ‘event type‘
Q.‘ », | user_id |user_featureA user_featureB| |more7|nfo| @ ox01 0x03 | 002 ‘ 0X00 ‘
= oxffo1 0x01 0x03
v . l | £2)136.6ms , R)M37ms
& (X5241.6ms, @ pe HTTPS
Jeisamsa— e
o Nd l
Data1:ase 32.3ms Web Server Web Server Edge Server

7 Edge Server @
/ A‘<— -
17.2ms*3{ @ % e
'At_/ w = BT Aoms.@y. P ¢
x AggSwitch ‘
Analytics SeN ‘Q" C _ A A

LarkSwitch

Input: cookie stream C ISP u User
"C < fi - ser
1: C.< fll;er(C.eventftype O)C . . Input: local count stream CL. Input: semantic cookie stream C
2: cllgnt_ features <- DB.get(C.client_id) 1: count <- CL.reduceByKey(_+ ) 1: C <- filter(C.event_type=0)
3: pairs <-\ Output: count 2: pairs <-\
(C.ad_id, L.Jser_features).map(f =>(f, 1)) (C.ad_id, C.user_features).map(f => (f, 1))

4: count <- pairs.reduceByKey(_ + _) 3: count_local <- pairs.reduceByKey(_ + _)
Output: count Output: count_local

(a) Scenario without semantic cookies. (b) Scenario with semantic cookies.

. | userjeatureﬁ{ userjeatureB[ ad_id |event7type|

|Enc([0,0,0,1])|Enc([o,1,o,0]>[0x02| 0x00 | >

Analytics Server

Input: (encrypted) local count stream CL ||Input: semantic cookie stream C

1: count_enc += CL 1: SC <-filter(C.event type =0)

2: count <- Decrypt(count_enc) 2: count_local[SC.ad_id] += SC.user_features
Output: count Output: count_local

(c) Scenario with homomorphically encrypted semantic cookies.

Fig. 1. Breakdown of time cost in a simple application of advertisement campaign.

2.2 Anonymity Preserving Analytics

Anonymity preserving analytics refers to computational analytics over aggregated results from the users without
revealing the individual identities, and hence provides strong privacy guarantees [65, 122]. However, widely-
adopted Web cookies present a significant privacy-leaking vertical, even at the network level [116]. A single
identity leak in one application opens up unforeseen tracking opportunities.

With the growing public attention and concerns about individual privacy, anonymity preserving analytics
has been supported by legislators [8]. The related studies have also become a hot topic in the security and
privacy academic community [58, 66]. Complying with the trend, hyper-giants have also introduced their own
data collection and analytics systems that preserve user anonymity, for instance, Google [42, 67], Apple [110],
Microsoft [63], and more. One of the widely adopted privacy-preserving analytic techniques is Homomorphic
Encryption [104][70], which enables computation outsourcing without privacy leakage.

2.3 Opportunities

Migrating infrastructure towards the edge. Content and service providers are continuously pushing their
systems closer to the users. Content delivery networks (CDNs) allow the content providers to place static content
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at servers nearby users, and thus improve their experience. CDNs have thus become one of the most crucial
components of the Internet today, serving billions of users across the world. In fact, more than half of the Internet
traffic originates from several top CDN providers [72]. In addition to building their own data centers and backbone
networks [75, 82], the major content providers also deployed off-net servers [72]. Such servers are placed in the
eyeball, end-user, networks. The deployment of these edge servers further reduces the latency between the user
and the content, thereby improving the user experience.

In parallel with this trend, the service providers are also pushing computation closer to the users. Hence, many
distributed streaming analytics systems are proposed, aiming at working with limited resources available at the
edge [49, 50, 71, 96, 101]. While helpful in certain specialized scenarios, most applications still require centralized
streaming analytics with data from users scattered all around the globe. In this paper, we focus on centralized
streaming analytics.

Importantly, with the introduction of edge servers, the overall architecture of online streaming analytics
systems has changed. The streaming analytics server (cluster) is usually not placed in the same region as the
edge servers, which is where the users are directed first. This results in complications of security and privacy
issues, e.g., a third entity has access to the cookies or sensitive content [87, 88, 119], as well as a rather substantial
increment of delay between the components of the online streaming analytics systems, as we will demonstrate
below.

Case Study. The above infrastructure migration to the edge affects many online applications. A first example is
that an advertisement provider may want to receive aggregated results of its ongoing advertisement campaign in
real-time to make decisions, e.g., the offering in the following advertisement auctions, based on them [56]. A
second example is that real-time crowd analytics, a technique crucial to many businesses [33], needs to aggregate
results about information in a particular region. A third example is the needs for faster response to users’ resource
demands. Today, cloud platforms have become the go-to solutions for many companies because of their capability
to scale up/down in a timely manner. Nevertheless, the service scaling (where containers are usually used) needs
to deploy before they become available. Hence, faster response to the demand and hence earlier provoking service
deployment changes are crucial to the user experience for various online applications [7].

Below, we analyze the first example of the advertisement campaign in detail. Here, the data is generated when
a user clicks on an ad link. It follows that a request is sent to an edge server, e.g., in the case of a CDN, with the
user ID embedded in the HTTPS cookie and the ad ID included in the HTTPS URL. The edge server then passes
the cookie to the web server in the closest data center. Next, the web server processes the cookie and delivers the
data to the (centralized) analytics system which is potentially at another data center. Message queues are usually
adopted to deliver the data. If the user semantic information is needed, e.g., demographic or other information,
the analytics server needs to first fetch this data from a database before being able to perform further analytics.

In this example, we assume that the application developer, who owns the web server, has control over all the
cookies, meaning that they are all first-party cookies. As a result, the cookies are initially sent to the web server,
and any ad broker either resides at the analytics server or receives information from it. It is important to note
that in the current Web, this assumption may not hold true, as users may send separate requests to ad broker
URLs along with third-party cookies. However, the use of these third-party cookies contradicts the prevailing
trend of enhancing privacy and has already been banned by some major browsers [10, 11, 34] and is expected to
be banned by the remaining browsers in the near future [9]. Consequently, we focus on first-party cookies in this
study.

Drawbacks and Opportunities. We conduct a large-scale measurement study to comprehensively quantify the
latency inflation cost (details are provided in § 5). Figure 1(a) illustrates an example of the analytics time cost
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breakdown of one data point. It starts from the request generated by the user in New York?. The closest edge
server, which caches static content, is selected and is in New York. The web server that provides dynamic content
and handles cookies is hosted at AWS’s us-east-1 region. The server for global streaming analytics is, however,
located in California. All QUIC connection handshakes take 97.8 ms in total. Adding up to the processing time
costs at both the edge and web servers, which take 378.2 ms in total, as well as the delay of 32.3 ms from the web
server to the analytics server?, the time cost before the cookie arrives at the analytics server is 508.3 ms, which
occupies more than 50% of the total time cost assuming 500 ms is needed for the analytics itself*.

Besides the latency inflation highlighted above, we also notice that in the current online streaming analytics
systems, the analytics operations are performed only after they arrive at the analytics server. For instance,
traversing through the path of the data in Figure 1(a), we find that the data is held by the‘edge server and
web server for more than 300 ms in total while they respectively handle the static and dynamic web request —
unrelated operations to the data analytics — and is left untouched before it arrives at the analytics server.

We now move to privacy issues. In short, the above request submits a user activity, i.e., clicking an ad, along
with the user ID to both the edge server controlled by a CDN provider, and the analytics server controlled by the
ad provider. After that, the ad provider can perform any analytics as it wishes, or save this event associated with
the user ID in its database for further analysis. Yet, this might lead to potentially serious privacy violations. This
is because as long as the user does not clean up the cookie, all her activities will be logged among potentially
other individual information that is obtained through other sources, as illustrated by the tables in Figure 1(a). An
attacker, e.g., a malicious data owner or a third-party attacker who gets access to the database of the ad provider,
or network traffic, might then be able to impose danger to such individual users by splicing all the information
pieces [116].

3 System Design

In this section, we first present the overview of our system design and illustrate the benefits using the same
example as in Section 2.3. Next, we present our security and privacy threat model. We then present more design
details and benefit quantification of the semantic cookie as well as in-network streaming analytics. Last, we touch
on the functionalities of Snatch’s controller.

3.1 Overview

At a high level, we propose to forward and (pre-)process the data much earlier than the current online streaming
analytics systems do — at the edge server, or even at the ISP switch, thanks to the programmable data plane [43].
One critical obstacle for the early data forwarding and pre-processing is that the cookies are semantic-oblivious,
i.e., no information about the user but only a reference to the information is included. This is because at the time
when the cookies are assigned, the server knows nothing about users. We instead propose semantic cookies. Like
regular application-level cookies, they are generated by servers, and kept by users. The difference is that semantic
cookies hold encrypted application-level user data, and more importantly, include no individually identifiable
information. Typically, once the information about the user is collected, e.g., when a user clicks a specific web
page, the web server should push semantic information into the user cookie itself. To the best of our knowledge,
we are the first to seize this opportunity, given the nature of our system.

We explain the procedure of Snatch with Figure 1(b), focusing on the same application as the case study in § 2.
A previous benchmark study [56] evaluated the streaming analytics engines by operating a join operation to

2Here we assume QUIC is adopted as it is becoming popular, and its handshake is simpler than TCP+TLS. With TCP+TLS handshakes, the
time cost of communication in Figure 1(a) will be more than doubled as it is now.

3We assume no handshake is needed because a persistent connection is established by the message queues, or otherwise the time cost will be
greater.

4The default computing time interval of Spark is 1s [31]. If the data arrives evenly, the average time of analytics is 500 ms.
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obtain the number of users who viewed the ads. But in practice, more advanced analysis of the composition of
the users may be needed to allow the ad providers to make decisions based on the results. Thus, we assume that
the analytics server wants to analyze the composition (by their demographic categories) of users who viewed a
particular ad in an instant windowed time. This can be achieved with three operations as shown in Figure 1(a): (i)
filtering the arriving cookie streams by event type, e.g., a user viewed an ad (L1); (ii) then requesting the database
for the user features (demographic information) by the user ID embedded in the cookies (L2); and (iii) counting
the number of users for every user feature (L3-4).

In Snatch, the web servers should set the semantic cookies as a replacement of the user ID, as shown in
Figure 1(b), after the first connection with the user and the information of the user becomes available. It is
noteworthy that the first connection cannot be accelerated and is not depicted in Figure 1; all the results we
present in this paper focus on subsequent connections after the initial one. The semantic cookies should be kept
by the user, similar to the current design. What is different is that the ad provider should not store any user
information. From then on, the user sends requests with the semantic cookies. The semantic cookies can be
recognized and processed by the edge server. As shown in Figure 1(b), the edge server filters the cookies by the
event type (right L1). It also counts locally the number of users who viewed a particular ad for every user feature
(right L2-3). The processed data can be forwarded directly to the analytics server. Before it arrives at the analytics
server, AggSwitch, a programmable switch close to the analytics server, aggregates the local counters from all
the edge servers (left L1) before delivering them to the analytics server.

