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a r t i c l e i n f o a b s t r a c t

Optimization acceleration techniques such as momentum play 
a key role in state-of-the-art machine learning algorithms. 
Recently, generic vector sequence extrapolation techniques, 
such as regularized nonlinear acceleration (RNA) of Scieur et 
al. [22], were proposed and shown to accelerate fixed point 
iterations. In contrast to RNA which computes extrapolation 
coefficients by (approximately) setting the gradient of the 
objective function to zero at the extrapolated point, we 
propose a more direct approach, which we call direct nonlinear 
acceleration (DNA). In DNA, we aim to minimize (an 
approximation of) the function value at the extrapolated point 
instead. We adopt a regularized approach with regularizers 
designed to prevent the model from entering a region in 
which the functional approximation is less precise. While the 
computational cost of DNA is comparable to that of RNA, 
our direct approach significantly outperforms RNA on both 
synthetic and real-world datasets. While the focus of this 
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paper is on convex problems, we obtain very encouraging 
results in accelerating the training of neural networks.
© 2022 The Author(s). Published by Elsevier Ltd on behalf 
of Association of European Operational Research Societies 

(EURO). This is an open access article under the CC 
BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

In this paper we consider the generic unconstrained minimization problem

min
x∈Rn

f(x), (1)

where f : Rn → R is a smooth objective function and bounded from below. One of 
the most fundamental methods for solving (1) is gradient descent (GD), on which many 
state-of-the-art methods are based. Given current iterate xk ∈ Rn, the update rule of 
GD is

xk+1 = xk − αk∇f(xk), (2)

where αk > 0 is a stepsize. The efficiency of GD depends on further properties of f . 
Assuming f is L–smooth and μ–strongly convex, for instance, the iteration complexity 
of GD is O(κlog(1/ε)), where κ = L/μ and ε is the target error tolerance. However, it is 
known that GD is not the “optimal” gradient type method: it can be accelerated.

The idea of accelerating converging optimization algorithms can track its history back 
to 1964 when Polyak proposed his “heavy ball” method [20]. In 1983, Nesterov pro-
posed his accelerated version for general convex optimization problems. Comparing with 
Polyak’s method, Nesterov’s method gives acceleration for general convex and smooth 
problems and the iteration complexity improves to O(1/

√
ε) [17]. In 2009, Beck and 

Teboulle proposed fast iterative shrinkage thresholding algorithm (FISTA) [3] that uses 
Nesterov’s momentum coefficient and accelerates proximal type algorithms to solve a 
more complex class of objective functions that combine a smooth, convex loss function 
(not necessarily differentiable) and a strongly convex, smooth penalty function (also see 
[18,19]). To develop further insights into Nesterov’s method, Su et al. [26] examined 
a continuous time 2nd-order ODE which at its limit reduces to Nesterov’s accelerated 
gradient method. In addition, Lin et al. [16] introduced a generic approach known as 
catalyst that minimizes a convex objective function via an accelerated proximal point 
algorithm and gains acceleration in Nesterov’s sense. [6] proposed a geometric alternative 
to gradient descent that is inspired by ellipsoid method and produces acceleration with 
complexity O(1/

√
ε). Recently, [32] used a linear coupling of gradient descent and mirror 

descent and claimed to attain acceleration in Nesterov’s sense as well. In contrast, the 
sequence acceleration techniques accelerate a sequence independently from the iterative 
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method that produces this sequence. In other words, these techniques take a sequence 
{xk} and produce an accelerated sequence based on the linear combination of xks such 
that the new accelerated sequence converges faster than the original. In the same spirit, 
recently, Scieur et al. [22,23,4] proposed an acceleration technique called regularized 
nonlinear acceleration (RNA). Scieur et al.’s idea is based on Aitken’s Δ2-algorithm [1]
and Wynn’s ε-algorithm [30] (or recursive formulation of generalized Shanks transform 
[24,30,5]). To achieve acceleration, Scieur et al. considered a technique known as mini-
mum polynomial approximation and they assumed a linear model for the iterates near 
the optimum. They also proposed a regularized variant of their method to stabilize it 
numerically. The intuition behind the regularized nonlinear acceleration of Scieur et al. is 
very natural. To minimize f as in (1), they considered the sequence of iterates {xk}k≥0
is generated by a fixed-point map. If x� is a minimizer of f , ∇f(x�) = 0, and hence 
through extrapolation one can find:

c� ≈ arg min
c

{∥∥∥∥∥∇f

(
K∑

k=0

ckxk

)∥∥∥∥∥ : c ∈ RK+1,

K∑
k=0

ck = 1
}
, (3)

such that the next (accelerated) point can be generated as a linear combination of K+1
previous iterates: x =

∑K
i=0 c

�
i xi. We review RNA in detail in Section 1.2.2.

Notation. We denote the �2-norm of a vector x and the spectral norm of a matrix A
by ‖x‖ and ‖A‖, respectively. Further define ‖x‖M by ‖x‖M :=

√
x�Mx.

