
EURO Journal on Computational Optimization 10 (2022) 100047
Contents lists available at ScienceDirect

EURO Journal on Computational
Optimization

journal homepage: www.elsevier.com/locate/ejco

Direct nonlinear acceleration

Aritra Dutta c,b,1, El Houcine Bergou a,b,∗,1, Yunming Xiao b,d,
Marco Canini b, Peter Richtárik b

a Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
b King Abdullah University of Science and Technology (KAUST), Saudi Arabia
c University of Southern Denmark (SDU), Denmark
d Northwestern University, USA

a r t i c l e i n f o a b s t r a c t

Optimization acceleration techniques such as momentum play
a key role in state-of-the-art machine learning algorithms.
Recently, generic vector sequence extrapolation techniques,
such as regularized nonlinear acceleration (RNA) of Scieur et
al. [22], were proposed and shown to accelerate fixed point
iterations. In contrast to RNA which computes extrapolation
coefficients by (approximately) setting the gradient of the
objective function to zero at the extrapolated point, we
propose a more direct approach, which we call direct nonlinear
acceleration (DNA). In DNA, we aim to minimize (an
approximation of) the function value at the extrapolated point
instead. We adopt a regularized approach with regularizers
designed to prevent the model from entering a region in
which the functional approximation is less precise. While the
computational cost of DNA is comparable to that of RNA,
our direct approach significantly outperforms RNA on both
synthetic and real-world datasets. While the focus of this

* Corresponding author.
E-mail address: elhoucine.bergou@um6p.ma (E.H. Bergou).

1 Equal contribution.
https://doi.org/10.1016/j.ejco.2022.100047
2192-4406/© 2022 The Author(s). Published by Elsevier Ltd on behalf of Association of European
Operational Research Societies (EURO). This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.ejco.2022.100047
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ejco
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejco.2022.100047&domain=pdf
mailto:elhoucine.bergou@um6p.ma
https://doi.org/10.1016/j.ejco.2022.100047
http://creativecommons.org/licenses/by-nc-nd/4.0/

2 A. Dutta et al. / EURO Journal on Computational Optimization 10 (2022) 100047
paper is on convex problems, we obtain very encouraging
results in accelerating the training of neural networks.
© 2022 The Author(s). Published by Elsevier Ltd on behalf
of Association of European Operational Research Societies

(EURO). This is an open access article under the CC
BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

In this paper we consider the generic unconstrained minimization problem

min
x∈Rn

f(x), (1)

where f : Rn → R is a smooth objective function and bounded from below. One of
the most fundamental methods for solving (1) is gradient descent (GD), on which many
state-of-the-art methods are based. Given current iterate xk ∈ Rn, the update rule of
GD is

xk+1 = xk − αk∇f(xk), (2)

where αk > 0 is a stepsize. The efficiency of GD depends on further properties of f .
Assuming f is L–smooth and μ–strongly convex, for instance, the iteration complexity
of GD is O(κlog(1/ε)), where κ = L/μ and ε is the target error tolerance. However, it is
known that GD is not the “optimal” gradient type method: it can be accelerated.

The idea of accelerating converging optimization algorithms can track its history back
to 1964 when Polyak proposed his “heavy ball” method [20]. In 1983, Nesterov pro-
posed his accelerated version for general convex optimization problems. Comparing with
Polyak’s method, Nesterov’s method gives acceleration for general convex and smooth
problems and the iteration complexity improves to O(1/

√
ε) [17]. In 2009, Beck and

Teboulle proposed fast iterative shrinkage thresholding algorithm (FISTA) [3] that uses
Nesterov’s momentum coefficient and accelerates proximal type algorithms to solve a
more complex class of objective functions that combine a smooth, convex loss function
(not necessarily differentiable) and a strongly convex, smooth penalty function (also see
[18,19]). To develop further insights into Nesterov’s method, Su et al. [26] examined
a continuous time 2nd-order ODE which at its limit reduces to Nesterov’s accelerated
gradient method. In addition, Lin et al. [16] introduced a generic approach known as
catalyst that minimizes a convex objective function via an accelerated proximal point
algorithm and gains acceleration in Nesterov’s sense. [6] proposed a geometric alternative
to gradient descent that is inspired by ellipsoid method and produces acceleration with
complexity O(1/

√
ε). Recently, [32] used a linear coupling of gradient descent and mirror

descent and claimed to attain acceleration in Nesterov’s sense as well. In contrast, the
sequence acceleration techniques accelerate a sequence independently from the iterative

http://creativecommons.org/licenses/by-nc-nd/4.0/

A. Dutta et al. / EURO Journal on Computational Optimization 10 (2022) 100047 3
method that produces this sequence. In other words, these techniques take a sequence
{xk} and produce an accelerated sequence based on the linear combination of xks such
that the new accelerated sequence converges faster than the original. In the same spirit,
recently, Scieur et al. [22,23,4] proposed an acceleration technique called regularized
nonlinear acceleration (RNA). Scieur et al.’s idea is based on Aitken’s Δ2-algorithm [1]
and Wynn’s ε-algorithm [30] (or recursive formulation of generalized Shanks transform
[24,30,5]). To achieve acceleration, Scieur et al. considered a technique known as mini-
mum polynomial approximation and they assumed a linear model for the iterates near
the optimum. They also proposed a regularized variant of their method to stabilize it
numerically. The intuition behind the regularized nonlinear acceleration of Scieur et al. is
very natural. To minimize f as in (1), they considered the sequence of iterates {xk}k≥0
is generated by a fixed-point map. If x� is a minimizer of f , ∇f(x�) = 0, and hence
through extrapolation one can find:

c� ≈ arg min
c

{∥∥∥∥∥∇f

(
K∑

k=0

ckxk

)∥∥∥∥∥ : c ∈ RK+1,

K∑
k=0

ck = 1
}
, (3)

such that the next (accelerated) point can be generated as a linear combination of K+1
previous iterates: x =

∑K
i=0 c

�
i xi. We review RNA in detail in Section 1.2.2.

Notation. We denote the �2-norm of a vector x and the spectral norm of a matrix A
by ‖x‖ and ‖A‖, respectively. Further define ‖x‖M by ‖x‖M :=

√
x�Mx.

1.1. Contributions

We highlight our main contributions in this paper as follows:
Direct nonlinear acceleration (DNA). Inspired by Anderson’s acceleration technique

[2] (see Appendix for a brief description of Anderson’s acceleration) and the work of
Scieur et al. [22], we propose an extrapolation technique that accelerates a converging
iterative algorithm. However, in contrast to [22], we find the extrapolation coefficients c�
by directly minimizing the function at the linear combination of K + 1 iterates {xk}Kk≥0
with respect to c ∈ RK+1. In particular, for a given sequence of iterates {xk}Kk≥0 we
propose to approximately solve:

min
c∈RK+1

f

(
K∑

k=0

ckxk

)
+ λg(c), (4)

where λ > 0 is a balancing parameter and g is a penalty function. As our approach
tries to minimize the functional value directly, we call it as direct nonlinear acceleration
(DNA). We note that our formulation shares some similarities with that of Zhang et
al. [31]. Additionally, Riseth [21] proposed an objective acceleration that also minimizes
an approximation to the objective function on subspaces of Rn. However, unlike these

4 A. Dutta et al. / EURO Journal on Computational Optimization 10 (2022) 100047
works, we do not require line search and check a decrease condition at each step of our
algorithm.

Regularization. We propose several versions of DNA by varying the penalty function
g(c). This helps us to deal with the numerical instability in solving a linear system as well
as to control errors in gradient approximation. In our first version, we let g(c) = 1S(c),
where S := {c :

∑
i ci = 1} and 1S(c) = 0 if c ∈ S, while 1S(c) = +∞, otherwise.

Later, we propose two regularized constraint-free versions to find a better minimum of
the function f by expanding the search space of extrapolating coefficients to RK+1 rather
than restricting them over the space S. To this end, the first constraint-free version adds
a quadratic regularization g(c) =

∥∥∥∑K
i=0 cixi − y

∥∥∥2
to the objective function, where y is

a reference point and g(c) controls how far we want the linear combination
∑

i cixi to
deviate from y. In the second constraint-free version, we add the regularization directly
on c. We add a quadratic term of the form g(c) = ‖c− e‖2 to the objective function,
where e is a reference point to c and g(c) controls how far we want c to deviate from e.
In contrast, the regularized version of RNA only considers a ridge regularization ‖c‖2 for
numerical stability. Trivially, we note that by setting e = 0, we recover the regularization
proposed in RNA. We argue that by using a different penalty function g(c) as regularizer
our DNA is more robust than RNA.

General convergence result and quantification between RNA and DNA in minimizing
quadratic functions by using GD iterates. We provide a general convergence result of
DNA in Theorem 2. If g(c) = 0 or g(c) = 1∑

i ci=1, in terms of the functional value, we
always obtain a better accelerated point than RNA. Moreover, the acceleration obtained
by DNA can be theoretically directly implied from the existing results of Scieur et al. [22].
If g(c) = 0, we show by a simple example on quadratic functions that DNA outperforms
RNA by an arbitrary large margin. If g(c) = 1∑

i ci=1, we also quantify the functional
values obtained from both RNA and DNA for quadratic functions and provide a bound
on how DNA outperforms RNA in this setup.