As there are many devices and parties involved in Snatch, a controller (not shown in Figure 1) is present
to coordinate all the participants. As shown in Figure 3, Snatch controller is run by a trusted party. It accepts
analytics tasks from application developers and distributes the associated instructions to different devices held by
different parties.

In this example, all the analytics have been completed on the way to the analytics server while no user ID is
present. The time costs on analytics operations (~500 ms) are reduced to <1 ms given that (i) each web server
only handles a small number of requests and hence has minimal costs and (ii) the line-rate processing ability
of the programmable switches. It follows that the total latency from when the data is generated to when the
decision can be made based on the data is reduced by ~80% from 1008.3 ms to 228.6 ms. This demonstrates the
feasibility and benefits of processing the data early at network edge.

Moreover, the semantic cookies in many scenarios are constant. For instance, in the second example of real-time
crowd analytics, what needs to be aggregated and analyzed is the user’s information, e.g., demographic or interests;
in the third example of faster response to users’ resource demands, what needs to be aggregated and analyzed
is the typical demand of the users. These information can be kept at the user’s side and sent without knowing
what the user’s requests are. Thus, we further propose to encode encrypted semantic cookies in the transport
layer. With the programmable switch’s capability to read and parse packet headers, the semantic transport-layer
cookies can be acted upon as soon as the user requests reach the edge ISPs, as the dashed lines in Figure 1(b)
illustrate. In particular, semantic cookies could (optionally) be pre-processed, and forwarded by the LarkSwitch,
as shown in the figure. This further cuts analytics latency to around 48 ms — a ~95% reduction in the total delay.

One potential issue with the above setup is that the edge server gains access to the cookie content, which
contains embedded user features. While this might seem acceptable since each edge server only interacts with a
subset of the data — such as when users send requests to them - it still constitutes a privacy risk. This risk is
amplified when edge servers are managed by the same entity, such as hypergiant CDNs, which could aggregate
extensive user data for their own purposes. To mitigate this privacy concern, we can employ homomorphic
encryption to further secure the semantic cookies. Additional details on this approach are provided in Sections
§ 3.3 and § 3.7. In short, homomorphic encryption enables edge servers to perform computations on encrypted
data without ever accessing the raw data or the results. As illustrated in Figure 1(c), the semantic cookies contain
user features represented as one-hot binary arrays prior to encryption. When these encrypted cookies reach the
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edge server, the server can perform operations like summation on the encrypted data (SC.user_features) and
produce encrypted results (count_local). Only the analytics server can decrypt these results. This approach
allows edge servers to assist in data processing without ever accessing sensitive user information. Additionally, it
severs the link between the user’s IP address and the analytics server, further safeguarding user privacy.

3.2 Threat Model

We assume a third-party attacker who can monitor and collect network packets from a limited geolocation
range. We also assume an attacker who may join the system as a user to receive the semantic cookies from the
web servers. This attacker might attempt to decode the format of either application-layer or transport-layer
semantic cookies by analyzing the collected packets. Being able to decode the semantic cookie would allow the
third-party attacker to intercept user information from network eavesdropping, or send fake data to distort the
application developers’ analytics results, i.e., data poisoning attacks [55, 94, 111]. Nevertheless, the attacker should
be computationally bounded and not be capable of decrypting ciphertexts that are encrypted using advanced
cryptography algorithms, such as AES and TLS.

Moreover, we assume an honest-but-curious edge node, i.e., edge server or LarkSwitch in Figure 1(b), who
follows the protocol but may try to understand the application-layer purposes of the semantic cookies, and
hence steal the user information for commercial purposes. On the other hand, we assume a malicious application
developer who may try to insert individually identifiable information into semantic cookies while using our
system.

3.3 Homomorphic Encryption

Before diving into the details of our design for semantic cookies and systems, we first briefly introduce key
concepts in Homomorphic Encryption (HE). Specifically, HE allows third parties to perform computations on
encrypted data. HE can be categorized into two types: Partially Homomorphic Encryption (PHE) and Fully
Homomorphic Encryption (FHE). PHE is limited to either addition or multiplication operations on ciphertexts,
while FHE supports both, enabling arbitrary computations. However, current FHE schemes, which are based on
lattice-based cryptography, suffer from significantly lower computational performance and higher bandwidth
requirements compared to encryption schemes based on classical cryptographic assumptions. Conversely, many
PHE schemes are based on classical cryptographic assumptions and thus offer performance benefits. Depending
on the application scenario, if only addition or multiplication operations are needed, PHE schemes are preferred
for their efficiency. For instance, in our application, a PHE scheme that supports ciphertext aggregation would
provide the best efficiency.
Define an HE scheme HE : {Kg, Enc, Dec, Eval} which contains the following algorithms:

® kg(1%) — (sk, pk): The key generation algorithm takes 1* as input where « is the security parameter, and
outputs a key pair (sk, pk).

o Enc(pk,pt) — ct: The encryption algorithm takes the public key pk and the plaintext pt as input, and
outputs a ciphertext ct.

o Dec(sk,ct) — pt: The decryption algorithm takes the secret key sk and the ciphertext ct as input, and
outputs the corresponding plaintext pt.

o Eval(pk, ct, cty, op): The evaluation algorithm takes the public key pk and two ciphertexts encrypted under
this pk as input, perform the specified operation op, and outputs the ciphertext ct which encrypts the
operation result. Depending on the exact HE scheme, op can be addition or multiplication.

The correctness property for HE scheme requires that given ct, < Enc(pk, pty) and ct; < Enc(pk, pt;),
then ct « Eval(pk, ctg, ct;, op) where the decryption result pt « Dec(sk, ct) must satisfy pt = op(pt,, pt,).
The correctness property indicates that any individual with the public key pk can perform the corresponding
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operation op directly over the ciphertexts for multiple times without knowing the underlying plaintext of either
the input ciphertext or the output one.

The security property for HE scheme requires semantic security, which states the probability of adversaries

obtaining any information about the encrypted values from the ciphertext without access to the secret key is
negligible.
Paillier Encryption. Paillier cryptosystem, proposed by Pascal Paillier in 1999, is a partial Homomorphic
Encryption system based on classical cryptographic assumption that allows two types of computation over
homomorphically-encrypted data: (1) additive of two ciphertexts and (2) multiplication of a ciphertext by a
plaintext number. It is one of the few HE schemes that has been standardized by ISO/SEC, and widely used in
many areas, including privacy-preserving machine learning and secure aggregation.

In this paper, we rely on Intel Paillier Cryptosystem Library (IPCL) [4], which is an open-source, ISO-compliant
Paillier Cryptosystem software implementation that could achieve optimized performance on the latest Intel®
Xeon Scalable Processors.

3.4 Semantic Cookie

Contrary to "traditional” cookies, which are used as pointers to a back-end database of user attributes, semantic
cookies enable web servers to directly encode user attributes and push them to the end-users. The semantic
cookies cannot be in plaintext but need to be encoded and encrypted because they will be stored at the users’ side.

Application-Layer Semantic Cookie. Because the edge server is the endpoint of the users’ TLS connections,
it has the access to all the application-level information in the users’ requests, including the application-level
cookies as required by our system. For instance, if users are sending an HTTPS request, then the edge server is
able to access the headers, cookies, and payload of the HTTPS request.

Therefore, leveraging edge servers for early forwarding the application-layer cookies is straightforward to
implement. Most current edge services, e.g., Cloudflare’s CDN; allow the user to set custom page rules to adjust
caching levels, forward requests, modify headers, etc [18,20]. When PHE is not employed in semantic cookies,
supporting Snatch’s functionalities requires decrypting the cookies, matching semantic cookies’ names and
values, performing mathematical operations on the values, and sending the extracted data to a custom destination
(analytics server) — if possible — in a custom format. The additional computational cost is minimal as it is similar
to existing header-related operations. When PHE is employed, the edge servers need to perform more complex
mathematical operations on the encrypted cookies, which might introduce overheads. Nevertheless, this is within
the capability of the edge servers. In fact, supporting more computation on edge servers is a growing trend. For
instance, Cloudflare has introduced Cloudflare Workers [1], which allows serverless code to be deployed instantly
across the globe with exceptional performance, reliability, and scale.

The benefits of application-layer cookies are three-fold: First, it can support semantic cookies with as many
sub-cookies (user features) as needed by the applications. Second, it does not require any modification on the
user’s side. Third, it is fully compatible with the current HTTPS request design and simply needs to include
semantic cookies. In addition, the cookies can be easily kept across different connections between the user and
the server over time, regardless of the underlying protocol, e.g., TCP, UDP, QUIC, TLS, etc.

To better quantify the benefits of using semantic versus non-semantic application-layer cookies, we aim to
quantify the speedup. It is defined as the ratio of the expected latency in two scenarios, i.e., non-semantic vs
semantic. Hence, speedup is >1. Denote user by C, edge server by E, web server by W, and analytics server by A.
Then, dcg is the delay between the user and the edge server, and so on. Let T}, be the transmission duration of
the HTTPS request, and let T}, ,,,; be the transmission duration of the cookie forwarded to the analytics server.
Note that when cookies are not encrypted using PHE (see § 4.2 and § 5.2), T}, ,,,, is negligible given it is much
smaller than the size of the original request.
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We further denote by Tg, Ty, and T4 the time costs for processing requests at the edge server, web server
(including database communication), and analytics server (including message queues), respectively. Then, for
HTTPS request on top of QUIC 1-RTT, the speedup is

3dcg +3dpw +dwa + Tyrans + Tg + Tyy + Ta

’ / 4
3dcg +dga + T rans t TE + TA

, 1)

Sapp—https—lrtt =

where Ty and T} are the time costs when Snatch is involved. Because of the minimal additional cost from
processing application-layer cookies at the edge server, we consider T}, = Tg. Further, coefficient 3 in the equation
comes from the QUIC 1-RTT handshake process.

For QUIC-0RTT, because it sends data at the very first packet, we have

dcg +dpw +dwa + Tirans + Tg + T + Ta

’ ’ ’
dcg +dpa + T gps + Tp+T,

Sapp-https—0rtt = 2
We further look into the speedup for application-layer semantic cookies when TCP connections are adopted.
For an unencrypted HTTP request, on top of TCP, the speedup S, of the streaming analytics is

3dcg +3dgw +dwa + Tirans + Tg + Ty + Ta

app=http=tep = 3dcg +dga + Ty gns + T + T}

S

, ®)

where the coefficient 3 in 3dcg and 3dgy comes from the 1-RTT TCP handshake process during the connection
establishment.
For HTTPS requests, TCP + TLS 1.2 handshakes need at least 3 RTTs to set up. Thus, the speedup is

7dcg + 7dgw + dwa + Trans + Tg+ Ty + Tg

app=https—tep = 7deg +dga + T}, gns + T + T}

S 4)
For example, 3 RTTs needed to establish an HTTPS connection between a client and an edge servers implies 7
one-way delays, i.e., 7 dcg.