1.1. Contributions

We highlight our main contributions in this paper as follows:
Direct nonlinear acceleration (DNA). Inspired by Anderson’s acceleration technique 

[2] (see Appendix for a brief description of Anderson’s acceleration) and the work of 
Scieur et al. [22], we propose an extrapolation technique that accelerates a converging 
iterative algorithm. However, in contrast to [22], we find the extrapolation coefficients c�
by directly minimizing the function at the linear combination of K + 1 iterates {xk}Kk≥0
with respect to c ∈ RK+1. In particular, for a given sequence of iterates {xk}Kk≥0 we 
propose to approximately solve:

min
c∈RK+1

f

(
K∑

k=0

ckxk

)
+ λg(c), (4)

where λ > 0 is a balancing parameter and g is a penalty function. As our approach 
tries to minimize the functional value directly, we call it as direct nonlinear acceleration
(DNA). We note that our formulation shares some similarities with that of Zhang et 
al. [31]. Additionally, Riseth [21] proposed an objective acceleration that also minimizes 
an approximation to the objective function on subspaces of Rn. However, unlike these 



4 A. Dutta et al. / EURO Journal on Computational Optimization 10 (2022) 100047
works, we do not require line search and check a decrease condition at each step of our 
algorithm.

Regularization. We propose several versions of DNA by varying the penalty function 
g(c). This helps us to deal with the numerical instability in solving a linear system as well 
as to control errors in gradient approximation. In our first version, we let g(c) = 1S(c), 
where S := {c :

∑
i ci = 1} and 1S(c) = 0 if c ∈ S, while 1S(c) = +∞, otherwise. 

Later, we propose two regularized constraint-free versions to find a better minimum of 
the function f by expanding the search space of extrapolating coefficients to RK+1 rather 
than restricting them over the space S. To this end, the first constraint-free version adds 
a quadratic regularization g(c) =

∥∥∥∑K
i=0 cixi − y

∥∥∥2
to the objective function, where y is 

a reference point and g(c) controls how far we want the linear combination 
∑

i cixi to 
deviate from y. In the second constraint-free version, we add the regularization directly 
on c. We add a quadratic term of the form g(c) = ‖c− e‖2 to the objective function, 
where e is a reference point to c and g(c) controls how far we want c to deviate from e. 
In contrast, the regularized version of RNA only considers a ridge regularization ‖c‖2 for 
numerical stability. Trivially, we note that by setting e = 0, we recover the regularization 
proposed in RNA. We argue that by using a different penalty function g(c) as regularizer 
our DNA is more robust than RNA.

General convergence result and quantification between RNA and DNA in minimizing 
quadratic functions by using GD iterates. We provide a general convergence result of 
DNA in Theorem 2. If g(c) = 0 or g(c) = 1∑

i ci=1, in terms of the functional value, we 
always obtain a better accelerated point than RNA. Moreover, the acceleration obtained 
by DNA can be theoretically directly implied from the existing results of Scieur et al. [22]. 
If g(c) = 0, we show by a simple example on quadratic functions that DNA outperforms 
RNA by an arbitrary large margin. If g(c) = 1∑

i ci=1, we also quantify the functional 
values obtained from both RNA and DNA for quadratic functions and provide a bound 
on how DNA outperforms RNA in this setup.

Numerical results. Our empirical results show that for smooth and strongly convex 
functions, minimizing the functional value converges faster than RNA. In practice, our 
acceleration techniques are robust and outperform that of Scieur et al. [22] by large 
margins in almost all experiments on both synthetic and real datasets. To further push 
the robustness of our methods, we test them on nonconvex problems as well. As a proof 
of concept, we trained a simple neural network classifier on MNIST dataset [15] via GD 
and accelerate the GD iterates via the online scheme in [22] for both RNA and DNA. 
Next, we train ResNet18 network [12] on CIFAR10 dataset [14] by SGD and accelerate 
the SGD iterates via the online scheme in [22] for both RNA and DNA. In both cases, 
DNA outperform RNA in lowering the generalization errors of the networks.

1.2. Related work

The sequence acceleration or non-linear acceleration has rich history in optimization 
literature. We mention about a few works that are similar to ours. In [25], nonlinear 
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generalized minimal residual (N-GMRES) is used as an accelerator for solving the non-
linear system, ∇f(x) = 0 that arises from the first order optimality condition. This is 
similar to the classical work of Washio et al. [29] and can be connected to Anderson’s 
acceleration [2]. In contrast, objective acceleration by [21], proposed to minimize a more 
direct objective—an approximation to the objective unction f on subspace of Rn. In 
that regard it is closely related to our work. However, [21] requires line search and check 
a decrease condition at each step. In our algorithm we do not require such kind of condi-
tions. Additionally, we propose several regularized versions to bring numerical stability 
in solving the linear systems. In another line of work, Zhang et al. [31] do not consider 
a direct acceleration scheme as they use type-I Anderson acceleration to solve general 
non-smooth fixed-point problems.

1.2.1. Anderson’s acceleration [2]
There are several acceleration techniques that have been proposed in the literature 

and they pose a lot of similarities. We quote the authors from [5] – “Methods for ac-
celerating the convergence of various processes have been developed by researchers in a 
wide range of disciplines, often without being aware of similar efforts undertaken else-
where.” In 1965 Anderson’s acceleration was designed to accelerate Picard iteration for 
electronic structure computations. Because it is relevant in our current work, we give a 
brief description of it for completeness.