Numerical results. Our empirical results show that for smooth and strongly convex
functions, minimizing the functional value converges faster than RNA. In practice, our
acceleration techniques are robust and outperform that of Scieur et al. [22] by large
margins in almost all experiments on both synthetic and real datasets. To further push
the robustness of our methods, we test them on nonconvex problems as well. As a proof
of concept, we trained a simple neural network classifier on MNIST dataset [15] via GD
and accelerate the GD iterates via the online scheme in [22] for both RNA and DNA.
Next, we train ResNet18 network [12] on CIFAR10 dataset [14] by SGD and accelerate
the SGD iterates via the online scheme in [22] for both RNA and DNA. In both cases,
DNA outperform RNA in lowering the generalization errors of the networks.

1.2. Related work

The sequence acceleration or non-linear acceleration has rich history in optimization
literature. We mention about a few works that are similar to ours. In [25], nonlinear

A. Dutta et al. / EURO Journal on Computational Optimization 10 (2022) 100047 5
generalized minimal residual (N-GMRES) is used as an accelerator for solving the non-
linear system, ∇f(x) = 0 that arises from the first order optimality condition. This is
similar to the classical work of Washio et al. [29] and can be connected to Anderson’s
acceleration [2]. In contrast, objective acceleration by [21], proposed to minimize a more
direct objective—an approximation to the objective unction f on subspace of Rn. In
that regard it is closely related to our work. However, [21] requires line search and check
a decrease condition at each step. In our algorithm we do not require such kind of condi-
tions. Additionally, we propose several regularized versions to bring numerical stability
in solving the linear systems. In another line of work, Zhang et al. [31] do not consider
a direct acceleration scheme as they use type-I Anderson acceleration to solve general
non-smooth fixed-point problems.

1.2.1. Anderson’s acceleration [2]
There are several acceleration techniques that have been proposed in the literature

and they pose a lot of similarities. We quote the authors from [5] – “Methods for ac-
celerating the convergence of various processes have been developed by researchers in a
wide range of disciplines, often without being aware of similar efforts undertaken else-
where.” In 1965 Anderson’s acceleration was designed to accelerate Picard iteration for
electronic structure computations. Because it is relevant in our current work, we give a
brief description of it for completeness.

For a given sequence of iterate, {xk} with xk ∈ Rn and a mapping, Φ(·) : Rn → Rn,
the fixed-point algorithm generates a recursive update of the iterates as:

xk+1 = Φ(xk). (5)

Let there be mk + 1 evaluations of the fixed point map φ. Anderson’s acceleration tech-
nique computes a new iteration as a linear combination of the previous mk+1 evaluations.
We explain it formally in Algorithm 1. In Algorithm 1, m is considered as a hyperpa-
rameter that sets the quantity mk as min{m, k}, where k is the iteration counter and
m is known as the depth. This is used to determine the window size to compute ĉ–the
coefficients for linear combination of the fixed point evaluations. In other words, in each
iteration, by solving the optimization problem:

ĉ(k) = arg min
c

‖F kc‖ subject to
∑
i

ci = 1,

where F k = (fk−mk
, fk−mk+1, · · · , fk) ∈ Rn×(mk+1), and fi = Φ(xi) −xi, one can obtain

the extrapolation coefficients ĉ(k) that help to determine the accelerated point xk+1. Toth
and Kelley pointed out that, in principle, any norm can be used in the minimization
step [27]. The summability of the coefficients ci or the normalization condition was not
explicitly mentioned in the original work of Anderson. Because ci’s can be determined

6 A. Dutta et al. / EURO Journal on Computational Optimization 10 (2022) 100047
Algorithm 1: Anderson Acceleration.
1 Input : x0 ∈ Rn and m ≥ 1;
2 Initialize : Set x1 = Φ(x0), mk = min{m, k}, Fk = (fk−mk

, fk−mk+1, · · · , fk) ∈ Rn×(mk+1), where
fi = Φ(xi) − xi;

3 for k = 1, 2, · · · do
4 Find ĉ(k) ∈ R(mk+1) such that: ĉ(k) = arg minα ‖Fkc‖ subject to ∑i ci = 1;
5 Set xk+1 =

∑mk

i=0 ĉ
(k)
i Φ(xk−mk+i).

end

up to a multiplicative scalar, one can impose the normalization condition. However, it
does not restrict generality. We refer the readers to [13,27,28,2,5] for a comprehensive
idea of Anderson’s acceleration technique. See more discussions involving Anderson’s
acceleration, Krylov subspace methods, and our work in Remarks 1 and 2.

1.2.2. Regularized nonlinear acceleration
In RNA, one solves (3) by assuming that the gradient can be approximated by lin-

earizing it in the neighborhood of {xk}Kk=0. Thus, by assuming
∑K

k=0 ck = 1, the relation ∥∥∥∇f
(∑K

k=0 ckxk

)∥∥∥ ≈
∥∥∥∑K

k=0 ck∇f (xk)
∥∥∥ holds. Hence, one can approximately solve (3)

via:

c� = arg minc

∥∥∥∑K
k=0 ck∇f (xk)

∥∥∥ =
∥∥∥∑K

k=0 ckR̃k

∥∥∥
subject to c ∈ RK+1,

∑K
k=0 ck = 1, (6)

where R̃k is the kth column of the matrix R̃, which holds information about ∇f (xk). More-
over (6) does not need an explicit access to the gradient and it can be seen as an
approximated minimal polynomial extrapolation (AMPE) as in [7,22,23]. If the sequence
{xk} is generated via GD (as in (2)), then R̃ = [(x0−x1)/α0, . . . , (xK−xK+1)/αK]. Also, if
R̃�R̃ is nonsingular, then the minimizer of (6) is explicitly given as: c� = (R̃�R̃)−11

1�(R̃�R̃)−11
.

If R̃�R̃ is singular then c is not necessarily unique. Any c of the form z
z�1 , where z is a

solution of R̃�R̃z = 1, is a solution of (6). To deal with the numerical instabilities and
the case when the matrix R̃�R̃ is singular, Scieur et al. proposed to add a regularizer
of the form λ‖c‖2 to their problem, where λ > 0. As a result, c� is unique and given

as c� = (R̃�R̃+λI)−11

1�(R̃�R̃+λI)−11
. The numerical procedure of RNA is given in Algorithm 2. For

further details about RNA we refer the readers to [22,23]. Scieur et al. also explained
several acceleration schemes to use with Algorithm 2.

2. Direct nonlinear acceleration

Instead of minimizing the norm of the gradient, we propose to minimize the objective
function f directly to obtain the coefficients {ck}. We set g(c) = 0 in (4) and we propose
to solve the unconstrained minimization problem

A. Dutta et al. / EURO Journal on Computational Optimization 10 (2022) 100047 7
Algorithm 2: RNA.
Input : Sequence of iterates x0, . . . , xK+1; sequence of step sizes α0, . . . , αK ; 1 ∈ RK+1: a vector

of all 1s; and λ > 0.
1 Set R̃ =

[
x0−x1

α0
, . . . ,

xK−xK+1
αK

]
;

2 Solve the linear system:
(
R̃�R̃ + λI

)
z = 1;

3 Set c = z
z�1 ∈ RK+1;

Output : x = ∑K
k=0 ckxk.

min
c∈RK+1

f (Xc) , (7)

where X = [x0, . . . , xK]. We call problem (7) as direct nonlinear acceleration (DNA)
without any constraint. If f is quadratic, then we have the following lemma that calcu-
lates the extrapolation coefficients, c as the solution of a linear system.

Lemma 1. Let the objective function f be quadratic and let {xk} be the iterates produced
by (2) to minimize f . Then c is a solution of the linear system X�Rz = −X�∇f(0),
where R ∈ Rn×(K+1) is a matrix such that its ith column is Ri = xi−xi+1

αi
−∇f(0) and

X = [x0, . . . , xK].

Proof. Let h(c) = f(Xc), from the first order optimality condition we have

∇h(c) = X�∇f (Xc) = 0

For quadratic objective function the gradient is affine, i.e.

∇f(Xc) = AXc + ∇f(0) =
K∑

k=0

ckAxk + ∇f(0) =
K∑

k=0

ck (∇f(xk) −∇f(0)) + ∇f(0).