Transport-Layer Semantic Cookie. Transport-layer cookies are semantic cookies that are encoded in the
transport-layer protocol. As identified in a previous study [40], there are three ways to encode cookies in the
transport layer without requiring any modifications on the users’ machines: (1) encode the cookie into the least
significant bits of IPv6 addresses with a maximum of 64 bits, (2) encode the cookie into the timestamp option of
TCP with a maximum of 32 bits; and (3) encode the cookie into the conneciton ID of QUIC with a maximum of
160 bits.

IPv6 — The use of IPv6 addresses requires the assumption that the MAC address is associated with the least
significant bits of the IPv6 address, and thus is not appropriate in our case. We consider the other two options:
via the TCP timestamp and via the QUIC connection id.

TCP - When the TCP timestamp option TSP is set and used in one direction (e.g., from server to client), all the
packets in the reverse direction (from client to server) will attach the same TSP value automatically. However,
there are several issues with this approach. First, the TSP value cannot be reused in the next TCP connection.
Second, if the client wants to send the cookie in the next TCP connection proactively, it requires non-negligible
modification on the client’s side — access to the root privilege and modifying the outgoing packets accordingly.
This breaks our vision of minimal to no client modification.

QUIC - QUIC is a transport-layer protocol implemented in the userspace on top of UDP. The QUIC connection
establishment procedure is illustrated in Figure 2, where Figure 2(a) shows the 1-RTT handshake and Figure 2(b)
illustrates the 0-RTT handshake. For QUIC 1-RTT, a long QUIC header will be used during the handshake phase.
The client will send two randomly generated connection IDs SrcConnID and DstConnID. Then the server will
copy SrcConnID but set a new DstConnID* and return them to the client. In the following communication, a short
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Fig. 2. QUIC handshake procedure and the time cost for the server to receive data:

QUIC header will be used where the client sends packets with DstConnID* and the server sends packets with
SrcConnlID. Further, the server can reset the connection ID with version negotiation packets at any time. For
QUIC 0-RTT, it is only applicable when there was a previous connection between the same end-points. The client
will send the same DstConnID* as in the last connection.

We find that the connection-id field, in particular DstConnID", allows the encoding of transport-layer cookies. In
addition, it takes minimal effort to modify the connection-id field because QUIC is implemented in the userspace.
Thus, it fits our vision of minimal (QUIC-1RTT) to no (QUIC-0RTT) client modification. It is noteworthy that,
however, the connection-id field of QUIC has a maximum length of 160 bits, which is too small to accommodate
semantic cookies with PHE (at least a few KB is needed as shown in § 5.2). As a result, the transport-layer
semantic cookie does not support PHE.

Snatch fully utilizes the features of QUIC. We consider all the connections between a user and an edge server
except the first one — at least one connection is needed before semantic cookies are available. If the user uses
QUIC 0-RTT, she repeats the connection ID from the last connection where transport-layer cookies are encoded.
LarkSwitch then will be able to decode the transport-layer cookies and forward them to the analytics server. This
requires no modification on the user’s side. If the user uses QUIC 1-RTT, a slight modification of the code in
userspace is needed to allow the QUIC 1-RTT to keep the transport-layer cookie in the new connection, i.e., QUIC
should remember the connection ID from last connection but re-generate a subset of the bits without tweaking
the transport-layer cookies. In summary, both QUIC 0-RTT and 1-RTT fit our vision and work for Snatch.

We further quantify the benefits of transport-layer semantic cookies. Let I denote ISP. Hence dy is the delay
from user to ISP. Here, we ignore the transmission duration of the semantic cookie due to the minimal size of the
QUIC header, i.e., we assume T/ .. = 0. Similar to the analysis for application-layer cookies, the speedup of the
streaming analytics for QUIC 0-RTT is
dce +dpw +dwa + Trrans + T + Tw + T

der +dpa + TA ’

For QUIC 1-RTT, its handshake needs 1 RTT and hence the coefficients for dcg and dgy become 3, while the
denominator keeps the same as the transport-layer cookie is included in the first packet header. The speedup is

©)

Strans—ortt =

3dcg +3dpw +dwa + Tyrans + Tg + Ty + Ta
dCI+dIA+TA '

(6)

Strans—1rtt =
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Fig. 3. Snatch controller workflow.

3.5 In-Network Streaming Analytics

Snatch further seizes the opportunity to accelerate streaming analytics by leveraging the in-network computation:
the programmable switch performs computation at line rate, much faster than the servers [100]. For transport-
layer cookies, streaming analytics can be completed in the data plane — via the cooperation of LarkSwitches and
the AggSwitch. The LarkSwitch decodes the transport-layer cookies, pre-processes the data, and send them to
the analytics server. On the last hop to the analytics server, an AggSwitch extracts and aggregates the data from
all LarkSwitches. Note that for application-layer cookies, the analytics can be done in the network as well. It
only requires the edge server to forward the application-level data in a format agreed in advance, which allows
AggSwitch to decode and aggregate the data.

The modern programmable switch is able to perform AES encryption/decryption [54] and calculate most of
the common statistics [77, 90]. We limit the pre-processing to the supported operations, and leave more complex
ones to the analytics servers. When all the operations of a target analysis are supported by the switches, Snatch
reduces all the time costs of Pub/Sub services and the analytics process.

We consider two types of forwarding schemes: per-packet and periodical forwarding. Per-packet forwarding
satisfies the needs of applications that require very low latency and immediate knowledge of the streaming data.
When all the operations of a target analysis are supported, Snatch provides a huge speedup, i.e.,, Ty < 1 ms because
the programmable switch operates at line rate. On the other hand, periodical forwarding targets applications
that have slightly loose requirements on latency. During each period, the programmable switches updates the
statistics based on incoming packets. By the end of each period, LarkSwitch and AggSwitch cooperate to calculate
statistics and forward them to the analytics server. Compared to per-packet forwarding, periodical forwarding
saves bandwidth while sacrificing latency. We explore this trade-off experimentally in § 5.4.

3.6 Controller

Snatch includes many components that spread across the current Internet infrastructure. It is not practical for any
single party to possess or control all Snatch components. Instead, Snatch should leverage the existing Internet
infrastructure to the largest extent and builds on top of it. To realize that, Snatch needs a controller to coordinate
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all the other system components. Snatch controller should be run by a trusted party that builds up commercial
relationships with the application developers, edge ISPs, content providers, and optionally cloud providers. As
illustrated in Figure 3, the application developer submits the analytics tasks to the Snatch controller, which then
parses the tasks and distributes the instructions to different devices controlled by different parties, including the
LarkSwitch by ISPs, edge servers by content providers, AggSwitch by ISP or cloud providers, and analytics server
by the application developer or ad broker. It also returns the format of processed cookies to the analytics server
which is controlled by the application developer.

At a high level, Snatch controller provides the following APIs to the application developers: (1) Add or remove
applications. In our design, the system supports multiple applications at the same time. Different applications
are distinguished by application ID in the cookies (either at transport or application layer). (2) Add or remove
cookies. For each application, Snatch supports multiple user features, or sub-cookies. A transport-layer cookie is
preferred if there is enough space. When the space is scarce for all the sub-cookies, the developer should decide
which sub-cookies are encoded at the application layer based on the needs. (3) Change feature type and valid
ranges. Snatch supports two types of data: category and number. For a different feature type, Snatch supports
different pre-processing functions, with or without PHE. Any data that is not in the valid feature range will be
aborted. (4) Change the forwarding scheme, either per-packet or periodically.

3.7 Security and Privacy

Snatch provides security and privacy guarantees. Following our threat model, this guarantee needs to hold against
three potential attackers as detailed below.

Malicious Third-Party Attackers. First, we need to protect the cookies from being understood or tempered
by third-party attackers who monitor and collect network packets. To achieve this, we propose to encrypt the
transport-layer semantic cookies with AES-128 (see § 4), and use HT'TPS when accessing the Web protecting the
application-layer semantic cookies with secure communication. In this way, third-party attackers cannot decrypt
or learn the format or the content of the semantic cookies. The AES encryption keys should be set differently in
different regions and changed regularly to strengthen security protection. It is noteworthy that these protections
are not in conflict with existing methods for mitigating data pollution [69, 92, 93, 102], which can still be applied
to safeguard the integrity and accuracy of analytical outcomes.

Honest-But-Curious Edge. Next, we need to prevent the edge nodes from being able to understand the
application-layer purposes of the semantic cookies — a capability they currently possess. To achieve that, the
app developer should avoid using semantic names and, if possible, add transformations to the values, e.g.,
performing reversible mathematical operations before pushing semantic cookies to the users and recovering them
after receiving aggregated results from Snatch. This process renders plaintext semantic cookies semantically
incomprehensible. Further, app developers can set multiple correlated cookies to substantially raise the bar for
interpreting them. For example, they can set two cookies to represent the same purpose, but each time only
update either one of them, hence confusing the edge nodes.

More importantly, full protection can be achieved using PHE [104], which allows computations to be performed
over encrypted data. In this process, the web server first encrypts the content of the cookie using the PHE public
key and sends the resulting ciphertext as cookies to the users. When the CDN receives these ciphertexts from
users, it can perform operations such as aggregation on the encrypted data, which generates a new ciphertext.
This new ciphertext is then forwarded to the analytics server, which holds the HE secret key for decryption and
performs further processing. Apart from the online streaming analytics procedure, the cookie will be forwarded
by the edge server to the web server, where it can be decrypted, modified based on new information, re-encrypted,
and sent back to the user for future requests (more discussion please refer to “Semantic Cookie Related Issues” in

§6).
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Throughout the entire process, only the web server and analytics server — both hosted by the application
developer or ad broker, who are expected to have access to the analysis results — can view the content of the
input cookie and the output analysis results. Compared to AES encryption, the web server must perform the
more time-consuming HE encryption. However, aggregation at the edge server is expected to be faster since it
operates directly on encrypted data, eliminating the need for AES decryption.

Nevertheless, we acknowledge a limitation of this protection: due to the increased size of the ciphertext after
applying HE and the complexity of the computations involved, currently it’s impractical to implement HE at the
ISP router and the usage of HE is limited to edge servers such as CDNs. Discussions on other privacy-preserving
techniques please refer to § 6.