For a given sequence of iterate, {xk} with xk ∈ Rn and a mapping, Φ(·) : Rn → Rn, 
the fixed-point algorithm generates a recursive update of the iterates as:

xk+1 = Φ(xk). (5)

Let there be mk + 1 evaluations of the fixed point map φ. Anderson’s acceleration tech-
nique computes a new iteration as a linear combination of the previous mk+1 evaluations. 
We explain it formally in Algorithm 1. In Algorithm 1, m is considered as a hyperpa-
rameter that sets the quantity mk as min{m, k}, where k is the iteration counter and 
m is known as the depth. This is used to determine the window size to compute ĉ–the 
coefficients for linear combination of the fixed point evaluations. In other words, in each 
iteration, by solving the optimization problem:

ĉ(k) = arg min
c

‖F kc‖ subject to
∑
i

ci = 1,

where F k = (fk−mk
, fk−mk+1, · · · , fk) ∈ Rn×(mk+1), and fi = Φ(xi) −xi, one can obtain 

the extrapolation coefficients ĉ(k) that help to determine the accelerated point xk+1. Toth 
and Kelley pointed out that, in principle, any norm can be used in the minimization 
step [27]. The summability of the coefficients ci or the normalization condition was not 
explicitly mentioned in the original work of Anderson. Because ci’s can be determined 
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Algorithm 1: Anderson Acceleration.
1 Input : x0 ∈ Rn and m ≥ 1;
2 Initialize : Set x1 = Φ(x0), mk = min{m, k}, Fk = (fk−mk

, fk−mk+1, · · · , fk) ∈ Rn×(mk+1), where 
fi = Φ(xi) − xi;

3 for k = 1, 2, · · · do
4 Find ĉ(k) ∈ R(mk+1) such that: ĉ(k) = arg minα ‖Fkc‖ subject to ∑i ci = 1;
5 Set xk+1 =

∑mk

i=0 ĉ
(k)
i Φ(xk−mk+i).

end

up to a multiplicative scalar, one can impose the normalization condition. However, it 
does not restrict generality. We refer the readers to [13,27,28,2,5] for a comprehensive 
idea of Anderson’s acceleration technique. See more discussions involving Anderson’s 
acceleration, Krylov subspace methods, and our work in Remarks 1 and 2.

1.2.2. Regularized nonlinear acceleration
In RNA, one solves (3) by assuming that the gradient can be approximated by lin-

earizing it in the neighborhood of {xk}Kk=0. Thus, by assuming 
∑K

k=0 ck = 1, the relation ∥∥∥∇f
(∑K

k=0 ckxk

)∥∥∥ ≈
∥∥∥∑K

k=0 ck∇f (xk)
∥∥∥ holds. Hence, one can approximately solve (3)

via:

c� = arg minc

∥∥∥∑K
k=0 ck∇f (xk)

∥∥∥ =
∥∥∥∑K

k=0 ckR̃k

∥∥∥
subject to c ∈ RK+1,

∑K
k=0 ck = 1, (6)

where R̃k is the kth column of the matrix R̃, which holds information about ∇f (xk). More-
over (6) does not need an explicit access to the gradient and it can be seen as an 
approximated minimal polynomial extrapolation (AMPE) as in [7,22,23]. If the sequence 
{xk} is generated via GD (as in (2)), then R̃ = [(x0−x1)/α0, . . . , (xK−xK+1)/αK]. Also, if 
R̃�R̃ is nonsingular, then the minimizer of (6) is explicitly given as: c� = (R̃�R̃)−11

1�(R̃�R̃)−11
. 

If R̃�R̃ is singular then c is not necessarily unique. Any c of the form z
z�1 , where z is a 

solution of R̃�R̃z = 1, is a solution of (6). To deal with the numerical instabilities and 
the case when the matrix R̃�R̃ is singular, Scieur et al. proposed to add a regularizer 
of the form λ‖c‖2 to their problem, where λ > 0. As a result, c� is unique and given 

as c� = (R̃�R̃+λI)−11

1�(R̃�R̃+λI)−11
. The numerical procedure of RNA is given in Algorithm 2. For 

further details about RNA we refer the readers to [22,23]. Scieur et al. also explained 
several acceleration schemes to use with Algorithm 2.

2. Direct nonlinear acceleration

Instead of minimizing the norm of the gradient, we propose to minimize the objective 
function f directly to obtain the coefficients {ck}. We set g(c) = 0 in (4) and we propose 
to solve the unconstrained minimization problem
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Algorithm 2: RNA.
Input : Sequence of iterates x0, . . . , xK+1; sequence of step sizes α0, . . . , αK ; 1 ∈ RK+1: a vector 

of all 1s; and λ > 0.
1 Set R̃ =

[
x0−x1

α0
, . . . ,

xK−xK+1
αK

]
;

2 Solve the linear system: 
(
R̃�R̃ + λI

)
z = 1;

3 Set c = z
z�1 ∈ RK+1;

Output : x = ∑K
k=0 ckxk.

min
c∈RK+1

f (Xc) , (7)

where X = [x0, . . . , xK ]. We call problem (7) as direct nonlinear acceleration (DNA) 
without any constraint. If f is quadratic, then we have the following lemma that calcu-
lates the extrapolation coefficients, c as the solution of a linear system.