By using the relation between the iterates of GD method we find ∇f (xk) = xk−xk+1
αk

.
Hence ∇f(Xc) = Rc + ∇f(0). By injecting this in the first order optimality condition
we get the result. �

If f is non-quadratic then we can approximately solve problem (7) by approximating
its gradient by a linear model. In fact, we use the following approximation ∇f(x) ≈
A(x − yx) +∇f(yx), where we assume that x is close to yx and A is an approximation of
the Hessian. Therefore, by setting x = Xc and yx = y in the above, we have ∇f(Xc) ≈
A(Xc −y) +∇f(y) =

∑
i ciAxi−Ay+∇f(y), where y is a reference point that is assumed

to be in the neighborhood of Xc. For instance, one may choose y to be xK . Let xi−1 be
a reference point for xi, that is, assume that ∇f(xi) ≈ A(xi − xi−1) + ∇f(xi−1). Then
one can show that Axi = ∇f(xi) −∇f(0). As a result, we have

∇f(Xc) ≈
∑

ci(∇f(xi) −∇f(0)) −Ay + ∇f(y)

i

8 A. Dutta et al. / EURO Journal on Computational Optimization 10 (2022) 100047
Algorithm 3: DNA.
Input : Sequence of iterates x0, . . . , xK+1 and sequence of step sizes α0, . . . , αK ;

1 Set R =
[
x0−x1

α0
− ∇f(0), . . . , xK−xK+1

αK
− ∇f(0)

]
and X = [x0, . . . , xK];

2 Set c as a solution of the linear system X�Rz = −X�∇f(0);
Output : x = ∑K

k=0 ckxk.

=
∑
i

ci

(
xi−xi+1

αi
−∇f(0)

)
−Ay + ∇f(y)

=
∑
i

ciRi −Ay + ∇f(y)

= Rc−Ay + ∇f(y)

≈ Rc + ∇f(0). (8)

Therefore, from the first optimality condition and by using (8), we conclude that the
solutions of (7) can be approximated by the solutions of the linear system X�Rz =
−X�∇f(0).

Remark 1. One may consider the following more general approximation

∇f(Xc) ≈ ∇f(y) + Hy(Xc− y),

where Hy is an approximation of the Hessian at y. Therefore, from the first optimality
condition and by using the latter approximation, we conclude that the solutions of (7) can
be approximated by the solutions of the linear system, XT∇f(y) + XTHy(Xc − y) = 0
which is equivalent to

XTHyXc = XTHyy −XT∇f(y). (9)

We note that the equation (9) involves the Hessian, Hy, and we wanted to avoid its
computation. That is why, in our analysis, we assume y = 0. We note that is not valid for
the general non-quadratic functions. However, our approximation is feasible for strongly
convex functions with smaller condition numbers, which is the setting we consider in this
work. For more general setting, one may explore when y 	= 0, and we leave it for future
work.

2.1. Convergence of DNA on strongly convex functions

Assume that f is μ-strongly convex and we will show the iterates generated by DNA
converge with an accelerated rate to the optimal point for the online scheme. To show
the convergence of DNA for μ-strongly convex functions, we follow the setup in [22]. For
completeness, we will briefly mention it in the following. In [22], Scieur et al. considered

A. Dutta et al. / EURO Journal on Computational Optimization 10 (2022) 100047 9
the updates of the iterative algorithm (say, GD in (2)) linear. That is, we can rewrite
(2) as:

xk+1 − x� = A(xk − x�),

where A ∈ Rn×n with ‖A‖ ≤ σ < 1. The minimal polynomial, p of A with respect to the
vector v is the lowest degree polynomial such that p(A)v = 0 and p(1) = 1. By setting
each column, R̃k of R̃ as R̃k = (A − In)(xk − x�), we have

‖XcR − x�‖ ≤ ‖(I −A)−1‖‖R̃c�‖.

In [22], Scieur et al. bounded ‖R̃c�‖ as follows: let A = QΛQ� be the eigen decomposition
of A and let the degree of the minimal polynomial be k. Hence,

‖R̃c�‖ = ‖p�(A)(x1 − x0)‖ ≤ ‖x1 − x0‖ min
p:p(1)=1

max
A:0�A�σI

‖p(A)‖2,

where p� is a polynomial with coefficient c�. The quantity, max
A:0�A�σI

‖p(A)‖2 can

be further bounded by max0≤λ≤σ |p(λ)|, resulting an upper bound on ‖R̃c�‖ as
‖x1 − x0‖ min

p:p(1)=1
max

0≤λ≤σ
|p(λ)|. Denote Ck := argminp:p is monic max

x:x∈[−1,1]
|p(x)| be the

Chebyshev polynomial of degree k. Following [11], Scieur et al. in [22] derived:

min
p:p(1)=1

max
0≤λ≤σ

|p(λ)| = 2ξk

1 + ξ2k ,

where ξ = 1−
√

1−σ
1+

√
1−σ

. This concludes bounding the quantity ‖R̃c�‖. Based on this, the
result can be further generalized in the following theorem.

Theorem 1. Denote ξ̂ = (
√
L−√

μ)/(
√
L+√

μ). Then the coefficients, cR produced by RNA
in Algorithm 2 follow:

‖XcR − x�‖ ≤ 2ξ̂k

1+ξ̂2k ‖x0 − x�‖.

Theorem 2. For Algorithm 3, we have ‖XcD − x�‖ ≤ √
κ 2ξ̂k

1+ξ̂2k ‖x0 − x�‖. where κ = L
μ .

Proof. On one hand, by using strong convexity of f , we have

μ

2 ‖XcD − x�‖2 ≤ f(XcD) − f∗.

On the other hand, by definition of DNA we have

f(XcD) − f∗ ≤ f(XcR) − f∗.

10 A. Dutta et al. / EURO Journal on Computational Optimization 10 (2022) 100047
In addition, we have

f(XcR) − f∗ ≤ L

2 ‖XcR − x�‖2.

Therefore, by putting together these inequalities we get

μ

2 ‖XcD − x�‖2 ≤ L

2 ‖XcR − x�‖2.

By rearranging the terms we obtain the desired result. �
Remark 2. Anderson’s acceleration is used to find solutions (via acceleration) to fixed
point equations of the form: x = f(x). DNA, on the other hand, finds solutions to linear
fixed-point methods of the form: xk+1 = Mxk + b, via acceleration. Therefore, DNA is a
special case of Anderson’s acceleration with a fixed window-size, K +1, in solving linear
fixed-point problems. We note that, the convergence rate for DNA in Theorem 2 is the
same as that for Krylov subspace methods up to a multiplicative scalar.

Remark 3. Interestingly, Walker and Ni in [28] showed that, for linear problems Anderson
acceleration is equivalent to generalized minimal residual (GMRES); see Theorem 2.2.
in [28]. Additionally, we note that, in an earlier work, Fang and Saad [10] showed the
quasi-Newton methods fall in a broader family of Anderson acceleration method. But
Walker and Ni were the first give this precise details. That is, the iterates that result
from Anderson’s acceleration, xAA

k+1 can be written as: xAA
k+1 = xGMRES

k + rGMRES
k , where

rGMRES
k = b − (I − A)xGMRES

k and {xGMRES
k } be the sequence of iterates of GMRES.

Additionally, we mention that, the objective acceleration technique proposed in [21] is a
modification of nonlinear GMRES (N-GMRES). Toth and Kelley [27] provided the first
convergence result for Anderson acceleration on general nonlinear problems.

Remark 4. Recently, Sterck and He [9] showed that, the standard Anderson’s acceleration
with window size, m (AA(m)), and with initial iterates, xk, k = 0, 1, · · · , m, defined
recursively using AA(k), is a Krylov space methods (for example, conjugate gradient
algorithm, GMRES, etc.); see Proposition 2.8 and 2.12 in [9]. Moreover, [9] showed that
k iterations of AA(m) cannot produce a smaller residual than k iterations of GMRES
without restart; see Proposition 2.10 in [9].

The above remarks establish that DNA, Anderson’s acceleration, and Krylov space
methods are closely related. More detailed investigation into these relations is left for
future work.

However, numerically DNA is unstable like RNA without regularization. In fact, the
matrix X�R can be highly ill-conditioned and can lead to large errors in computing c�.
Moreover, we accumulate errors in approximating the gradient via linearization as our
approximation of the gradient is valid only in the neighborhood of the iterates x0, . . . , xK .

A. Dutta et al. / EURO Journal on Computational Optimization 10 (2022) 100047 11
Algorithm 4: DNA-1.
Input : Sequence of iterates x0, . . . , xK+1; sequence of step sizes α0, . . . , αK ; and 1 ∈ RK+1, a

vector of all 1s;
1 Set R̃ =

[
x0−x1

α0
, . . . ,

xK−xK+1
αK

]
and X = [x0, . . . , xK];

2 Solve the linear system for z ∈ RK+1: X�R̃z = 1;
3 Set c = z

z�1 ∈ RK+1;
Output : x = ∑K

k=0 ckxk.

2.2. Regularized DNA

To remedy the numerical instability of unconstrained DNA, we propose three regular-
ized versions of DNA by using three different regularizers in the form of g(c) and show
that they work well in practice. But one can explore different forms of g(c) as regular-
izer; their performance largely depends on the optimization problem. In the following,
we explain them in details.