In general, Snatch may require the app developer to redesign cookies mostly because of the discarding of
individually identifiable information. Further, the app developer should leverage cookie encodings, correlation,
and potentially HE, and maybe employ multiple edge providers to prevent them from learning the semantic
cookies. Beyond cookie redesigns, it does not rely on any particular constraints on app developers or ad brokers.

Malicious Application Developer. The last concern is that it is possible for the application developer to
include individually identifiable information in a non-semantic cookie, i.e., not processed by Snatch, during the
communication between the web server and the users. This is prohibited by Snatch’s policy and penalties will be
applied once discovered. We leave the technical enforcement of excluding individually identifiable information
in this scenario as future work. It is noteworthy that while such technical enforcement is not included in this
paper, Snatch has made it possible to regulate the usage of individual identifiers in the cookies by providing an
alternative system that works well — or even better — without such identifiers.

4 Implementation
4.1 Transport-Layer Cookies and Programmable Switch

We implemented a prototype of LarkSwitch and AggSwitch based on an Intel Tofino switch. We first present the
cookie and packet design. Then, we introduce the switch logic. Further, we introduce our implementation and
discuss the scope of analytics with programmable switches.

Transport-Layer Cookie Design. We choose QUIC protocol as the carrier of transport-layer cookies because it
fully meets the requirement of Snatch (see § 3.4). We encode the transport-layer cookies in the up-to-160-bit
connection-ID field of QUIC headers. As shown in Figure 4(a), we split the connection-ID into four parts: (1) 8-bit
destination connection ID(DCID), (2) 8-bit application-1ID, (3) bitmap of variable length, and (4) cookie-stack
of variable length. DCID is randomly generated for connection identification. The application-ID is used for
distinguishing from normal QUIC packets and specifying the format of the remaining bits. Because of the limited
space, the format of bitmap and cookie-stack are not fixed but application-dependent. Assuming there are N
sub-cookies used by an application, corresponding to N features, then the bitmap has N bits where each bit
denotes whether this sub-cookie is present. The cookie-stack includes N sub-cookies and the length of each
sub-cookie is pre-defined by the controller. N is bounded by the memory and stage limitation of the switch. The
remaining bits DCID-R2 (if any), unoccupied by the bitmap and cookie-stack, are also randomly generated for
connection identification.

Next, we create a custom packet header on top of UDP to carry early-forwarded cookies or pre-processed data
(either by LarkSwitch or edge server) for AggSwitch. Figure 4(b) shows that the custom packet header includes
three parts: 1) a 16-bit special string SID, a custom identifier for distinguishing from regular UDP packets; 2) a
16-bit summary that contains application-ID and the number of sub-cookies/data for either per-packet forwarding
or periodical forwarding, respectively; 3) data-stack that contains N sub-cookies and data. All data after the
application ID are encrypted using the AES-128 algorithm.

ACM Trans. Comput. Syst.



Enabling Anonymous Online Streaming Analytics at the Network Edge « 15

QUIC Short Header

Flags
UDP
(8)
Destination Connection I
(0-160)
Rest QUIC Header + Payload ,," DCID-R1 (8) |Application ID (8)
¥/\ !
Bitmap (Var)
QUIC Long Header AES-128
Flags Encrypted
ubp (8) Cookie Stack (Var) P
Version (32) ID(Ig)e n
Destination Connection I DCID-R2 (Var)
(0-160)
Rest QUIC Header + Payload
¥/\
(a) Transport-layer cookie design (QUIC).
Application ID (8)
# Per-Packet | # Periodical B
Fwd (4) Fwd (4)
UDP
Custom Identifier Summary (16) Cookie 1 Cookie 1 Value
(16) Y Name (Var) (Var)
Cookie 2 Cookie 2 Value AES-128
Data Stack Name (Var) (Var) Encrypted
- Data I Name
(Var) Data 1 Value (Var)
—

(b) Custom aggregation packet design.

Fig. 4. Transport-layer cookie and custom aggregation packet design.

The extracted cookies and data encoded in the custom aggregation packet from LarkSwitch and edge server to
AggSwitch may be lost because UDP is used. We argue that the benefits of using UDP overtake the loss. The loss
here is that less than 0.01%, i.e., the packet drop rate in today’s WAN [23, 25, 30], of the cookies or data will be lost.
In comparison, there are two major benefits. First, for short-term analysis, which is the target for Snatch, the value
of the data is much higher when the data is available sooner. Dropping one data point out of tens or hundreds of
thousands will not make a large difference to the distribution of the data, and thus to the results. At the same
time, the data is not lost forever. For a long-term analysis, full and accurate results can be obtained by syncing
up the records at the web servers or related databases. Second, implementing a retransmission mechanism on
programmable switches is non-trivial and consumes scarce DRAM resources to keep the status. Instead, the
resources can be used to offload more computation and thus provide better speedup or support more applications.
In conclusion, it is the best choice for Snatch to adopt UDP for the custom aggregation packet.

To prevent the cookies and data from being hacked or tempered by the users or attackers, the transport-layer
cookies after application-ID is encrypted using AES-128. The AES-128 key is only known to the application
developer and the edge nodes, i.e, edge server or LarkSwitch/AggSwitch. It is noteworthy that encrypting or
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decrypting the up-to-160-bit transport-layer semantic cookies using AES-128 only adds ~0.1 ms delay with a
modern Tofino switch [54].

Switch Logic. When a new application is registered at a LarkSwitch or AggSwitch, its parameters — including
the application-ID, the format of bitmap and cookie-stack, and the AES key — are stored in the switches” match-
action table entries. LarkSwitch will try to match the application-ID for all the incoming QUIC packets. When
a packet is matched, the switch decrypts and decodes the available cookies/data following the parameters of
the corresponding application. the switch then performs counting or other statistical operations on the decoded
cookies/data. For per-packet forwarding cookies or for periodical forwarding cookies when the period ends, the
switch creates a new custom packet and sends it and associated statistics to the analytics server. To do so, we
make the switch clone the original packet. The original packet is still forwarded to the web server to keep the
original communication. Meanwhile, the cloned packet header will be rewritten and its payload will be removed
before being sent to the analytics server.

Statistics Calculation. Both the LarkSwitch and the AggSwitch involve statistics calculation when they process
the cookies and data. The match-action pipeline design makes programmable switches naturally classifiers and
counters. In our prototype, we have implemented the basic statistics which satisfy the (partial) needs of most
streaming applications. For data type category, we implement counting by matching value. For data type number,
we implement sum, min, max, and average calculations.

We further discuss the scope of applications supported by Snatch’s in-network streaming analytics. P4 switches
support most of the streaming analytics operations. A detailed example is provided in Appendix A where we
explore the P4 switches’ support for Spark Streaming APIs. One limitation is that complex operands, e.g., modulo
and logarithm, are not supported by most P4 devices. Nevertheless, this can be resolved by using FPGA-based
devices [114], redesigning the algorithms [123], or using P4’s digest to complete the operations with the help of
the control plane [26]. Further, machine learning algorithms or their pre-processing can also be completed in the
programmable data plane [107, 120].

To sum up, despite the limitations, programmable switches’ ability to process data at a high speed and low
power cost is a great asset to boost up the performance of Snatch.

4.2 Clients and Servers

Client Modification — We target minimal client modification. For QUIC 0-RTT, the client does not need any
modification. For QUIC 1-RTT, a minor change in userspace is needed so that the transport-layer cookies from the
last connection are stored and repeated in the next connection, while the rest of the connection ID is randomly
re-generated. We implement a Snatch client based on quic-go [12]. We realize the transport-layer cookie support
for QUIC 1-RTT by modifying only <50 lines of code.

Server Implementations — We further implement the Snatch-enabled edge, analytics, and web servers, also
based on the quic-go repository. To support transport-layer cookies, we implement an edge server that accepts
commands from the controller and encodes semantic cookies based on the QUIC protocol repository quic-go [12].
We modify the quic-go repository to enable the edge server to generate and embed a semantic cookie into the
client’s QUIC DstConnID. When the cookie is sent from a user and arrives at the edge server, it is matched
and processed according to the controller’s instructions to compute the required statistics. The server then
constructs a custom UDP packet based on the format shown in Figure 4(b), which allows in-network aggregation
by AggSwitch.

For application-layer cookies, they are designed to be compatible with current HTTP cookies but with different
contents. We implement two different cookie encryption schemes: AES and PHE. With AES encryption, the cookie
is decrypted by the edge server to perform aggregation computations, such as calculating various statistics. The
edge server then re-encrypts the results using AES before sending them to the analytics server, where the content
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is decrypted and accessed. To enhance privacy, we apply transformations to the cookie values as described in
§ 3.7, making it more challenging for the edge server to interpret them.

We also implement homomorphically encrypted cookies that provide full privacy protection against curious-
but-honest edge servers, as detailed in § 3.7. Since only aggregation operations are performed on the edge server,
PHE such as Paillier Encryption [98] is sufficient for the desired functions. We adopt the widely used Paillier
Encryption library [3, 4] in our implementation. Specifically, we implement (blind) statistics aggregation at the
edge server including counting by matching value for category data type, and sum and average calculations for
number data type. More complex operations, e.g., those involving multiplications of multiple encrypted cookie
values, would require FHE libraries which may be slower than PHE. After the computation over encrypted
cookies, the edge server will forward the results to the analytics server which can decrypt the aggregated content.

Note that we did not implement min or max calculations for semantic cookies with PHE due to the current
limitations of the Paillier library and other mainstream PHE/FHE libraries in supporting comparison operations
over ciphertexts. However, it is important to note that comparison operations are allowed by PHE [45] and FHE
[70].

4.3 Controller

Functionality. Snatch controller takes inputs from the application developers. It then generates a random byte
as the application ID and, if transport-layer semantic cookies are used or AES encryption for the application-layer
cookies is adopted, a random AES-128 key for semantic cookie encryption. Then, it updates the components in
the following order: AggSwitch, LarkSwitches, and the edge servers. With corresponding programs pre-installed
at all the rest components, Snatch controller only needs to update the parameters, e.g., altering the table entries
in LarkSwitches and AggSwitches so they can recognize new applications and send results to new destinations,
through RPCs to the corresponding control plane. The update frequency is overall low, e.g., days or weeks,
because updates only happen when new applications are added or AES keys need to be updated.

Consistency. When a controller updates an application, inconsistency issues might arise because of the delay
between the controller and other components. For instance, some edge servers might change the format of
transport-layer cookies before a LarkSwitch, or a LarkSwitch changes the recognition of the cookie-stack before
changes are made. They may result in missing or incorrect results being reported.