Lemma 1. Let the objective function f be quadratic and let {xk} be the iterates produced 
by (2) to minimize f . Then c is a solution of the linear system X�Rz = −X�∇f(0), 
where R ∈ Rn×(K+1) is a matrix such that its ith column is Ri = xi−xi+1

αi
−∇f(0) and 

X = [x0, . . . , xK ].

Proof. Let h(c) = f(Xc), from the first order optimality condition we have

∇h(c) = X�∇f (Xc) = 0

For quadratic objective function the gradient is affine, i.e.

∇f(Xc) = AXc + ∇f(0) =
K∑

k=0

ckAxk + ∇f(0) =
K∑

k=0

ck (∇f(xk) −∇f(0)) + ∇f(0).

By using the relation between the iterates of GD method we find ∇f (xk) = xk−xk+1
αk

. 
Hence ∇f(Xc) = Rc + ∇f(0). By injecting this in the first order optimality condition 
we get the result. �

If f is non-quadratic then we can approximately solve problem (7) by approximating 
its gradient by a linear model. In fact, we use the following approximation ∇f(x) ≈
A(x − yx) +∇f(yx), where we assume that x is close to yx and A is an approximation of 
the Hessian. Therefore, by setting x = Xc and yx = y in the above, we have ∇f(Xc) ≈
A(Xc −y) +∇f(y) =

∑
i ciAxi−Ay+∇f(y), where y is a reference point that is assumed 

to be in the neighborhood of Xc. For instance, one may choose y to be xK . Let xi−1 be 
a reference point for xi, that is, assume that ∇f(xi) ≈ A(xi − xi−1) + ∇f(xi−1). Then 
one can show that Axi = ∇f(xi) −∇f(0). As a result, we have

∇f(Xc) ≈
∑

ci(∇f(xi) −∇f(0)) −Ay + ∇f(y)

i
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Algorithm 3: DNA.
Input : Sequence of iterates x0, . . . , xK+1 and sequence of step sizes α0, . . . , αK ;

1 Set R =
[
x0−x1

α0
− ∇f(0), . . . , xK−xK+1

αK
− ∇f(0)

]
and X = [x0, . . . , xK ];

2 Set c as a solution of the linear system X�Rz = −X�∇f(0);
Output : x = ∑K

k=0 ckxk.

=
∑
i

ci

(
xi−xi+1

αi
−∇f(0)

)
−Ay + ∇f(y)

=
∑
i

ciRi −Ay + ∇f(y)

= Rc−Ay + ∇f(y)

≈ Rc + ∇f(0). (8)

Therefore, from the first optimality condition and by using (8), we conclude that the 
solutions of (7) can be approximated by the solutions of the linear system X�Rz =
−X�∇f(0).

Remark 1. One may consider the following more general approximation

∇f(Xc) ≈ ∇f(y) + Hy(Xc− y),

where Hy is an approximation of the Hessian at y. Therefore, from the first optimality 
condition and by using the latter approximation, we conclude that the solutions of (7) can 
be approximated by the solutions of the linear system, XT∇f(y) + XTHy(Xc − y) = 0
which is equivalent to

XTHyXc = XTHyy −XT∇f(y). (9)

We note that the equation (9) involves the Hessian, Hy, and we wanted to avoid its 
computation. That is why, in our analysis, we assume y = 0. We note that is not valid for 
the general non-quadratic functions. However, our approximation is feasible for strongly 
convex functions with smaller condition numbers, which is the setting we consider in this 
work. For more general setting, one may explore when y 	= 0, and we leave it for future 
work.

2.1. Convergence of DNA on strongly convex functions

Assume that f is μ-strongly convex and we will show the iterates generated by DNA 
converge with an accelerated rate to the optimal point for the online scheme. To show 
the convergence of DNA for μ-strongly convex functions, we follow the setup in [22]. For 
completeness, we will briefly mention it in the following. In [22], Scieur et al. considered 
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the updates of the iterative algorithm (say, GD in (2)) linear. That is, we can rewrite 
(2) as:

xk+1 − x� = A(xk − x�),

where A ∈ Rn×n with ‖A‖ ≤ σ < 1. The minimal polynomial, p of A with respect to the 
vector v is the lowest degree polynomial such that p(A)v = 0 and p(1) = 1. By setting 
each column, R̃k of R̃ as R̃k = (A − In)(xk − x�), we have

‖XcR − x�‖ ≤ ‖(I −A)−1‖‖R̃c�‖.