2.2.1. DNA-1
This regularized version of DNA is directly influenced by Scieur et al. [22]. Here, we

generate the extrapolated point x as a linear combination of the set of K + 1 iterates
such that, x =

∑
k ckxk. Additionally, as in [22,23], we assume the sum of the coefficients

ck to be equal to 1. Therefore, for c ∈ RK+1 with sum of its elements equal to 1, we set
g(c) = 1∑

i ci=1 in (4) and consider the following constrained problem:

min
c∈RK+1

f(Xc) + λ1S(c) = min
c∈RK+1∑K
k=0 ck=1

f (Xc) , (10)

where X = [x0, . . . , xK]. We call this version of DNA as DNA-1.

Lemma 2. If the objective function f is quadratic and X�R̃ is nonsingular then c =
(X�R̃)−11/δ, where δ = 1�(X�R̃)−11, and 1 is the vector of dimension K + 1 with all
the components equal to 1 and R̃ = [(x0−x1)/α0, . . . , (xK−xK+1)/αK].

Proof. The Lagrangian of the problem (6) is

L(c, λ) = h(c) + λ

(
K∑

k=0

ck − 1
)
,

where λ > 0 is the Lagrange multiplier. The first order optimality conditions are

∇Lx(x, λ) = X�∇f (Xc) + λ1 = 0 (11)

∇Lλ(x, λ) = c�1− 1 = 0. (12)

12 A. Dutta et al. / EURO Journal on Computational Optimization 10 (2022) 100047
For quadratic objective functions, the gradient is affine and because
∑K

k=0 ck = 1 we
have

∇f (Xc) =
K∑

k=0

ck∇f (xk) . (13)

By using the relation between the iterates of GD method we find ∇f (xk) = xk−xk+1
αk

.
By using the above expression in equation (13) we further get

∇f (Xc) =
K∑

k=0

ck
xk − xk+1

αk
= R̃c. (14)

Substituting (14) in the first optimality condition and solving for c we get c =
−λ

(
X�R̃

)−1
1. Next, we use it in the second optimality condition and solve it for λ

to find λ = −1
1�(

X�R̃
)−1

1
, and, therefore, the final expression for c is c =

(
X�R̃

)−1
1

1�(
X�R̃

)−1
1
. �

Similar to RNA, if X�R̃ is singular then c is not necessarily unique. Any c of the
form z

z�1 , where z is a solution of X�R̃z = 1, is a solution of (10). DNA-1 is described
in Algorithm 4.

Quantifying the difference between DNA and RNA Theorem 2 gives a general acceler-
ated convergence result without any comparison between RNA and DNA. To get more
insight about how DNA performs compare to RNA, we quantify the difference between
them by using simple quadratic function. Denote the functional value obtained by DNA,
DNA-1 (Algorithm 4), and RNA (Algorithm 2) at an extrapolated point as fD, fD1 and
fR, respectively.

Let f(x) = 1
2x

�Ax, where A is symmetric and positive definite. We know ∇f(x) = Ax.
By using the extrapolation we find the coefficients cis such that x =

∑
i cixi = Xc,

where X = [x0 x1 · · ·xk] is a matrix generated by stacking k iterates as its column and
c ∈ Rk is a vector of coefficients. We know f(Xc) = 1

2c
�X�AXc, for DNA cD =

0, and for DNA-1 cD1 = z
1�z

where z = (X�R̃)−11. Therefore, we find

fD = 0, and fD1 = 1�(R̃�X)−1X�AX(X�R̃)−11

2(1�z)2 ,

which for R̃ = [∇f(x0) ∇f(x1) · · · ∇f(xk)] = [Ax0 Ax1 · · ·Axk] = AX further reduces
to

fD1 = 1
21�(X�AX)−11

.

Similarly, we find for RNA

A. Dutta et al. / EURO Journal on Computational Optimization 10 (2022) 100047 13
Algorithm 5: DNA-2.
Input : Sequence of iterates x0, . . . , xK+1; sequence of step sizes α0, . . . , αK ; regularizer λ > 0;

and reference vector y ∈ Rk+1;
1 Set R =

[
x0−x1

α0
− ∇f(0), . . . , xK−xK+1

αK
− ∇f(0)

]
and X = [x0, . . . , xK];

2 Set c as a solution of the linear system (X�R + λX�X)z = λX�y − X�∇f(0);
Output : x = ∑K

k=0 ckxk.

cR = (R̃�R̃)−11

1�(R̃�R̃)−11
.

Therefore,

fR = 1�(R̃�R̃)−1X�AX(R̃�R̃)−11

2(1�(X�A2X)−11)2 ,

which further reduces to

fRNA = 1�(X�A2X)−1X�AX(X�A2X)−11

2(1�(X�A2X)−11)2 .

We formalize the above in the following proposition.

Proposition 1. Let A ∈ Rn×n be symmetric and positive definite and f(x) = 1
2x

�Ax

be a quadratic objective function. Let X = [x0 x1 · · ·xk] be a matrix generated
by stacking k iterates of GD to minimize f . Then the functional values of DNA,
DNA-1, and RNA at the accelerated point are: fD = 0, fD1 = 1

21�(X�AX)−11
, and

fR = 1�(X�A2X)−1X�AX(X�A2X)−11
2(1�(X�A2X)−11)2 , respectively.

We conclude that for this simple objective function, DNA reaches the optimal solution
after the first acceleration. Moreover, one can choose the matrix A such that fR is
arbitrary large, and this example shows that DNA may outperform RNA by a large
margin. The comparison between DNA-1 and RNA on the previous example is given in
the following lemma and theorem.

Lemma 3. If the sequence of iterates {xk} are linearly independent then we have:
(i) the matrices AX and A

1
2X have full column ranks.

(ii) (A1/2X)†A−1/2((AX)†)� = (X�A2X)−1.

Proof. (i) Since A is symmetric and positive definite, rank(A) = rank(A1/2) = n. As the
iterates {xk} are linearly independent, X = [x0, . . . , xK] ∈ Rn×(K+1) has full column
rank. Therefore, the matrices AX and A

1
2X have full column ranks.

(ii) We know if a matrix B is of full column rank then B† = (B�B)−1B�. By using
the above and (i) and we find

14 A. Dutta et al. / EURO Journal on Computational Optimization 10 (2022) 100047
(A1/2X)†A−1/2((AX)†)� = (X�A1/2A1/2X)−1X�A1/2A−1/2

((X�AAX)−1X�A)�

= (X�AX)−1X�((X�A2X)−1X�A)�

(X�A2X)�=X�A2X= (X�AX)−1(X�AX)(X�A2X)−1

= (X�A2X)−1.

Hence the result. �
Lemma 3 is needed to prove the following Lemma.

Lemma 4. We assume that the matrix R̃ has full column rank. With the notations used
in Proposition 1, we have fR/fD1 = ‖z‖2

A−1‖y‖2‖z‖−4, where z := (R̃†)�1 = ((AX)†)�1
and y := ((A1/2X)†)�1. We have y�A−1/2z = z�z; then, by using Cauchy-Schwarz
inequality, we conclude that ‖z‖A−1‖y‖2 ≥ y�A−1/2z = ‖z‖2

2 whence fR/fD1 ≥ 1.

Proof. We have R̃ = AX. Since A is symmetric and positive definite, it is invertible and
X = A−1R. Set y = ((A1/2X)†)�1, and let R̃† be the pseudo-inverse of R. Therefore,
R̃† can be computed as

R̃† = (R̃�R̃)−1R̃�,

and (R̃†)� is

(R̃†)� = R̃(R̃�R̃)−1.

We also note that R̃†R̃ = Ik and R̃�(R̃†)� = Ik, where Ik is an identity matrix of size
k. Therefore, we have

2fD1 = 1
1�(X�AX)−11

= 1
1�(X�A1/2A1/2X)†1

.

Since, (X�A1/2)� = A1/2X, by using the property of pseudo-inverse, we can write

(X�AX)−1 = (X�A1/2A1/2X)† = (A1/2X)†((A1/2X)†)�

and the above expression becomes

2fD1 = 1
� 1/2 † 1/2 † �

y=((A1/2X)†)�1= 1
� = 1

2 . (15)

1 (A X) ((A X)) 1 y y ‖y‖2

A. Dutta et al. / EURO Journal on Computational Optimization 10 (2022) 100047 15
Similarly we find, (X�A)� = AX, and again by using the property of pseudo-inverse,
we can write

(X�A2X)−1 = (X�AAX)† = (AX)†((AX)†)�

and

2fR = 1�(AX)†((AX)†)�X�AX(AX)†((AX)†)�1
(1�(AX)†((AX)†)�1)2

AX=R̃= 1�R̃†(R̃†)�(R̃†)�A−1R̃R̃†(R̃†)�1
(1�R̃†(R̃†)�1)2

= 1�R̃†A−1(R̃†)�1
(1�(R̃�R̃)−11)2

z:=R̃†1= z�A−1z

(z�z)2 .

Therefore,

2fR = z�A−1z

(z�z)2 =
‖z‖2

A−1

‖z‖4
2

. (16)

Combining (15) and (16) we obtain the ratio between fR and fD.
From Lemma 3 we have, y�A−1/2z = z�z. Then by using Cauchy Swartz inequality

we conclude that ‖z‖A−1‖y‖2 ≥ y�A−1/2z = ‖z‖2
2 whence fR

fD1
≥ 1. �

Note that, the ratio fR
fD1

≥ 1 can be directly concluded from the definition of fR and
fD1. The main goal of the previous lemma is to exactly quantify the ratio between these
two quantities. The following theorem gives more insight.