We solve the inconsistency issue by adopting a version control scheme. When an update instruction is
received by the controller, it generates a new application version with a new application identifier, i.e., the
same application has different application IDs for different versions. It then updates the components in order:
AggSwitch, LarkSwitches, and the edge servers. After a period of time (possibly days), the controller deletes the
old application ID and associated rules, i.e., revokes the corresponding rules on the AggSwitch and LarkSwitches.
In this way, Snatch ensures-that consistency is preserved when updating the applications.

5 Evaluation

In this section, we first present results from our global measurement study on understanding the performance of
data streaming from normal Internet users. We then evaluate the trade-offs between AES and PHE encryptions
for application-layer semantic cookies. Next, we simulate and evaluate the benefits of our approach with our
testbed that simulates real-world environments.

5.1 Measurement and Estimation

Methodology. Snatch involves multiple Internet components: the ISP switch, edge server, web server, and
analytics server. To study the performance of these subjects in practice, we set up experiments as follows. First,
we host HTTPS websites using AWS EC2 instances [13], which represent the web servers in Figure 1(b). Then,
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Fig. 5. Overview of measurement sites (residential dVPN nodes).

we purchase CDN services from Cloudflare [18] and AWS Cloud Front [20]. This allows us to set up the edge
servers on a global scale.

Next, we need to measure the performance of regular Internet users on a global scale. We choose the decen-
tralized VPNs (dVPNs), which have gained much popularity recently [117], as our means of measurement over
academic measurement platforms [57, 64, 106, 109] for better flexibility. In dVPNs, regular Internet users from
all over the world monetize their spare bandwidth by hosting a VPN proxy at their homes, providing a VPN
service to the public. Thus, it provides a desirable measurement platform for our study. We select Mysterium [24]
among various dVPNs since it has the largest footprint [117] — Mysterium currently holds over 5,000 dVPN nodes
(proxies), among which over 2,000 are recognized as "residential,’ i.e., hosted in regular Internet users’ home
networks.

We iteratively connect to all the available residential dVPN nodes as measurement sites. For each connection,
we perform measurements as follows. First, we perform traceroute to our hosted domains, which retrieves the
hops along the path to the destination with RTTs to each hop. A dVPN connection creates a VPN tunnel between
the client and the proxy, which all the packets traverse through. Thus, the first hop will be the dVPN proxy itself,
meaning that the delay to the first hop is the delay between our machine and the dVPN proxy. Because we want
to measure the delays between the destinations and the dVPN proxy, we accordingly subtract the delay of the
first hop for all the other measured delays.

We then investigate the next hops in increasing order of hop count, i.e, starting from the first hop. When the
hop’s IP is not private (determined by the prefix of the IP address) for the first time, we consider it to be the first
hop reaching the ISP, and record the associated delays. When we do not find the ISP in the first 10 hops, either
because all are private IPs or the hop is not available to traceroute (“*” is returned), we consider the host not to
be residential; i.e., miscategorized by Mysterium, and discard the associated results.

Next, we investigate the delays between the dVPN proxy and the edge servers and cloud by performing ping
to corresponding destinations. For edge servers, we perform ping to our domains. Because of the CDN services,
the packets will be directed to Cloudflare CDN servers or Amazon edge servers instead of our EC2 instance in
the cloud. In addition, we look up for, and ping, off-net servers that are in the same AS as the proxy, using the
recently published database [72]. We record all the associated delays. For clouds, we perform ping to the IPs of
our EC2 instances, as well as public servers in every AWS cloud region. We also measure the AWS inter-cloud
delays following cloudping [19].
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Fig. 6. Measurement and speedup results.

Further, we perform HTTPS GET and POST requests to our domains and the IP addresses of our EC2 instances.
For POST requests to our domains, the CDN service will forward them to web servers by default. Along with the
delays we measured using ping, we can infer the time cost of handling GET and POST requests by the edge and
web servers, as well as the delay from the edge server to the cloud.

For all the per-site operations mentioned above, we iterate 10 times and take the median for further analysis to
avoid outliers resulting from unstable network conditions.

Measurement Results. We conduct our measurement over 14 days, during which we tested 2,253 sites (AVPN
nodes) around the world. Figure 5 shows the per-country site counts. Among 87 countries we have investigated,
the US has the most sites, followed by the UK and Germany. It is noteworthy that while the measured sites are not
representative of billions of Internet users, they allow us to capture a glimpse of the current global WAN practice
and provide a meaningful basis to estimate the potential benefits of Snatch. Also, the number of sites is not
entirely proportional to the total number of Internet users per country, but they represent the user engagement
to a large extent. Thus, we utilize such collected statistics to evaluate Snatch.

First of all, Figure 6(a) shows the delays from client to different edge servers. The results show that the off-net
servers are much closer to the clients compared to regular CDN services, though they cover only 57.9% clients in
our measurement. Moreover, Amazon CloudFront outperforms Cloudflare CDN in our measurement. For rest
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of the analysis, we take the minimal delay among all the edge servers for each client, i.e., if the off-net servers
are present and outperform Amazon CloudFront and Cloudflare CDN, then the delay is for the off-net server;
otherwise, the delay is the minimum between Amazon CloudFront and Cloudflare CDN.

Next, we move on to the intra-data center delays. Figure 6(b) shows the matrix of intra- and inter-data center
delays of the AWS cloud. The delays range from 0.8 ms (within the same data center) to 206 ms (from ap-southeast-2
region to the af-south-1 region). The inter-data center median delay is 75.5 ms. The inter-data center delays
represent the communication cost from the web server to the analytics server, which may reside in different data
centers as explained in Section 2.

We now take a look at the overall picture of the inter-component delays. Figure 6(c) shows the delays between
client, ISP, edge (server), and cloud (web server and analytics server), respectively. The delay from client to ISP is
the smallest as expected, with a median of 1.4 ms. The delay from the client to the edge is slightly larger, with a
median of 6.7 ms. This shows the success of CDN services as a means to improve Internet performance, and also
Snatch’s potentials from the semantic cookie early forwarding.

Finally, we look at the cloud performance. Figure 6(c) shows that the delays from client to the cloud (dashed
red area) vary a lot — from 13.1 ms to 150.3 ms in the median — depending on the relative geolocation. Further,
the median delays from the client and from the edge to our hosted EC2 machines are 60.1 ms and 43.6 ms (red
and green lines), respectively. Note that the sum delays from the client to the edge and from the edge to the cloud
are not always equal to the delay from the client to the cloud, because of the complex routing policies across
ASes which may not assign the same path [48].

5.2 Encryption Evaluation

As described earlier in § 3.7 and § 4.2, we have implemented two types of semantic cookies: (i) AES encryption as
the default method, which is easy to implement, and (ii) PHE as an enhanced method that provides full privacy
protection against honest-but-curious edge servers. Below, we evaluate the performance of each implementation.
Our experiments are conducted on host machines equipped with an 8-core 2.7GHz Intel Xeon CPU and 16GB
of RAM, with the PHE implementation based on Paillier Encryption [3] and PHE keysize set to 2048 bits — the
maximum supported by Intel AVX-512 IFMA for computation acceleration [4].

Figure 7(a) illustrates the processing time costs for the number data type across different system components,
with the first bar representing AES encryption, the second bar representing PHE, and the third representing
PHE with optimized performance by Intel AVX-512 IFMA [4]. Overall, encrypting and decrypting with PHE
semantic cookies takes more time than those with AES, but performance varies across system components
because of different behaviors. For instance, at the edge server which handles every user request, PHE is actually
more efficient than AES encryption. This is because, with AES encryption, the edge server needs to decrypt
the semantic cookie to process the data and then encrypt the processed results for secure transfer to analytics
servers, protecting against malicious third-party attackers (see § 3.7). In contrast, no encryption or decryption is
needed at the edge server when using PHE, as it directly performs computations on encrypted semantic cookies.
Consequently, despite the faster plaintext aggregation with AES, the overall performance of AES encryption is
slower than PHE.

However, the scenario is different on the analytics server and web server, where encryption and decryption
are required, making PHE slower than AES. Nonetheless, computations on the analytics server are less frequent
if periodic forwarding is enabled, and the web server is not on the critical path of online streaming analytics.
Therefore, despite its slower performance in these components, PHE may be acceptable in Snatch for its overall
privacy benefits.
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Fig. 7. Semantic cookie encryption evaluation.

Regarding Intel hardware acceleration, it enhances the encryption and decryption speeds of PHE but reduces
performance during PHE aggregation operations. But it does not alter the overall performance comparison
between AES and PHE.

Next, we consider processing for the category data type, where counting by matching value is performed. While
counting is straightforward with AES, it is more complex with PHE because here the PHE scheme we use, i.e.
Paillier Encryption, is limited to performing homomorphic addition operations only. To achieve this, we convert
the semantic cookie from a single value to an array, with each index representing a corresponding category. For
example, an ad campaign ID, originally an integer, is transformed into a one-hot array as [0, ...,0,1,0,...], where
the ith index is 1 if the ad campaign ID is i. This allows the edge server to add the newly arriving semantic cookies
to its counters in encryption, i.e., without knowing either the new data or the results. As shown in Figure 7(b) the
processing time increases with the number of defined categories. Specifically, the edge server processing is faster
with PHE than with AES when the number of categories is fewer than 45. However, the analytics processing
(PHE decryption) is always slower than AES by one to two orders of magnitude, peaking at approximately 300 ms
when the number of categories reaches 100. With Intel AVX-512 IFMA acceleration, PHE edge server processing
becomes slower, falling behind AES when the number of categories exceeds 20. However, analytics processing
sees a performance improvement of 15% to 25% compared to the non-accelerated implementation.
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Additionally, PHE introduces overhead in cookie size. This is because PHE encryption embeds more information
in its ciphertext, making the encrypted semantic cookie significantly larger than its plaintext counterpart. As
shown in Figure 7(c), the size of a PHE-encrypted cookie is 308 times larger than the plaintext version. When
the number of categories reaches 100, the PHE-encrypted cookie size grows to 247KB. However, it is important
to note that the original HTTP RFC [41, 81] does not specify a maximum cookie size but instead a minimum
requirement (at least 4096 bytes per cookie and at least 50 cookies per domain [41]). This makes it feasible to
implement such large cookies in Snatch. Furthermore, 247KB is still much smaller than the size of modern web
pages. According to HTTP Archive [2], the median webpage size is currently 2,643.5KB for desktop and 2,360.5KB
for mobile, which is one order of magnitude larger than the size of a semantic cookie with PHE. Moreover, the
median webpage size continues to grow over time. Therefore, while the PHE-encrypted semantic cookie imposes
an overhead compared to AES encryption, it remains acceptable in today’s context.

It is noteworthy that the number of categories shown in both Figure 7(b) and 7(c) represents the total categories
across all data. For instance, two cookies, one with X categories and another with Y categories, are equivalent -
in terms of data processing time and ciphertext size inflation with PHE - to a single cookie with X +Y categories.
For the remainder of the paper, we will refer to categorical data with a total of N categories.