In [22], Scieur et al. bounded ‖R̃c�‖ as follows: let A = QΛQ� be the eigen decomposition 
of A and let the degree of the minimal polynomial be k. Hence,

‖R̃c�‖ = ‖p�(A)(x1 − x0)‖ ≤ ‖x1 − x0‖ min
p:p(1)=1

max
A:0�A�σI

‖p(A)‖2,

where p� is a polynomial with coefficient c�. The quantity, max
A:0�A�σI

‖p(A)‖2 can 

be further bounded by max0≤λ≤σ |p(λ)|, resulting an upper bound on ‖R̃c�‖ as 
‖x1 − x0‖ min

p:p(1)=1
max

0≤λ≤σ
|p(λ)|. Denote Ck := argminp:p is monic max

x:x∈[−1,1]
|p(x)| be the 

Chebyshev polynomial of degree k. Following [11], Scieur et al. in [22] derived:

min
p:p(1)=1

max
0≤λ≤σ

|p(λ)| = 2ξk

1 + ξ2k ,

where ξ = 1−
√

1−σ
1+

√
1−σ

. This concludes bounding the quantity ‖R̃c�‖. Based on this, the 
result can be further generalized in the following theorem.

Theorem 1. Denote ξ̂ = (
√
L−√

μ)/(
√
L+√

μ). Then the coefficients, cR produced by RNA 
in Algorithm 2 follow:

‖XcR − x�‖ ≤ 2ξ̂k

1+ξ̂2k ‖x0 − x�‖.

Theorem 2. For Algorithm 3, we have ‖XcD − x�‖ ≤ √
κ 2ξ̂k

1+ξ̂2k ‖x0 − x�‖. where κ = L
μ .

Proof. On one hand, by using strong convexity of f , we have

μ

2 ‖XcD − x�‖2 ≤ f(XcD) − f∗.

On the other hand, by definition of DNA we have

f(XcD) − f∗ ≤ f(XcR) − f∗.
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In addition, we have

f(XcR) − f∗ ≤ L

2 ‖XcR − x�‖2.

Therefore, by putting together these inequalities we get

μ

2 ‖XcD − x�‖2 ≤ L

2 ‖XcR − x�‖2.

By rearranging the terms we obtain the desired result. �
Remark 2. Anderson’s acceleration is used to find solutions (via acceleration) to fixed 
point equations of the form: x = f(x). DNA, on the other hand, finds solutions to linear 
fixed-point methods of the form: xk+1 = Mxk + b, via acceleration. Therefore, DNA is a 
special case of Anderson’s acceleration with a fixed window-size, K +1, in solving linear 
fixed-point problems. We note that, the convergence rate for DNA in Theorem 2 is the 
same as that for Krylov subspace methods up to a multiplicative scalar.

Remark 3. Interestingly, Walker and Ni in [28] showed that, for linear problems Anderson 
acceleration is equivalent to generalized minimal residual (GMRES); see Theorem 2.2. 
in [28]. Additionally, we note that, in an earlier work, Fang and Saad [10] showed the 
quasi-Newton methods fall in a broader family of Anderson acceleration method. But 
Walker and Ni were the first give this precise details. That is, the iterates that result 
from Anderson’s acceleration, xAA

k+1 can be written as: xAA
k+1 = xGMRES

k + rGMRES
k , where 

rGMRES
k = b − (I − A)xGMRES

k and {xGMRES
k } be the sequence of iterates of GMRES. 

Additionally, we mention that, the objective acceleration technique proposed in [21] is a 
modification of nonlinear GMRES (N-GMRES). Toth and Kelley [27] provided the first 
convergence result for Anderson acceleration on general nonlinear problems.

Remark 4. Recently, Sterck and He [9] showed that, the standard Anderson’s acceleration 
with window size, m (AA(m)), and with initial iterates, xk, k = 0, 1, · · · , m, defined 
recursively using AA(k), is a Krylov space methods (for example, conjugate gradient 
algorithm, GMRES, etc.); see Proposition 2.8 and 2.12 in [9]. Moreover, [9] showed that 
k iterations of AA(m) cannot produce a smaller residual than k iterations of GMRES 
without restart; see Proposition 2.10 in [9].

The above remarks establish that DNA, Anderson’s acceleration, and Krylov space 
methods are closely related. More detailed investigation into these relations is left for 
future work.

However, numerically DNA is unstable like RNA without regularization. In fact, the 
matrix X�R can be highly ill-conditioned and can lead to large errors in computing c�. 
Moreover, we accumulate errors in approximating the gradient via linearization as our 
approximation of the gradient is valid only in the neighborhood of the iterates x0, . . . , xK .
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Algorithm 4: DNA-1.
Input : Sequence of iterates x0, . . . , xK+1; sequence of step sizes α0, . . . , αK ; and 1 ∈ RK+1, a 

vector of all 1s;
1 Set R̃ =

[
x0−x1

α0
, . . . ,

xK−xK+1
αK

]
and X = [x0, . . . , xK ];

2 Solve the linear system for z ∈ RK+1: X�R̃z = 1;
3 Set c = z

z�1 ∈ RK+1;
Output : x = ∑K

k=0 ckxk.

2.2. Regularized DNA

To remedy the numerical instability of unconstrained DNA, we propose three regular-
ized versions of DNA by using three different regularizers in the form of g(c) and show 
that they work well in practice. But one can explore different forms of g(c) as regular-
izer; their performance largely depends on the optimization problem. In the following, 
we explain them in details.