Theorem 3. We have fR
fD1

≤ UR := ‖z‖2
A−1‖z‖2

A‖z‖−4, and UR ∈ [1/2 + κ(A)/2, κ(A)],
where κ(A) is the condition number of A.

Proof. Recall that fR
fD1

= ‖z‖2
A−1‖y‖2

2
‖z‖4

2
. Also recall that z := (R̃†)�1 = ((AX)†)�1 and

y := ((A1/2X)†)�1. Therefore, A1/2z is the minimum norm solution to the linear system:
X�A1/2A1/2z = 1 and similarly, y is the minimum norm solution to the linear system:
X�A1/2y = 1. By using the above fact, we find ‖y‖2 ≤ ‖A1/2z‖2 = ‖z‖A and we can
rewrite the ratio as:

fR

fD1
=

‖z‖2
A−1‖y‖2

2
‖z‖4

2

y=A1/2z=
‖z‖2

A−1‖z‖2
A

‖z‖4
2

. (17)

From (17) the quantity max
z
=0

‖z‖2
A−1‖z‖2

A

‖z‖4
2

is equivalent to max
‖z‖2=1

‖z‖2
A−1‖z‖2

A ≤

max ‖z‖2
A−1 max ‖z‖2

A := UR.

‖z‖2=1 ‖z‖2=1

16 A. Dutta et al. / EURO Journal on Computational Optimization 10 (2022) 100047
Note that, UR ≤ λmax(A−1)λmax(A) = λmax(A)
λmin(A) = κ(A). Let UΣU� be an eigen

decomposition of A then UR = max
‖z‖2=1

‖z‖2
Σ−1 max

‖z‖2=1
‖z‖2

Σ. By considering a vector with

1/
√

2 at the first and last position and zero everywhere else we conclude that

UR ≥
(

1
2λmax(A) + 1

2λmin(A)

)(
1

2λmin(A) + 1
2λmax(A)

)

≥ 2 + κ(A)
4 . �

The above theorem tells us, for a simple quadratic function, the ratio of the objective
function values of DNA-1 and RNA may attain an order of κ(A), but it never exceeds
it. The theoretical quantification of the acceleration obtained by DNA and its different
versions compared to RNA in more general problems is left for future work. Although
DNA-1 can be seen as a regularized version of DNA, we still need to remedy the fact
that the linearization of the gradient is not a good approximation in the entire space,
and that the matrix X�R̃ may be singular. To this end, we impose some regularization
such that the new extrapolated point stays near to some reference point. We propose
two different ways in the following two sections.

2.2.2. DNA-2
We set g(c) = ‖Xc − y‖2 in (4) and consider a regularized version of problem (7):

min
c∈RK+1

f (Xc) + λ

2 ‖Xc− y‖2, (18)

where λ > 0 is a balancing parameter and y is a reference point (a point supposed to
be in the neighborhood of Xc). By taking the derivative of the objective in (18) with
respect to c and setting it to 0, we find X�∇f(Xc) + λX�(Xc− y) = 0, which after
using the approximation (8) becomes X�(Rc + ∇f(0)) + λX�(Xc− y) = 0. Finally, c�

is given as a solution to the linear system

(X�R + λX�X)c = λX�y −X�∇f(0). (19)

In general, X�R is not necessarily symmetric. To justify the regularization further,
one might symmetrize X�R by its transpose. In our experiments, we obtained good
performance without this.

We call this method DNA-2 (see Algorithm 5). Note that X�R + λX�X can be
singular, especially near the optimal solution. To remedy this, we propose either to add
another regularization to the problem (18), or to consider a direct regularization on c
instead of Xc. We explain this next.

A. Dutta et al. / EURO Journal on Computational Optimization 10 (2022) 100047 17
Algorithm 6: DNA-3.
Input : Sequence of iterates x0, . . . , xK+1; sequence of step sizes α0, . . . , αK ; regularizer λ > 0;

and e ∈ Rk+1;
1 Set R =

[
x0−x1

α0
− ∇f(0), . . . , xK−xK+1

αK
− ∇f(0)

]
and X = [x0, . . . , xK];

2 Set c as a solution of the linear system (X�R + λI)z = λe − X�∇f(0);
Output : x = ∑K

k=0 ckxk.

2.2.3. DNA-3
We set g(c) = ‖c − e‖2 in (4) and consider a regularized version of (7) as

min
c∈RK+1

f (Xc) + λ

2 ‖c− e‖2, (20)

where λ > 0 and e is a reference point for c. By taking the derivative with respect to c and
setting it to 0, we find X�∇f(Xc) + λ(c− e) = 0, which after using the approximation
(8) becomes X�(Rc + ∇f(0)) + λX�(c− e) = 0. Therefore, c� is given as a solution
to the linear system: (X�R + λI)c = λe−X�∇f(0). We call this method DNA-3, and
describe it in Algorithm 6.

A formal algorithm to summarize the results In the previous sections, we present three
different versions of DNA. For better clarity, we present an unified framework in Al-
gorithm 7 that shows how the acceleration via DNA (both constrained and regularized
versions) is interleaved with the GD updates. Additionally, we note that multiplying the
function, f by a factor, β, makes the linear system of standard AA, β2 larger, while the
linear system of DNA is multiplied by a factor β.

3. Numerical illustration

We evaluate our techniques and compare against RNA and GD by using both synthetic
data as well as real-world datasets. Overall, we find that DNA outperforms RNA in most
settings by large margins.

Experimental setup. Our experimental setup comprises of 3 typical problems, least
squares, ridge regression, and logistic regression, for which the optimal solution x� is
either known or can be evaluated using a numerical solver. We apply the online ac-
celeration scheme in [22] and compare 3 versions of DNA against RNA and GD. Our
results show the difference between the functional values at the extrapolated point and
at the optimal solution on a logarithmic scale (the lower the better), as the iterations
progress. The primary objective of our simulations is to show the effectiveness of DNA
and its different versions to accelerate a converging, deterministic optimization algo-
rithm. Therefore, we do not report any computation time of the algorithms and we do
not claim these implementations are optimized. Note that the computation bottleneck of
all algorithms (including RNA) is solving the linear system to calculate c, and because
the dimensionality of the linear systems is the same in RNA and DNA, the extra cost is

18 A. Dutta et al. / EURO Journal on Computational Optimization 10 (2022) 100047
Algorithm 7: DNA—A unified framework.
1 Input : Initial point, x0 ∈ Rn and stepsize sequence {αi}, regularizer λ > 0, reference vector,

y ∈ RK+1 or e ∈ RK+1 (for DNA-2 and 3, respectively);
2 for i = 1, 2 · · · , K + 1 do
3 xi = xi−1 − αi∇f(xi−1);

end
4 while not convergent do
5 Initialize : Sequence of iterates, {xi}K+1

i=1 ; sequence of step sizes, {αi}K
i=1; regularizer λ > 0 (if

using unconstrained variants–DNA-2 and 3); and a reference vector, y ∈ RK+1 or
e ∈ RK+1 (for DNA-2 and 3, respectively);

6 Set X = [x0, . . . , xK];
7 Calculate R̃ via Step 1 of Algorithm 4; or calculate R via Step 1 of Algorithm 3, 5, or 6;
8 Set c as a solution of the linear system via Step 2 of Algorithm 3, 4, 5, or 6;
9 Calculate: x̂ =

∑K
k=0 ckxk;

10 Set: x̂ = x0;
for i = 1, 2 · · · , K + 1 do

11 xi = xi−1 − αi∇f(xi−1);
end

end

the same in both approaches. In our experiments, we consider a fixed stepsize αk = 1/L
for GD, where L is the Lipschitz constant of ∇f . We note that for DNA-1 and 2 we need
to use the stepsize explicitly to construct R as defined in Lemma 1.

Least squares. We consider a least squares regression problem of the form

min
x

f(x) := 1
2‖Ax− y‖2, (21)

where A ∈ Rm×n with m > n is the data matrix, y ∈ Rm is the response vector. For
m > n and rank(A) = n, the objective function f in (21) is strongly convex. The optimal
solution x� to (21) is given by x� = argminx f(x) = (A�A)−1A�y. For least squares we
only consider the overdetermined systems, that is, m > n.

Ridge regression. The classic ridge regression problem is of the form:

min
x

f(x) := 1
2‖Ax− y‖2 + 1

2n‖x‖
2, (22)

where A ∈ Rm×n is the data matrix, y ∈ Rn is the response vector. The optimal solution
x� to (22) is given by x� = argminx f(x) = (A�A + 1

2nI)
−1A�y.

Logistic regression. In logistic regression with �2 regularization, the objective function
f(x) is the summation of n loss function of the form:

fi(x) = log(1 + exp(−yi〈A(:, i), x〉) + 1
2m‖x‖2. (23)

We use the MATLAB function fminunc to numerically obtain the minimizer of f in this
case.