Ultimately, Web developers should weigh the trade-off between enhanced privacy protection against edge
servers and the performance and user experience to make an informed decision on the application-layer semantic
cookie encryption scheme.

One may wonder what types of cookies — such as numerical or categorical, and if categorical, the number of
categories — Web developers might collect about users. This information varies by developers and is determined
by their specific objectives, so there is no straightforward answer. Additionally, migration to semantic cookies
might influence developers’ decisions. However, we can still estimate the potential data stored in a semantic
cookie by examining previous examples. For instance, the Marketing Campaign dataset [5] from Kaggle provides
a good representation of what a provider might collect about users. This cross-border dataset includes several
key demographic attributes associated with each user ID, such as age, education level, annual income, marital
status, the number of children in the household, and more. By removing user IDs and combining the categorical
data fields, we find that this dataset includes 20 numerical cookies and categorical cookies with a total of 25
categories. For the remainder of our analysis, we use these values when controlling cookie size and exploring other
parameters. We assume performance without Intel hardware acceleration, as such hardware is not universally
available in practice.

5.3 Quantifying Snatch Benefits.

With the measurement results, we now estimate the speedup that Snatch brings. In particular, we utilize the
speedup Equations for different protocols, i.e., (1), (5), and (6), combined with the above measurement results. If
not otherwise indicated, we estimate based on medians: 1.4 ms for delay between client and ISP (d¢y), 6.7 ms for
delay between client and edge server (dcg), 43.6 ms for delay between edge and web server (dgw ), 0.8 ms for
transmission time cost (T;rqns), 136.6 ms for time cost at the edge (Tg), 241.6 ms for time cost at the web server
(Tw), 500 ms for time cost at the analytics server (T4) assuming default Spark parameters [31], and 20 numerical
cookies and categorical cookies with 25 total categories if PHE is adopted for application-layer semantic cookies.

We begin by analyzing the Snatch speedup as a function of the number of user features included in the semantic
cookies. We assume that for every two user features, one numerical cookie and one categorical cookie (i.e., adding
one category to the total number of categories) are included. As illustrated in Figure 8(a), the speedup of Snatch
decreases as the number of user features increases when PHE is applied to application-layer semantic cookies.
With only one user feature, performance is comparable to in-network streaming analytics (INSA for abbreviation)
with AES encryption. However, when the number of features increases, the performance degrades. This outcome
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is expected, as PHE introduces more complex data operations due to its privacy protections, compared to the
other two options. Web developers should carefully consider this trade-off when deciding on the encryption
method for semantic cookies.

Next, we investigate the expected Snatch speedup as a function of the median delay between the web server
and the analytics server, (dy 4). We adopt the “best practice” assumption in our simulation. Specifically, when
the web server and the analytics server are not in the same data center, the delays from the client and from
the edge to them (dca, dpw, and dga) change as dy 4 changes. For the sake of simplicity, we assume that edge
servers are set up globally for caching static content; the web servers are set up in all data centers for serving
dynamic content; and one centralized analytics server is located at one data center. In this way, the client will
always choose the closest edge and web server. In particular, the delay from the edge to the web server (dgw)
is approximated by taking the difference between the delays from the client to the closest cloud and from the
client to the edge server, whereas the delay from the edge to the analytics server (dga) is represented by the
“Edge-Cloud” curve in Figure 6(c). Further, we consider the delays from the client to edge (dcg) and from the
edge to the web server (dgw) to be constant as the median values. We also assume that the delay from the client
and from the edge to the analytics server (dca and dga) grows proportionally as the delay from the web server to
the analytics server (dwa) grows, within their own range respectively. For instance, dg4 grows from 0.3 ms to
249.5 ms when dy 4 grows from 0.8 ms to 206 ms.

Figure 8(b) shows Snatch’s speedup as a function of the delay from the web server to the analytics server
(dwa). The solid line represents the case when only early forwarding is enabled (T} = Ty = 500 ms) whereas
the dashed line represents when INSA is also enabled (T = 1 ms when AES encryption is adopted, otherwise
T, is calculated based on § 5.2). The figure shows that enabling Snatch’s INSA feature with AES encryption
improves the performance by a great margin, by up to two orders of magnitude, versus when INSA is disabled.
INSA with PHE provides slightly worse speedup compared to that with AES encryption but still outperforms
(by around 2x) APP-HTTPS scenarios when INSA: is disabled. Looking at various protocols, we see that the
scenarios where Snatch benefits the most to least are Trans-1RTT, Trans-ORTT, and APP-HTTPS. This is expected
as transport-layer cookies provide better performance than application-layer cookies.

Figure 8(b) further shows that as dyy 4 increases, hence dc4 and dgy4 increase following best practice assumption,
the Snatch benefits necessarily decrease. Indeed, the more distributed the users are, the network latency more
significantly affects Snatch’s performance. Next, we focus on two scenarios: (1) US, where end-users are located
in the US and the median inter-data-center delay is 26.3 ms, and (2) worldwide, where users are dispersed around
the world and the median inter-data-center delay is 75.5 ms (see Figure 6(b)). Figure 8(b) shows that QUIC 1-RTT
INSA with AES speedupis 31x in US and 12x worldwide, while App-HTTPS INSA with AES speedup is 5.5x in
US and 4.4x worldwide.

Figure 8(c) shows the speedup as a function of analytics time cost, T4. In practice, the analytics time cost
depends on many factors, including the analytics algorithms, workload, the Pub/Sub queuing delays, the settings
of traditionally defined analytics systems, etc. The time cost thus ranges from negligible to ~10 seconds at the
hyper-giants [27]. Here we consider general tasks and hence vary Ty from 1 ms to 10s. When Ty is negligible,
INSA naturally does not play an important role. But as T4 grows, the speedups diverge: they decrease when
INSA is disabled but increase when INSA with AES or PHE encryption is enabled, with AES outperforms PHE.
Overall, Snatch always boosts up the performance of streaming analytics. For reference, when T4 is 10s, and
INSA is enabled, the speedup for Trans-1RTT is 183x, for Trans-ORTT is 188x, and for App-HTTPS is 35x (AES
encryption) or 1.8x (PHE).

Finally, Figure 8(d) shows the speedup in the case of periodical forwarding, as a function of the period (interval)
ranging from 5 ms to 200 ms. When the interval is 5 ms, the speedup is naturally closer to per-packet forwarding.
As expected, the speedup decreases when the interval increases because the data takes more time to the analytics
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Fig. 8. Quantification of Snatch benefits.

server. For reference, for an interval of 5 ms, the speedup for Trans-1RTT is 18x, while for an interval of 200 ms,
the speedup for Trans-1RTT is 4.3x.

5.4 Testbed Experiments

Environment Setup. We set up a testbed consisting of 6 host machines and one Tofino programmable switch.
Among them, three host machines represent the client (request generator), the edge server, and the web server,
respectively. The analytics server is represented by a cluster of three machines, which consist of two slave nodes
and one master node. The Tofino switch represents both LarkSwitch and AggSwitch. The topology follows
Figure 3 where the Tofino switch connects to the client, the master node of the analytics server, and the edge
server (with two different ports connecting to two different network interfaces, respectively). Each host machine
is equipped with an 8-core 2.7GHz Intel Xeon CPU with 16GB of RAM. The delays between the machines are
controlled via Linux Traffic Control module [32].
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Fig. 9. Testbed evaluations. Total time cost as functions of (a) delays, (b) workload, and (c) periodical interval.

We adopt QUIC 1-RTT in our evaluation below. Once the analytics server (master node) receives an aggregation
packet, meaning that INSA is enabled, it will log the timestamp; otherwise, it will submit the data to Spark
Streaming which processes the data and logs the finishing timestamp.

We select the marketing campaign analytics as the target application. Different from Yahoo Streaming Bench-
mark [56], which correlates the user ID and the ad campaign ID, we go further to count the user demographic
information (we randomly generate gender, age, and geolocation for each user) for each ad campaign, as demon-
strated in [5]. In addition, we set the interval of Spark Streaming to be 150 ms as it is optimal for most tasks and
our environment — representing the minimal feasible interval.

Performance Evaluation. We first evaluate the impact of delays between the components for per-packet
forwarding. We adopt different delays — taking Nth percentile of delays from Figure 6(c) — in our testbed and
perform 10,000 requests from the client for each experiment. We send 10 requests per second (RPS), a relatively
low rate, to exclude the impact of workloads (which we explore later in the text). We adopt the same “best practice”
assumption as in § 5.1. When the Nth percentile of delay is selected, we take the Nth percentile of dcg and dpw
as well.

Figure 9(a) shows the total time costs given different delay percentiles in our measurement. The total time
costs are measured from when clients send requests until the results are obtained, either from Spark Streaming
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(solid lines and hollow markers) or from AggSwitch if INSA is enabled (dashed lines and filled markers). Overall,
the results show that the total time cost increases as the delay percentile increases, i.e., the clients experience
worse Internet infrastructure. Still, Snatch is beneficial at all times. The total time cost, from shortest to longest,
is achieved in the following order: Trans-1RTT and App-HTTPS with INSA (AES encryption), App-HTTPS
with INSA (PHE), Trans-1RTT and App-HTTPS without INSA, and finally the current practice with no privacy
guarantee. Another exception occurs at the 100th delay percentile where the performance of Trans-1RTT without
INSA exceeds App-HTTPS with INSA because dcg drastically increases.

In terms of speedups, APP-HTTPS and Trans-1RTT reduce the time cost at most by a factor of 2.1x and 5.4x
without INSA (at 95th delay percentile), or by 24.5x and 31.2x with INSA with AES encryption (at 1st delay
percentile). When INSA is enabled, the speedups slowly decrease as the delay percentile increase, i.e., the clients
experience worse Internet infrastructure. Yet, the speedup of Trans-1RTT with INSA is at least 3.8x at the 100th
delay percentile, which brings the total time from 2,807 ms down to 735 ms. In the median case, the speedups
for APP-HTTPS and Trans-1RTT are 1.9x and 2.0x without INSA, or 6.3x and 8.3x with INSA (AES encryption).
Compared to Figure 8(b), Trans-1RTT under-performs the results from § 5.1, yet App-HTTPS over-performs the
corresponding results. This is because the processing time costs at the edge server and at the analytics server in
our testbed are both smaller than in § 5.1.