2.2.1. DNA-1
This regularized version of DNA is directly influenced by Scieur et al. [22]. Here, we 

generate the extrapolated point x as a linear combination of the set of K + 1 iterates 
such that, x =

∑
k ckxk. Additionally, as in [22,23], we assume the sum of the coefficients 

ck to be equal to 1. Therefore, for c ∈ RK+1 with sum of its elements equal to 1, we set 
g(c) = 1∑

i ci=1 in (4) and consider the following constrained problem:

min
c∈RK+1

f(Xc) + λ1S(c) = min
c∈RK+1∑K
k=0 ck=1

f (Xc) , (10)

where X = [x0, . . . , xK ]. We call this version of DNA as DNA-1.

Lemma 2. If the objective function f is quadratic and X�R̃ is nonsingular then c =
(X�R̃)−11/δ, where δ = 1�(X�R̃)−11, and 1 is the vector of dimension K + 1 with all 
the components equal to 1 and R̃ = [(x0−x1)/α0, . . . , (xK−xK+1)/αK ].

Proof. The Lagrangian of the problem (6) is

L(c, λ) = h(c) + λ

(
K∑

k=0

ck − 1
)
,

where λ > 0 is the Lagrange multiplier. The first order optimality conditions are

∇Lx(x, λ) = X�∇f (Xc) + λ1 = 0 (11)

∇Lλ(x, λ) = c�1− 1 = 0. (12)
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For quadratic objective functions, the gradient is affine and because 
∑K

k=0 ck = 1 we 
have

∇f (Xc) =
K∑

k=0

ck∇f (xk) . (13)

By using the relation between the iterates of GD method we find ∇f (xk) = xk−xk+1
αk

. 
By using the above expression in equation (13) we further get

∇f (Xc) =
K∑

k=0

ck
xk − xk+1

αk
= R̃c. (14)

Substituting (14) in the first optimality condition and solving for c we get c =
−λ 

(
X�R̃

)−1
1. Next, we use it in the second optimality condition and solve it for λ

to find λ = −1
1�(

X�R̃
)−1

1
, and, therefore, the final expression for c is c =

(
X�R̃

)−1
1

1�(
X�R̃

)−1
1
. �

Similar to RNA, if X�R̃ is singular then c is not necessarily unique. Any c of the 
form z

z�1 , where z is a solution of X�R̃z = 1, is a solution of (10). DNA-1 is described 
in Algorithm 4.

Quantifying the difference between DNA and RNA Theorem 2 gives a general acceler-
ated convergence result without any comparison between RNA and DNA. To get more 
insight about how DNA performs compare to RNA, we quantify the difference between 
them by using simple quadratic function. Denote the functional value obtained by DNA, 
DNA-1 (Algorithm 4), and RNA (Algorithm 2) at an extrapolated point as fD, fD1 and 
fR, respectively.

Let f(x) = 1
2x

�Ax, where A is symmetric and positive definite. We know ∇f(x) = Ax. 
By using the extrapolation we find the coefficients cis such that x =

∑
i cixi = Xc, 

where X = [x0 x1 · · ·xk] is a matrix generated by stacking k iterates as its column and 
c ∈ Rk is a vector of coefficients. We know f(Xc) = 1

2c
�X�AXc, for DNA cD =

0, and for DNA-1 cD1 = z
1�z

where z = (X�R̃)−11. Therefore, we find

fD = 0, and fD1 = 1�(R̃�X)−1X�AX(X�R̃)−11

2(1�z)2 ,

which for R̃ = [∇f(x0) ∇f(x1) · · · ∇f(xk)] = [Ax0 Ax1 · · ·Axk] = AX further reduces 
to

fD1 = 1
21�(X�AX)−11

.

Similarly, we find for RNA
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Algorithm 5: DNA-2.
Input : Sequence of iterates x0, . . . , xK+1; sequence of step sizes α0, . . . , αK ; regularizer λ > 0; 

and reference vector y ∈ Rk+1;
1 Set R =

[
x0−x1

α0
− ∇f(0), . . . , xK−xK+1

αK
− ∇f(0)

]
and X = [x0, . . . , xK ];

2 Set c as a solution of the linear system (X�R + λX�X)z = λX�y − X�∇f(0);
Output : x = ∑K

k=0 ckxk.

cR = (R̃�R̃)−11

1�(R̃�R̃)−11
.

Therefore,

fR = 1�(R̃�R̃)−1X�AX(R̃�R̃)−11

2(1�(X�A2X)−11)2 ,

which further reduces to

fRNA = 1�(X�A2X)−1X�AX(X�A2X)−11

2(1�(X�A2X)−11)2 .

We formalize the above in the following proposition.

Proposition 1. Let A ∈ Rn×n be symmetric and positive definite and f(x) = 1
2x

�Ax

be a quadratic objective function. Let X = [x0 x1 · · ·xk] be a matrix generated 
by stacking k iterates of GD to minimize f . Then the functional values of DNA, 
DNA-1, and RNA at the accelerated point are: fD = 0, fD1 = 1

21�(X�AX)−11
, and 

fR = 1�(X�A2X)−1X�AX(X�A2X)−11
2(1�(X�A2X)−11)2 , respectively.