Synthetic data. To compare the performance of different methods under different ac-
celeration schemes, we are interested in the case where matrix A has a known singular

value distribution and we consider the cases where A has varying condition numbers. We
note that the condition number of A is defined as κ(A) := λmax(A)/λmin(A), where λ is the
eigenvalue of A. We first generate a random matrix and let UΣV � be its SVD. Next we
create a vector S ∈ Rmin{m,n} with entries si ∈ R+ arranged in an nonincreasing order
such that s1 is maximum and smin{m,n} is minimum. Finally, we form the test matrix A
as A = Udiag(s1 s2 · · · smin{m,n})V � such that A will have a higher condition number
if s1/smin{m,n} is large and smaller condition number if s1/smin{m,n} is small. We create the
vector y as a random vector.

Real data. We use 15 different real-world datasets from the LIBSVM repository [8].
We set apart the datasets with y-labels as {−1, 1} for Logistic regression and used the
remaining 12 multi-label datasets for least squares and ridge regression problems. We use
the matrix A in its crude form, that is, without any scaling/normalizing or centralizing
its rows or columns.

Acceleration results. We use GD as our baseline algorithm and the online acceleration
scheme as explained in [22] for both RNA and DNAs to accelerate the GD iterates. For
synthetic data (see Fig. 1), we see that for smaller condition numbers and for quadratic
objective functions, DNA-1 and RNA has almost similar performance and DNA-2 and
3 show faster decrease of f(xk) − f(x�), but all of them are very competitive. As the
condition number of the problems becomes huge, DNA-2 and 3 outperform RNA by
large margins. However, for logistic regression problems we see performance gains for
all versions of DNA compared to RNA. Though for huge condition numbers, for logistic
regression problems, the performance of DNA-2 depends on the hyperparameter λ.2
We argue with experimental evidence as in Fig. 1 that for huge condition numbers
the sensitivity of the performance of DNA-2 is problem specific. We use an additional
regularizer ε‖c‖2, where ε ≈ 10−14 to find a stable solution to (19) of DNA-2. Next,
on real-world datasets in Figs. 2 and 3, we see that all versions of DNA outperform
RNA, except in a few cases, where RNA and DNA-1 have almost similar performance.
We indicate the oscillating nature of DNA-2 in some plots is due to its problem-specific
sensitivity to the regularizer. In Fig. 4, we find for logistic regression problems on real
datasets, DNA outperfoms RNA. We owe the success of DNA on non-quadratic problems
to its adaptive gradient approximation. We note that the performance of all algorithms
on the offline scheme of [22] is similar to online scheme of [22]. However, on the second
online scheme used in [23], all the algorithms perform extremely poorly. Therefore, we
do not report the results in this paper.

Solving the linear system. The linear system that arises within DNA is very small.
The coefficient matrix is of dimension (K + 1) × (K + 1), where K is generally small.
In our experiments, K is set to 3, 5 or 6. Since one can view the (vector) extrapolation
technique (RNA or DNA) as some type of a restarting scheme, K never grows larger as
the iteration progresses and the computational cost in finding the extrapolation coeffi-

2 We note that, multiplying the function, f by a factor, β, makes the linear system of standard AA, β2

larger, while the linear system of DNA is multiplied by a factor β.
A. Dutta et al. / EURO Journal on Computational Optimization 10 (2022) 100047 19

20 A. Dutta et al. / EURO Journal on Computational Optimization 10 (2022) 100047

Fig. 1. Acceleration on synthetic data by using online acceleration scheme in [22]. First and second row
represent quadratic, strong convex objective function as Least Squares and Ridge Regression, respectively.
The last row represents non-quadratic but strong convex objective function as Logistic Regression. For all
plots we use k = 3. For RNA, we have λ = 10−8; for DNA, we set λ = 10−8, except for the last LR plot
where for DNA-2, we set λ = 10.

Fig. 2. Acceleration on LIBSVM dataset by using online acceleration scheme in [22] on Least Squares problems.
For all datasets, we use k = 3. For RNA and DNA, we set λ = 10−8.

A. Dutta et al. / EURO Journal on Computational Optimization 10 (2022) 100047 21
Fig. 3. Acceleration on LIBSVM dataset by using online acceleration scheme in [22] on Ridge Regression
problems. For all datasets, we use k = 3. For RNA and DNA, we set λ = 10−8.

Fig. 4. Acceleration on LIBSVM dataset by using online acceleration scheme in [22] on Logistic Regression
problems. For all datasets, we use k = 3. For RNA and DNA, we set λ = 10−8.

cients remains very modest. For instance, the solution of the linear system can be done
by using Gaussian elimination or by using an iterative method. It takes at most O(K3)
flops but as K is very small, practically it only adds a negligible computation overhead
compared to a full gradient calculation in higher dimensions.

Effect of different K. Note that, K is a hyper parameter of the algorithms. For larger
K, we observe the better the performance of the algorithms. It is natural because larger
K implies more information from the oracle algorithm. In Fig. 5, we see that for K = 3,
RNA and DNA-1 have similar performances, but when K increases RNA is better than
DNA-1. Fig. 6 shows similar performances for DNA-2 and 3 for small K and DNA-2
becomes better for larger values of K. DNA-1 and RNA have almost similar performances
for all the values of K. An in-depth study of the impact of this parameter is left to future
work.

Comparison with Nesterov’s acceleration. We performed some preliminary experi-
ments (see Fig. 7), where we compared DNA with Nesterov’s acceleration (NA) on logistic
regression problems. DNA outperforms NA in all cases. Our preliminary insight is that
NA is based only on the last two iterations while DNA supports more than two iterates.

22 A. Dutta et al. / EURO Journal on Computational Optimization 10 (2022) 100047
Fig. 5. Acceleration on synthetic dataset by using online acceleration scheme in [22] on Least Squares prob-
lems. For all datasets, we use K = 3, K = 10 and K = 15 respectively. We set λ = 10−8.

Fig. 6. Acceleration on synthetic dataset by using online acceleration scheme in [22] on Ridge Regression
problems. For all datasets, we use K = 3, K = 8 and K = 15 respectively. We set λ = 10−8.

Fig. 7. Acceleration on synthetic data to solve logistic regression (LR) problem by using online acceleration
scheme. For all plots we use k = 3. In all cases, RNA and DNA outperform Nesterov’s acceleration. For
RNA and DNA, we set λ = 10−8.

However, this needs a thorough investigation (both in theory and in practice) and this
is not the scope of this paper.

Application to the non-convex world: accelerating neural network training. Modern
deep learning requires optimization algorithms to work in a nonconvex setup. Although
this is not the main goal of this paper, nevertheless, we implement our acceleration
techniques for training neural networks and obtain surprisingly promising results. We
only use DNA-1 for experiments in this section. Tuning the hyperparameter λ for the
other versions of DNAs requires more time, and we leave this for future research. The
Pytorch implementation of RNA is based on [23].

A. Dutta et al. / EURO Journal on Computational Optimization 10 (2022) 100047 23
Fig. 8. Accelerating neural-network training. (a) A 2-layer neural network with GD optimizer and fixed
stepsize 0.0001. (b) A 2-layer neural network with SGD optimizer and fixed stepsize 0.0001. For both, we
use k = 5. (c) ResNet18 on CIFAR10 dataset with SGD optimizer and fixed stepsize 0.0001. We use k = 6.
Note that these are not the best stepsize setting for the networks. Codebase Pytorch.

Fig. 9. Acceleration on Neural Network. (a) Experiment implementing ResNet18 on Cifar10 dataset with
SGD as training algorithm with decaying stepsize across the epochs. For both DNA-1 and RNA, the window
size is set to k = 6, and we use the offline scheme of [22]. (b) Experiment implementing ResNet18 on Cifar10
dataset with SGD as training algorithm with decaying stepsize across the epochs. For both DNA-1 and RNA,
the window size is set to k = 6, and we use the online scheme of [22]. In both cases, RNA and DNA-1 fail
to accelerate the SGD iterates.

MNIST classification. First, we trained a simple two-layer neural network classifier
on MNIST dataset [15] via GD and accelerate the GD iterates via the online scheme in
[22] for both RNA and DNA-1. The two-layer neural network is widely adopted in most
tutorials that use MNIST dataset.3

In Fig. 8 (a), DNA-1 gains acceleration by using GD iterates with a window size
k = 5. However, RNA fails to accelerate the GD iterates. This motivated us to train the
same network on MNIST dataset classification [15] via SGD as baseline algorithm and
accelerate the SGD iterates via the online scheme in [22] for both RNA and DNA-1 (as
in Fig. 8 (b)). Again, with window size k = 5, DNA-1 achieves better acceleration than
RNA.