Next, we evaluate the impact of the workload. We take the median delays from the measurement, and adjust the
workload, which we quantify as the number of requests that the clients send per second. We consider per-packet
forwarding here because it consumes more bandwidth and is thus more sensitive to workload compared to
periodical forwarding. Figure 9(b) shows that the total time costs are stable with the same rank as in Figure 9(a)
when the workload is relatively low (<100 RPS). Later, i.e., when workload >100 RPS, the total time costs increase
as the workload increases for all scenarios except Trans-1RTT with INSA; demonstrating the power of in-network
transport-layer switch-based processing. When the workload is equal to or greater than 300, the time costs
for no-Snatch and App-HTTPS start to increase sharply (note that the y-axis of Figure 9(b) is in log scale).
Likewise, App-HTTPS with INSA (AES encryption) is less effective than Trans-1RTT without INSA. This suggests
that congestion happens at the edge server and the web servers because they are overwhelmed by the high
request rate. When the workload increases to 200 RPS and above, App-HTTPS with INSA (PHE) has the poorest
performance among Snatch implementations, despite still outperforming the current practice without semantic
cookies. This, again, underscores the trade-off between enhanced privacy requirements and the associated costs
for Web developers.

Meanwhile, however, Trans-1RTT with INSA keeps a very stable performance - it takes 61 ms regardless of the
workload. This reveals a property of Snatch: no parallelism inflation. The stable performance is expected because
of the nature of line-rate processing of programmable switches and the design of Snatch: Trans-1RTT skips all
the computation on the edge and web servers (and the analytics server if INSA is enabled) where congestion may
happen at-a high workload. In fact, Trans-1RTT and Trans-ORTT are able to keep the best performance as long as
the throughput does not exceed the capacity of the switches, which is over 10 Tbps [22].

Finally, we evaluate the periodical forwarding. We adopt the median delays and a workload of 200 RPS.
Figure 9(c) shows that as the periodical interval increases, the total time cost increases while the bandwidth
consumption (grey line) between LarkSwitch/the edge server and AggSwitch decreases. Nevertheless, when the
periodical interval is 500 ms, Trans-1RTT and App-HTTPS still speed up the total time cost by 1.2x and 1.1x
without INSA, or 1.8x and 1.7x with INSA (AES encryption). The bandwidth consumption linearly decreases from
~112 Kbps to ~1 Kbps as the periodical interval increases from less than 5 ms to 500 ms.

6 Discussion

Ethical Consideration. Our measurement in Section 5.1 involves sending requests through proxies located at
Internet users’ home networks. However, these Internet users are selling their Internet access, and the dVPN
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service is publicly available. Therefore, this is no different than connecting to traditional VPNs. Further, we did
not send any malicious requests or had any operations which might endanger the proxies. Thus, this work does
not raise any ethical concerns.

Semantic Cookie Related Issues. One question may raise on how the application developers can derive the
semantic information without a user ID. In fact, we can regard the semantic cookie as a state machine: the
developers have the state from the last request, update it based on the current request, and save it on the users’
side for the next request.

Another issue may be the additional overhead from adopting semantic cookies. Transport-layer semantic
cookies do not incur any overhead as an existing header field of QUIC with limited length is used. Application-
layer semantic cookies inherit the current cookie design but ideally only discard the individual identifiers, which
brings no overhead. Still, overhead may be introduced by the way that the developers design the application-layer
semantic cookies. Currently, the developers build their own database and store as much user information as they
want, e.g., the complete visit history per user [113]. With the semantic cookies, the developers can only collect
the visit history by appending the new visit to the semantic cookies every time the user visits the website. This
will indeed bring non-trivial overhead. Nevertheless, while no hard restriction on the size of semantic cookies
is applied, we argue that this is a feature rather than a defect: the semantic cookies are meant to prevent the
developers from logging everything about the user, e.g., complete visit history. Hence, it forces the developers to
carefully re-design the cookies and only ask for the least; otherwise, they may lose customers because of bad
experiences.

Alternative to Latency Inflation. One alternative to reduce latency inflation introduced in § 2.3 is to ask the
users to send duplicate requests to both the web servers and the analytics servers. Yet, there are many drawbacks
from this approach. First and most importantly, it does not enhance user privacy as Snatch does because individual
identifiers are still present. Second, it cannot benefit from in-network computation, which may be a larger factor
in performance improvement than latency inflation (see § 5). Third, it requires the users to double their bandwidth
consumption and leads to a worse web experience, yet without offering any incentives to the users. In addition,
exposing the analytics server to public may open the door to attacks.

View From Application Developers. With Snatch, application developers can benefit from faster online
streaming analytics and hence obtain more valuable results. Meanwhile, they lose the freedom to store whatever
they want from the users’ activities and may fail to perform certain analytics, e.g., individual profiling [113].
Nevertheless, more studies are looking into how to effectively perform anonymity-preserving analytics [42, 63,
110]. It is thus questionable how much the cost really is from discarding individual-level analytics. Moreover,
developers may lose the freedom anyway as stricter privacy policies may be enforced given the public’s rising
privacy concerns. In addition, the developers can actually benefit from respecting user privacy: users who care
about their privacy may be more inclined to websites that adopt semantic cookies compared to other competing
websites. This may become an important incentive for more developers to adopt the semantic cookies, and
(hopefully) eventually lead to widespread adoption of semantic cookies, similar to the history of HT'TPS adoption.

Generality of Analytics. In our implementation, we pre-install programs at the edge devices and have them
accept RPCs from Snatch controller to update certain parameters (§ 4.3). This would allow edge devices to
recognize new applications and perform analytics accordingly. Yet, we acknowledge that our implementation only
supports fixed types of aggregation analytics. While the edge servers should be able to conduct any streaming
analytics, we have analyzed the capabilities as well as the limitations of the programmable switches (§ 4.1). In an
ideal implementation, the controller should generate efficient and on-demand codes and push them to the edge
devices. We leave this as future work.
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Repeated Counting. One potential issue with periodical forwarding is that one user might send multiple
requests to the web server within one period and thus cause repeated counting. While repeated counting is
needed in some scenarios, it can be avoided by implementing a hash table or a Bloom filter, which is widely used
in projects involving programmable switches [78, 86, 95].

Fault Tolerance. Snatch might fail due to various issues. For example, inconsistency might occur when the
controller tries to update other components (see § 4.3). Other examples include failing to update AES keys at
edge servers, or packet drops, etc. All these issues will result in the same outcome: the aggregated results become
inaccurate. To detect such failures, we can run the same analytics on data that is collected from the web servers
and arrives at a later time. Application developers should report the result difference to the Snatch controller,
which would then check and update the other components through RPCs. We leave the real-time detection and
correction for future work.

In-Network Streaming Analytics Trade-offs. In the evaluation, we consider that either INSA is enabled or
disabled. In practice, and for most real-world scenarios, the speedup is in between because of the complexity of
queries. When more computation is offloaded to the network, the speedup is higher given the negligible time
cost for the processing at the switches. Still, more computation also incurs more switch resources, i.e., fewer
applications can utilize the switches’ support. Thus, there exists a trade-off for the ISPs: support more applications
with a smaller speedup for each, or support fewer applications with a larger speedup for each. Independently,
Snatch provides a considerable speedup compared to the state-of-the-art even when INSA is disabled.

The Role of Edge Servers in Privacy Protection by Snatch. Snatch enhances user privacy by eliminating the
use of user IDs in the system. It is noteworthy that this privacy protection is only effective with the involvement
of edge servers or ISPs. Without them, web and analytics servers could still identify users by correlating data
with their IP addresses. By leveraging edge servers, the web and analytics servers are blinded to users’ IP
addresses, allowing it to access only sets of user features without any associated IP or user ID. Additionally, if
in-network analytics is enabled, the analytics server — which may operate independently from the web servers, as
illustrated in Figure 3 - receives only aggregated results. This further obscures individual user details, significantly
strengthening privacy.

Other Privacy-Preserving Techniques Against Honest-but-Curious Edge. To prevent user information from
being accessed or misused by the honest-but-curious edge servers (see § 3.7), several privacy-enhancing techniques
can be considered in network settings. One common approach is differential privacy (DP), which involves adding
carefully designed noise to the aggregation process. This method ensures that individually identifiable information
is concealed in a quantifiable manner. However, this approach does not meet our objectives. In our scenario,
DP introduces noise to the aggregation results at both edge and analytics servers. While this does offer some
additional protection, it does not align with our goal of defending against honest-but-curious edge servers. We
thus discard this option.

We acknowledge that DP combined with a multi-CDN strategy [6, 37, 60], or similarly a multi-ISP strategy,
could be a viable solution. However, it requires consistently routing user traffic so that the same user always
connects to the same CDN. Without such consistency, each CDN provider could eventually aggregate all user data
over time, potentially revealing accurate user statistics or obtaining data as precise as that of the web provider (as
discussed in the previous paragraph). Ensuring such consistency presents practical challenges because HTTPS
and semantic cookies operate at the application layer. While it might be easier to maintain consistent routing for
PC users, mobile users frequently change IP addresses, making it difficult to distinguish them at the transport
layer. Consequently, we do not pursue this option at this time.

Another state-of-the-art technique is multi-party computation (MPC). However, MPC often incurs high
communication costs among the multiple computing parties involved. More importantly, it does not fit our
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system assumptions. For example, MPC typically requires two non-colluding edge servers to communicate and
aggregate data without knowing its contents. While some practices employ multi-CDNss strategy [6, 37, 60], they
are primarily for load balancing, e.g., routing one user request to one CDN and the next to another CDN. This
setup does not align with the MPC model, where semantic cookies within the same request must be split and
sent to two different edge servers. As a result, this option is also unsuitable.

In conclusion, we find that HE is the most appropriate solution for our use case, with PHE offering superior
performance compared to FHE. Therefore, we choose PHE as the privacy protection solution for Snatch.

7 Related Work

Streaming Analytics. In addition to streaming analytics systems discussed in § 2, JetStream [103] and AW-
Stream [125] explore the wide-area streaming analytics whose data sources are widely distributed and propose
to reduce the data rate to cope with the limited WAN bandwidth. In addition, Iridium [101] optimizes the data
placement before the arrivals of queries. Sana [79] applies WAN-aware multi-query optimization. The wide-area
streaming analytics assumes that the data is heading directly to the analytics server after it is generated. This is
however different from our concerned scenarios where the data accompanies the user requests and thus makes a
detour. Snatch removes this detour and enables in-network analytics via semantic cookies.

In-Network Computation. With the advent of programmable networking hardware and programming lan-
guages [43, 44, 108], researchers have proposed to leverage in-network computation to handle network man-
agement [86], caching [78], load balancers [95], deep neural network training [85, 107], etc. Ports et al. [100]
summarizes a general guide of what and when to offload the computation to the network. While most work
targets scenarios within data centers, Jagen targets ISP-centric defense [91]. Snatch aims to speed up online
streaming analytics by leveraging the in-network computation and in cooperation with both the ISPs and the
cloud.