We conclude that for this simple objective function, DNA reaches the optimal solution 
after the first acceleration. Moreover, one can choose the matrix A such that fR is 
arbitrary large, and this example shows that DNA may outperform RNA by a large 
margin. The comparison between DNA-1 and RNA on the previous example is given in 
the following lemma and theorem.

Lemma 3. If the sequence of iterates {xk} are linearly independent then we have:
(i) the matrices AX and A

1
2X have full column ranks.

(ii) (A1/2X)†A−1/2((AX)†)� = (X�A2X)−1.

Proof. (i) Since A is symmetric and positive definite, rank(A) = rank(A1/2) = n. As the 
iterates {xk} are linearly independent, X = [x0, . . . , xK ] ∈ Rn×(K+1) has full column 
rank. Therefore, the matrices AX and A

1
2X have full column ranks.

(ii) We know if a matrix B is of full column rank then B† = (B�B)−1B�. By using 
the above and (i) and we find
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(A1/2X)†A−1/2((AX)†)� = (X�A1/2A1/2X)−1X�A1/2A−1/2

((X�AAX)−1X�A)�

= (X�AX)−1X�((X�A2X)−1X�A)�

(X�A2X)�=X�A2X= (X�AX)−1(X�AX)(X�A2X)−1

= (X�A2X)−1.

Hence the result. �
Lemma 3 is needed to prove the following Lemma.

Lemma 4. We assume that the matrix R̃ has full column rank. With the notations used 
in Proposition 1, we have fR/fD1 = ‖z‖2

A−1‖y‖2‖z‖−4, where z := (R̃†)�1 = ((AX)†)�1
and y := ((A1/2X)†)�1. We have y�A−1/2z = z�z; then, by using Cauchy-Schwarz 
inequality, we conclude that ‖z‖A−1‖y‖2 ≥ y�A−1/2z = ‖z‖2

2 whence fR/fD1 ≥ 1.

Proof. We have R̃ = AX. Since A is symmetric and positive definite, it is invertible and 
X = A−1R. Set y = ((A1/2X)†)�1, and let R̃† be the pseudo-inverse of R. Therefore, 
R̃† can be computed as

R̃† = (R̃�R̃)−1R̃�,

and (R̃†)� is

(R̃†)� = R̃(R̃�R̃)−1.

We also note that R̃†R̃ = Ik and R̃�(R̃†)� = Ik, where Ik is an identity matrix of size 
k. Therefore, we have

2fD1 = 1
1�(X�AX)−11

= 1
1�(X�A1/2A1/2X)†1

.

Since, (X�A1/2)� = A1/2X, by using the property of pseudo-inverse, we can write

(X�AX)−1 = (X�A1/2A1/2X)† = (A1/2X)†((A1/2X)†)�

and the above expression becomes

2fD1 = 1
� 1/2 † 1/2 † �

y=((A1/2X)†)�1= 1
� = 1

2 . (15)

1 (A X) ((A X) ) 1 y y ‖y‖2
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Similarly we find, (X�A)� = AX, and again by using the property of pseudo-inverse, 
we can write

(X�A2X)−1 = (X�AAX)† = (AX)†((AX)†)�

and

2fR = 1�(AX)†((AX)†)�X�AX(AX)†((AX)†)�1
(1�(AX)†((AX)†)�1)2

AX=R̃= 1�R̃†(R̃†)�(R̃†)�A−1R̃R̃†(R̃†)�1
(1�R̃†(R̃†)�1)2

= 1�R̃†A−1(R̃†)�1
(1�(R̃�R̃)−11)2

z:=R̃†1= z�A−1z

(z�z)2 .

Therefore,

2fR = z�A−1z

(z�z)2 =
‖z‖2

A−1

‖z‖4
2

. (16)

Combining (15) and (16) we obtain the ratio between fR and fD.
From Lemma 3 we have, y�A−1/2z = z�z. Then by using Cauchy Swartz inequality 

we conclude that ‖z‖A−1‖y‖2 ≥ y�A−1/2z = ‖z‖2
2 whence fR

fD1
≥ 1. �

Note that, the ratio fR
fD1

≥ 1 can be directly concluded from the definition of fR and 
fD1. The main goal of the previous lemma is to exactly quantify the ratio between these 
two quantities. The following theorem gives more insight.

Theorem 3. We have fR
fD1

≤ UR := ‖z‖2
A−1‖z‖2

A‖z‖−4, and UR ∈ [1/2 + κ(A)/2, κ(A)], 
where κ(A) is the condition number of A.

Proof. Recall that fR
fD1

= ‖z‖2
A−1‖y‖2

2
‖z‖4

2
. Also recall that z := (R̃†)�1 = ((AX)†)�1 and 

y := ((A1/2X)†)�1. Therefore, A1/2z is the minimum norm solution to the linear system: 
X�A1/2A1/2z = 1 and similarly, y is the minimum norm solution to the linear system: 
X�A1/2y = 1. By using the above fact, we find ‖y‖2 ≤ ‖A1/2z‖2 = ‖z‖A and we can 
rewrite the ratio as:

fR

fD1
=

‖z‖2
A−1‖y‖2

2
‖z‖4

2

y=A1/2z=
‖z‖2

A−1‖z‖2
A

‖z‖4
2

. (17)

From (17) the quantity max
z 
=0

‖z‖2
A−1‖z‖2

A

‖z‖4
2

is equivalent to max
‖z‖2=1

‖z‖2
A−1‖z‖2

A ≤

max ‖z‖2
A−1 max ‖z‖2

A := UR.