3 https://github .com /pytorch /examples /blob /master /mnist /main .py.

https://github.com/pytorch/examples/blob/master/mnist/main.py

24 A. Dutta et al. / EURO Journal on Computational Optimization 10 (2022) 100047
ResNet18 on CIFAR10. Finally, we train the ResNet18 network [12] on CIFAR10
dataset [14] by SGD. Each epoch of SGD consists of multiple iterations and each iteration
applies to 128 training samples. The size of the training set is 5 × 104 and the size of
validation set is 104. Each sample is a 32 × 32 resolution color image and they are
categorized into 10 classes. We accelerate the SGD iterates via the online scheme in [22]
for both RNA and DNA-1. Again DNA-1 outperforms RNA in lowering the generalization
error of the network (see Fig. 8 (c)).

Effect of decaying step-size. Finally, in Fig. 9 we show training ResNet18 on Cifar10
dataset with SGD as training algorithm with decaying stepsize across the epochs. In
both cases, RNA and DNA-1 fail to accelerate the SGD iterates. This indicates the fact
that the stepsize is an important hyperparameter, and one needs to further explore it in
case of accelerating a neural network training.

Declaration of competing interest

There is no possible conflicts of interest.

Acknowledgement

Aritra Dutta acknowledges being an affiliated researcher at the Pioneer Centre for AI,
Denmark.

Appendix A. Acceleration schema

In this section, we explain different acceleration schema used by Scieur et al. in [22,23]
for completeness.

Remark 5. For GD, the updates of the iterates are done via the simple update rule (2),
which is explained in Fig. 10(a).

A.0.1. Online Scheme 1
We explain the acceleration scheme proposed in [22] herein. First, we run k iterations

of GD to produce the sequence of iterates {xi}ki=1 and then use extrapolation to generate
a new point x′

k. We use x′
k as the initial point of GD and produce a set of next k iterates

via GD. At this end, we further use the extrapolation scheme to produce a second offline
update x′

k+1 which is used as next the initial point of GD, and this process continues.
See Fig. 10(b).

A.0.2. Online Scheme 2
The acceleration scheme proposed in [23], is more involved than the one proposed

in [22]. First, we run k iterations of GD to produce a sequence of iterates {xi}ki=1 and
then use extrapolation to generate x′

k. Next, we use x′
k as the starting point of GD to

A. Dutta et al. / EURO Journal on Computational Optimization 10 (2022) 100047 25
Fig. 10. Updates via: (a) gradient descent, (b) online extrapolation on gradient descent [22], (c) online
extrapolation on gradient descent [23], and (d) offline scheme.

produce xk+1. Now, we start from the second iterate x2 and consider a set of k iterates
{x2, x3, · · · , xk, xk+1} to produce the second offline update x′

k+1 via extrapolation which
is to be used as the next starting point of GD, and this process continues. See Fig. 10(c).

A.0.3. Offline scheme
Lastly, we describe an offline update scheme, as illustrated in Fig. 10(d). First, we

run the GD to produce the sequence of iterates {xk} and then use the acceleration
on the set of first k iterates to produce the first offline update x′

k and concatenate it
with the previous (k − 1) GD updates. Next, we start from the second iterate x2 and
consider a set of k iterates to produce the second offline update x′

k+1 via acceleration
and this process continues. As a result, the offline accelerated updates are generated as
{x1, x2 · · · , x′

k, x
′
k+1, · · · }.

Appendix B. Reproducible research

See the LIBSVM dataset from the repository online: https://www .csie .ntu .edu .tw /
~cjlin /libsvmtools /datasets/. See the source code of RNA from: https://github .com /
windows7lover /RegularizedNonlinearAcceleration. For MATLAB and Pytorch code that is
used to produce all the results for our DNA, please email the authors.

References

[1] A.C. Aitken, On Bernoulli’s numerical solution of algebraic equations, Proc. R. Soc. Edinb. 46
(1927) 289–305.

[2] D.G. Anderson, Iterative procedures for nonlinear integral equations, J. ACM 12 (4) (1965) 547–560.
[3] A. Beck, M. Teboulle, A fast iterative shrinkage thresholding algorithm for linear inverse problems,

SIAM J. Imaging Sci. 2 (1) (2009) 183–202.
[4] R. Bollapragada, D. Scieur, A. d’Aspremont, Nonlinear acceleration of primal-dual algorithms, in:

International Conference on Artificial Intelligence and Statistics (AISTATS), 2019, pp. 739–747.
[5] C. Brezinski, M. Redivo-Zaglia, Y. Saad, Shanks sequence transformations and Anderson accelera-

tion, SIAM Rev. 60 (3) (2018) 646–669.
[6] Sébastien Bubeck, Yin Tat Lee, Mohit Singh, A geometric alternative to Nesterov’s accelerated

gradient descent, CoRR, arXiv :1506 .08187 [abs], 2015.

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://github.com/windows7lover/RegularizedNonlinearAcceleration
https://github.com/windows7lover/RegularizedNonlinearAcceleration
http://refhub.elsevier.com/S2192-4406(22)00023-5/bib7D66F40EB6708424E1C7D9BB6B5391D5s1
http://refhub.elsevier.com/S2192-4406(22)00023-5/bib7D66F40EB6708424E1C7D9BB6B5391D5s1
http://refhub.elsevier.com/S2192-4406(22)00023-5/bibB32B1B822DD59451B17B08F97FDFE81Es1
http://refhub.elsevier.com/S2192-4406(22)00023-5/bib482DBB59CCB9081221CE42763077D2F8s1
http://refhub.elsevier.com/S2192-4406(22)00023-5/bib482DBB59CCB9081221CE42763077D2F8s1
http://refhub.elsevier.com/S2192-4406(22)00023-5/bib39BE09B7FDDE1A7C86F083C912D9A93Ds1
http://refhub.elsevier.com/S2192-4406(22)00023-5/bib39BE09B7FDDE1A7C86F083C912D9A93Ds1
http://refhub.elsevier.com/S2192-4406(22)00023-5/bib7F49FCD4B92B2D40F5099EE66409D912s1
http://refhub.elsevier.com/S2192-4406(22)00023-5/bib7F49FCD4B92B2D40F5099EE66409D912s1
http://refhub.elsevier.com/S2192-4406(22)00023-5/bibF24CAA22A3C5B77248AB3AD574D01D8Cs1
http://refhub.elsevier.com/S2192-4406(22)00023-5/bibF24CAA22A3C5B77248AB3AD574D01D8Cs1

26 A. Dutta et al. / EURO Journal on Computational Optimization 10 (2022) 100047
[7] S. Cabay, L.W. Jackson, A polynomial extrapolation method for finding limits and antilimits of
vector sequences, SIAM J. Numer. Anal. 13 (5) (1976) 734–752.

[8] C.C. Chang, C.J. Lin, LIBSVM: a library for support vector machines, ACM Trans. Intell. Syst.
Technol. (2011).

[9] Hans De Sterck, Yunhui He, Anderson acceleration as a Krylov method with application to asymp-
totic convergence analysis, arXiv preprint, arXiv :2109 .14181, 2021.

[10] Haw-ren Fang, Yousef Saad, Two classes of multisecant methods for nonlinear acceleration, Numer.
Linear Algebra Appl. 16 (3) (2009) 197–221.

[11] Gene H. Golub, Richard S. Varga, Chebyshev semi-iterative methods, successive overrelaxation
iterative methods, and second order Richardson iterative methods, Numer. Math. 3 (1) (1961)
157–168.

[12] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 770–778.

[13] C.T. Kelley, Numerical methods for nonlinear equations, Acta Numer. 27 (2018) 207–287.
[14] A. Krizhevsky, G. Hinton, Learning multiple layers of features from tiny images, Technical report,

University of Toronto, 2009, 1(4).
[15] Y. LeCun, C. Cortes, C.J.C. Burges, MNIST handwritten digit database, 2010, http://yann .lecun .

com /exdb /mnist, 2010.
[16] H. Lin, J. Mairal, Z. Harchaoui, A universal catalyst for first-order optimization, in: Proceedings of

Neural Information Processing Systems, 2015, pp. 3384–3392.
[17] Y. Nesterov, A method of solving a convex programming problem with convergence rate o(1/k2),

Sov. Math. Dokl. 27 (2) (1983) 372–376.
[18] Y. Nesterov, Gradient methods for minimizing composite objective function, CORE Discussion

Papers, 2007.
[19] Y. Nesterov, Gradient methods for minimizing composite functions, Math. Program. 140 (1) (2013)

125–161.
[20] B. Polyak, Some methods of speeding up the convergence of iteration methods, USSR Comput.

Math. Math. Phys. 4 (5) (1964) 1–17.
[21] A.N. Riseth, Objective acceleration for unconstrained optimization, Numer. Linear Algebra Appl.

26 (1) (2019) e2216.
[22] D. Scieur, A. d’Aspremont, F. Bach, Regularized nonlinear acceleration, in: Proceedings of Neural

Information Processing Systems, 2016, pp. 712–720.
[23] D. Scieur, E. Oyallon, A. d’Aspremont, F. Bach, Nonlinear acceleration of deep neural networks,

arXiv :1805 .09639, 2018.
[24] D. Shanks, Non-linear transformations of divergent and slowly convergent sequences, J. Math. Phys.