Anonymity Preservation. The anonymity preservation research spans across different fields including social
networks [68, 105], crowd-sourcing [76], recommendations [121], etc. One approach is to add structural noise to its
data to report [65], and thus prevent the attackers from inspecting what each user actually sends while ensuring
that the aggregated results are statistically correct. Another approach is using secure multi-party computation
protocols, where a set of non-colluding servers privately perform computation over the user data [58]. However,
general MPC methods often ‘come with significant overhead [47, 89, 97]. In general, the common challenges for
all privacy-preserving analytics include a high cost and robustness towards malicious users and servers. A third
approach is to make the users send data through an anonymizing network, e.g., mix-net [46, 84] or Tor [74, 99],
where the data and individual identities are decoupled. However, these methods incur a high cost [59, 115].

Our proposal instead prevents the user from sending individually identifiable information by design — Snatch
abandons the presence of user ID by proposing semantic cookies. We further leverage Homomorphic Encryption
(HE) [104] to defend against curious-but-honest edge servers. HE is a class of round-optimal MPC protocols,
where the third party can perform arbitrary computation operations over the ciphertext, which naturally makes
it a good candidate for secure computation outsourcing. While the computation correctness is ensured, it also
guarantees that this third party cannot infer any information about the plaintext of the input ciphertext, or the
plaintext of the output ciphertext, i.e. the computation result.

8 Conclusion

This paper presented Snatch, a system that early forwards and pre-processes the online streaming data at the
network edge to speed up the online streaming analytics and preserve user anonymity. The key to enabling
Snatch is the introduction of semantic cookies, which carry encrypted user information that is individually
unidentifiable and directly available for analytics. We demonstrated that it is viable to encode semantic cookies in
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the existing application or transport protocols. Our evaluation of Snatch — based on real-world measurements -
showed that when processing can be done early in-network, Snatch can speed up user analytics by 10-30x. Given
the growing trend of migrating infrastructure towards the edge, such speedups along with privacy enhancements
are likely to soon become a reality. A potential privacy concern is that edge servers, as third parties, may access
user data during processing. To mitigate this, we demonstrated that the use of partially homomorphic encryption
(PHE) enables computation on encrypted data without exposing sensitive information. While PHE introduces
some overhead, it is a necessary trade-off for balancing efficiency and privacy in system design.
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A Scope of Snatch Applications

Here, we take Spark Streaming as a comparison to illustrate what can be done for the in-network streaming
analytics (INSA). Indeed, INSA is not as flexible as Spark Streaming because of the constraint on the programming
model and computational and storage resources. Our goal for INSA is to assist with the streaming analytics and
potentially complete relatively simple tasks alone, but not to entirely replace Spark Streaming.

While Snatch handles multiple tasks, here we focus on the “depth” of each task and hence assume to support
only one task. In the discussion of the feasibility to achieve a function, we consider that modifications can be
made at either the compiling phase, i.e., modifying the P4 code, or Snatch application submission phase, i.e., the
application developer encodes the cookies and sets up the corresponding receiver at the analytics server.

In addition, because today’s P4 model only supports partial integer operation (see “Statistics Calculation” in
Section 4.1), we limit the following discussion in the scope of integer operations. Yet, it is noteworthy that it is
possible to perform counting operations for strings: The application developer can either encode the string to
integer or use a dictionary when the value possibility is limited. In this way, counting can be done by matching
the hash value or the keyword. Still, other string functions such as concatenate are not supported. It is also
noteworthy that the latest study has demonstrated that it is viable to perform float operation with programmable
switches by carefully rescheduling the computation procedure [123]. An alternative is to leverage float number
quantization [73].

A Spark Streaming program often executes a series of DStream methods [28], e.g., map, reduce, etc, to a
DStream object, i.e., the data within an interval. For the sake of convenience of discussion, we classify the
DStream methods into several categories: DStream-specific, partition, foreach, window, table-join, and reduce. A
method may belong to multiple categories at the same time. For instance, reduceByKeyAndWindow belongs to
three categories: partition, window, and reduce. Table 1 lists all the DStream methods, whether they can be done
with INSA, and their categories. Indeed, the complexity of some DStream methods heavily depend on the input
functions, and whether INSA supports such a DStream method depends on the input function, i.e., when the
operands in the input function are supported by programmable switches, the DStream method is supported by
P4, and vice versa. Moreover, the total number of DStream methods that are operated on a DStream object is
restricted by the limited number of pipeline stages of the programmable switches [35]. Below, we discuss the
methods in detail by category.

DStream-specific methods include cache, checkpoint, context, glom, persist, pprint, and saveAsText-
Files. They are not applicable to INSA because they are specific for assisting the Spark programming model but
not computation-related operations. Related discussion involves fault tolerance, where more details are available
in the Discussions (§ 6).

Direct partition methods include partitionBy and re-partition, whereas indirect partition methods, i.e.,
where partition number is an optional input parameter, include methods in foreach, window, table join, and
reduce categories. To investigate these methods, we first need to understand more about the underlying data
model of Spark Streaming. Resilient Distributed Dataset (RDD) includes all the streaming data within a batch
interval from all partitions, which refers to the data stored at one Spark node and is the basic operable unit
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Table 1. Supported operations and related application with in-network streaming analytics. N/A for not applicable, N for not

supported, Y for supported, and Y* for supported with limitation.

ACM Trans. Comput. Syst.

DStream Method ‘ INSA ‘ Category
cache() N/A | DStream-specific
checkpoint(interval) N/A | DStream-specific
cogroup(other[, numPartitions]) Y* partition, table-join
combineByKey(createCombiner, Y* foreach
mergeValue, ...)
context() N/A | DStream-specific
count() Y reduce
countByValue() Y reduce
countByValueAndWin- Y window, reduce
dow(windowDuration, ...[, ...])
countByWindow(windowDuration, slide- | Y window, reduce
Duration)
filter(func) Y* foreach
flatMap(func[, preservesPartitioning]) Y* partition, foreach
flatMapValues(func) Y* foreach,
foreachRDD(func) Y* foreach
fullOuterJoin(other[, numPartitions]) Y* partition, table-join
glom() N/A- | DStream-specific
groupByKey([numPartitions]) Y partition, reduce
groupByKeyAndWin- Y partition, window,
dow(windowDuration, ... [, ...]) reduce
join(other[, numPartitions]) Y* partition, table-join
leftOuterJoin(other[, numPartitions]) Y* partition, table-join
map(func[, preservesPartitioning]) Y* partition, foreach
mapPartitions(func[, preservesPartition- | Y* partition, foreach
ing])
mapPartitionsWithIndex(funcl, ...]) Y* partition, foreach
mapValues(func) Y* foreach
partitionBy(numPartitions[, partition- | N partition
Func])
persist(storageLevel) N/A | DStream-specific
pprint([num]) N/A | DStream-specific
reduce(func) Y* reduce
reduceByKey(func[, numPartitions]) Y* partition, reduce
reduceByKeyAndWindow(func, invFunc, | Y* partition, window,
LD reduce
reduceByWindow(reduceFunc, invRe- | Y* window, reduce
duceFunc, ...)
repartition(numPartitions) N partition
rightOuterJoin(other[, numPartitions]) Y* partition, table-join
saveAsTextFiles(prefix[, suffix]) N/A | DStream-specific
slice(begin, end) Y window
transform(func) Y* foreach
transformWith(func, other[, keepSerial- | Y* foreach
izer])
union(other) Y* table-join
updateStateByKey(updateFunc], ...]) Y* foreach
window(windowDuration[, slideDura- | Y window

tion])
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in Spark. In Snatch, each edge node, i.e., ISP switch or edge server, can be regarded as a partition where data
is stored. But unlike Spark, the data in each partition depends on client location and activities, and cannot be
moved or reassigned in Snatch. Therefore, partitionBy and repartition are not supported by INSA. However,
operations on the partition are possible: AggSwitch can set up a match table for each edge node and perform
different actions accordingly. The modifications should be made at the compiling phase.

Foreach methods include combineByKey, filter, foreachRDD, map, flatMap, flatMapValues, mapParti-
tions, mapValues, mapPartitionsWithIndex, transform, transform-With, and updateStateByKey. The main
purpose of these methods is to allow operations at a finer granularity, i.e., at per data point level. In INSA, the
programmable switch is processing at per-packet granularity. Therefore, foreach methods are naturally supported
by INSA while subjected to input function, i.e., as long as the input function is supported by INSA, the foreach
methods are supported by INSA.

Direct window methods include slice and window whereas indirect window methods, i.e., where window
settings are optional input parameters, include methods in reduce categories. Method window provides flexibility
by allowing the user to extract a new windowed DStream based on the existing DStream but with a different
interval. Method slice is similar but only needs aggregated data within one interval. The periodical forwarding in
Snatch is similar to window methods as it returns data on windowed packets. In the same spirit, Snatch is able to
realize both direct and indirect window methods by achieving another periodical forwarding with a second time
counter registers. The modifications should be made at the compiling phase.

Reduce methods include count, countByValue, countByValueAndWindow, countByWindow, groupByKey, group-
ByKeyAndWindow, reduce, reduceByKey, reduceByKeyAndWindow, and reduceByWindow. Among them, count
and groupByKey and their associated methods can be regarded as special cases for reduce and associated methods,
and they have been implemented in our Snatch prototype. Reduce and associated methods fit in the match and
action programming model, and thus should be supported by INSA as long as the input function is supported by
INSA. The modifications should be made at the compiling phase:

Finally, table-join methods include cogroup, join, fullOuterJoin, leftOuterJoin, rightOuterJoin, and
union. These methods correspond to SQL join clauses which combine the columns from one or more tables.
Snatch’s cookie/data-stack has very similar data structure from tables, and technically it is possible to perform
the join method at AggSwitch by storing all the cookie/data from periodical aggregation packets (representing
DStreams) in the switch and then construct another custom packet as a result of join and deliver it to the analytics
server. For instance, we take the fullOuterJoin as an example. Stream 1 has cookies A, B, C whereas Stream 2
has cookies A, D, E. AggSwitch reserves a register space for a table with columns A, B, C, D, E. When collecting
periodical aggregation packets from LarkSwitches, what AggSwitch needs to do is simply fill in the registers
according to the value in cookie A. Thus, when all the periodical aggregation packets are received, AggSwitch
has a full table of the result of fullOuterJoin on Stream 1 and 2. Other table-join operations can be done in a
similar spirit. Here, the modifications should be made at both the compiling phase and the application submission
phase.

Note that table-join methods might be beneficial when applying to two separate applications per the developers’
agreement, which is a topic we plan to explore in future work. Otherwise, it is a bad practice since it costs too
much of the switch storage resources and a better design of the cookie/data-stack will remove the necessity for
the join operation.
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