34 (1) (1955) 1–42.
[25] Hans De Sterck, Steepest descent preconditioning for nonlinear gmres optimization, Numer. Linear

Algebra Appl. 20 (3) (2013) 453–471.
[26] W. Su, S. Boyd, E. Candés, A differential equation for modeling Nesterov’s accelerated gradi-

ent method: theory and insights, in: Proceedings of Neural Information Processing Systems, 2014,
pp. 2510–2518.

[27] A. Toth, C.T. Kelley, Convergence analysis for Anderson’s acceleration, SIAM J. Numer. Anal.
53 (2) (2015) 805–819.

[28] H.F. Walker, P. Ni, Anderson acceleration for fixed point iteration, SIAM J. Numer. Anal. 49 (4)
(2011) 1715–1735.

[29] Takumi Washio, Cornelis W. Oosterlee, Krylov subspace acceleration for nonlinear multigrid
schemes, Electron. Trans. Numer. Anal. 6 (1997) 271–290, 3–1.

[30] P. Wynn, On a device for computing the em(sn) transformation, Math. Tables Other Aids Comput.
10 (54) (1956) 91–96.

[31] J. Zhang, B. O’Donoghue, S. Boyd, Globally convergent type-i Anderson acceleration for non-smooth
fixed-point iterations, arXiv :1808 .03971, 2018.

[32] Z. Allen Zhu, L. Orecchia, Linear coupling: an ultimate unification of gradient and mirror descent,
in: ITCS, 2017.

http://refhub.elsevier.com/S2192-4406(22)00023-5/bib2CA830D761E83EB226D66F516972BD4Ds1
http://refhub.elsevier.com/S2192-4406(22)00023-5/bib2CA830D761E83EB226D66F516972BD4Ds1
http://refhub.elsevier.com/S2192-4406(22)00023-5/bibA3CF19501138F29D2107A275E7670846s1
http://refhub.elsevier.com/S2192-4406(22)00023-5/bibA3CF19501138F29D2107A275E7670846s1
http://refhub.elsevier.com/S2192-4406(22)00023-5/bib1DF309A411FCC6450FC6A74789BF99D2s1
http://refhub.elsevier.com/S2192-4406(22)00023-5/bib1DF309A411FCC6450FC6A74789BF99D2s1
http://refhub.elsevier.com/S2192-4406(22)00023-5/bibC243CF4E87BCD9BF64DCFC90DD2C8404s1
http://refhub.elsevier.com/S2192-4406(22)00023-5/bibC243CF4E87BCD9BF64DCFC90DD2C8404s1
http://refhub.elsevier.com/S2192-4406(22)00023-5/bibD73B91F47B05B5FE15C0D85B2FCA1E38s1
http://refhub.elsevier.com/S2192-4406(22)00023-5/bibD73B91F47B05B5FE15C0D85B2FCA1E38s1
http://refhub.elsevier.com/S2192-4406(22)00023-5/bibD73B91F47B05B5FE15C0D85B2FCA1E38s1
http://refhub.elsevier.com/S2192-4406(22)00023-5/bib89E44D4BCCDFA2358566AE8392BD83F2s1
http://refhub.elsevier.com/S2192-4406(22)00023-5/bib89E44D4BCCDFA2358566AE8392BD83F2s1
http://refhub.elsevier.com/S2192-4406(22)00023-5/bib60A0ACA55D2DF93A2EEC0E5313DB5A8Bs1
http://refhub.elsevier.com/S2192-4406(22)00023-5/bib909AAD20FE2004834D22BF97CC5B5986s1
http://refhub.elsevier.com/S2192-4406(22)00023-5/bib909AAD20FE2004834D22BF97CC5B5986s1
http://yann.lecun.com/exdb/mnist
http://yann.lecun.com/exdb/mnist
http://refhub.elsevier.com/S2192-4406(22)00023-5/bib50ACAD17FAD76C7D7718488427715017s1
http://refhub.elsevier.com/S2192-4406(22)00023-5/bib50ACAD17FAD76C7D7718488427715017s1
http://refhub.elsevier.com/S2192-4406(22)00023-5/bibC842AC175B7BA810C6348BEE2BA2E359s1
http://refhub.elsevier.com/S2192-4406(22)00023-5/bibC842AC175B7BA810C6348BEE2BA2E359s1
http://refhub.elsevier.com/S2192-4406(22)00023-5/bibFEB056BAD75C496A16D9AF7EB734B0DFs1
http://refhub.elsevier.com/S2192-4406(22)00023-5/bibFEB056BAD75C496A16D9AF7EB734B0DFs1
http://refhub.elsevier.com/S2192-4406(22)00023-5/bibCADA7B40FE06039E3381C90927422E8Ds1
http://refhub.elsevier.com/S2192-4406(22)00023-5/bibCADA7B40FE06039E3381C90927422E8Ds1
http://refhub.elsevier.com/S2192-4406(22)00023-5/bib2936D1DFE0E783F7A15F1E3AEF9A46F8s1
http://refhub.elsevier.com/S2192-4406(22)00023-5/bib2936D1DFE0E783F7A15F1E3AEF9A46F8s1
http://refhub.elsevier.com/S2192-4406(22)00023-5/bib7ADD494A21576B3680A1BD025B1C29AEs1
http://refhub.elsevier.com/S2192-4406(22)00023-5/bib7ADD494A21576B3680A1BD025B1C29AEs1
http://refhub.elsevier.com/S2192-4406(22)00023-5/bibA618797A888BEE911B14435E35F3D51Ds1
http://refhub.elsevier.com/S2192-4406(22)00023-5/bibA618797A888BEE911B14435E35F3D51Ds1
http://refhub.elsevier.com/S2192-4406(22)00023-5/bib6A361C742CC7EC27269D59EA03458F08s1
http://refhub.elsevier.com/S2192-4406(22)00023-5/bib6A361C742CC7EC27269D59EA03458F08s1
http://refhub.elsevier.com/S2192-4406(22)00023-5/bib7341B5E7C789C1CB68870D50075F3294s1
http://refhub.elsevier.com/S2192-4406(22)00023-5/bib7341B5E7C789C1CB68870D50075F3294s1
http://refhub.elsevier.com/S2192-4406(22)00023-5/bib339E2674C8BC8992A726F9BEC5667D63s1
http://refhub.elsevier.com/S2192-4406(22)00023-5/bib339E2674C8BC8992A726F9BEC5667D63s1
http://refhub.elsevier.com/S2192-4406(22)00023-5/bibF883B8B26E7D2CCB4753EB3C148867CAs1
http://refhub.elsevier.com/S2192-4406(22)00023-5/bibF883B8B26E7D2CCB4753EB3C148867CAs1
http://refhub.elsevier.com/S2192-4406(22)00023-5/bibF883B8B26E7D2CCB4753EB3C148867CAs1
http://refhub.elsevier.com/S2192-4406(22)00023-5/bibFE9C2D09C485649E0B64D9767E4E551Es1
http://refhub.elsevier.com/S2192-4406(22)00023-5/bibFE9C2D09C485649E0B64D9767E4E551Es1
http://refhub.elsevier.com/S2192-4406(22)00023-5/bib1C3A0B25C3D1C909E2BCB9FE44C2F904s1
http://refhub.elsevier.com/S2192-4406(22)00023-5/bib1C3A0B25C3D1C909E2BCB9FE44C2F904s1
http://refhub.elsevier.com/S2192-4406(22)00023-5/bibBD5FBB553DE94301A6FC0C336D8D7205s1
http://refhub.elsevier.com/S2192-4406(22)00023-5/bibBD5FBB553DE94301A6FC0C336D8D7205s1
http://refhub.elsevier.com/S2192-4406(22)00023-5/bib41071E1F5A2BC049532D7EAB0AE98311s1
http://refhub.elsevier.com/S2192-4406(22)00023-5/bib41071E1F5A2BC049532D7EAB0AE98311s1
http://refhub.elsevier.com/S2192-4406(22)00023-5/bib7CD004B90B5F2D509A3114B3B4512191s1
http://refhub.elsevier.com/S2192-4406(22)00023-5/bib7CD004B90B5F2D509A3114B3B4512191s1
http://refhub.elsevier.com/S2192-4406(22)00023-5/bib1CEDBF41381E596D96FE7AC1F73D7735s1
http://refhub.elsevier.com/S2192-4406(22)00023-5/bib1CEDBF41381E596D96FE7AC1F73D7735s1

	Direct nonlinear acceleration
	1 Introduction
	1.1 Contributions
	1.2 Related work
	1.2.1 Anderson’s acceleration [2]
	1.2.2 Regularized nonlinear acceleration

	2 Direct nonlinear acceleration
	2.1 Convergence of DNA on strongly convex functions
	2.2 Regularized DNA
	2.2.1 DNA-1
	Quantifying the difference between DNA and RNA

	2.2.2 DNA-2
	2.2.3 DNA-3
	A formal algorithm to summarize the results

	3 Numerical illustration
	Declaration of competing interest
	Acknowledgement
	Appendix A Acceleration schema
	Appendix B Reproducible research
	References