‖z‖2=1 ‖z‖2=1
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Note that, UR ≤ λmax(A−1)λmax(A) = λmax(A)
λmin(A) = κ(A). Let UΣU� be an eigen 

decomposition of A then UR = max
‖z‖2=1

‖z‖2
Σ−1 max

‖z‖2=1
‖z‖2

Σ. By considering a vector with 

1/
√

2 at the first and last position and zero everywhere else we conclude that

UR ≥
(

1
2λmax(A) + 1

2λmin(A)

)(
1

2λmin(A) + 1
2λmax(A)

)

≥ 2 + κ(A)
4 . �

The above theorem tells us, for a simple quadratic function, the ratio of the objective 
function values of DNA-1 and RNA may attain an order of κ(A), but it never exceeds 
it. The theoretical quantification of the acceleration obtained by DNA and its different 
versions compared to RNA in more general problems is left for future work. Although 
DNA-1 can be seen as a regularized version of DNA, we still need to remedy the fact 
that the linearization of the gradient is not a good approximation in the entire space, 
and that the matrix X�R̃ may be singular. To this end, we impose some regularization 
such that the new extrapolated point stays near to some reference point. We propose 
two different ways in the following two sections.

2.2.2. DNA-2
We set g(c) = ‖Xc − y‖2 in (4) and consider a regularized version of problem (7):

min
c∈RK+1

f (Xc) + λ

2 ‖Xc− y‖2, (18)

where λ > 0 is a balancing parameter and y is a reference point (a point supposed to 
be in the neighborhood of Xc). By taking the derivative of the objective in (18) with 
respect to c and setting it to 0, we find X�∇f(Xc) + λX�(Xc− y) = 0, which after 
using the approximation (8) becomes X�(Rc + ∇f(0)) + λX�(Xc− y) = 0. Finally, c�

is given as a solution to the linear system

(X�R + λX�X)c = λX�y −X�∇f(0). (19)

In general, X�R is not necessarily symmetric. To justify the regularization further, 
one might symmetrize X�R by its transpose. In our experiments, we obtained good 
performance without this.

We call this method DNA-2 (see Algorithm 5). Note that X�R + λX�X can be 
singular, especially near the optimal solution. To remedy this, we propose either to add 
another regularization to the problem (18), or to consider a direct regularization on c
instead of Xc. We explain this next.
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Algorithm 6: DNA-3.
Input : Sequence of iterates x0, . . . , xK+1; sequence of step sizes α0, . . . , αK ; regularizer λ > 0; 

and e ∈ Rk+1;
1 Set R =

[
x0−x1

α0
− ∇f(0), . . . , xK−xK+1

αK
− ∇f(0)

]
and X = [x0, . . . , xK ];

2 Set c as a solution of the linear system (X�R + λI)z = λe − X�∇f(0);
Output : x = ∑K

k=0 ckxk.

2.2.3. DNA-3
We set g(c) = ‖c − e‖2 in (4) and consider a regularized version of (7) as

min
c∈RK+1

f (Xc) + λ

2 ‖c− e‖2, (20)

where λ > 0 and e is a reference point for c. By taking the derivative with respect to c and 
setting it to 0, we find X�∇f(Xc) + λ(c− e) = 0, which after using the approximation 
(8) becomes X�(Rc + ∇f(0)) + λX�(c− e) = 0. Therefore, c� is given as a solution 
to the linear system: (X�R + λI)c = λe−X�∇f(0). We call this method DNA-3, and 
describe it in Algorithm 6.

A formal algorithm to summarize the results In the previous sections, we present three 
different versions of DNA. For better clarity, we present an unified framework in Al-
gorithm 7 that shows how the acceleration via DNA (both constrained and regularized 
versions) is interleaved with the GD updates. Additionally, we note that multiplying the 
function, f by a factor, β, makes the linear system of standard AA, β2 larger, while the 
linear system of DNA is multiplied by a factor β.

3. Numerical illustration

We evaluate our techniques and compare against RNA and GD by using both synthetic 
data as well as real-world datasets. Overall, we find that DNA outperforms RNA in most 
settings by large margins.

Experimental setup. Our experimental setup comprises of 3 typical problems, least 
squares, ridge regression, and logistic regression, for which the optimal solution x� is 
either known or can be evaluated using a numerical solver. We apply the online ac-
celeration scheme in [22] and compare 3 versions of DNA against RNA and GD. Our 
results show the difference between the functional values at the extrapolated point and 
at the optimal solution on a logarithmic scale (the lower the better), as the iterations 
progress. The primary objective of our simulations is to show the effectiveness of DNA 
and its different versions to accelerate a converging, deterministic optimization algo-
rithm. Therefore, we do not report any computation time of the algorithms and we do 
not claim these implementations are optimized. Note that the computation bottleneck of 
all algorithms (including RNA) is solving the linear system to calculate c, and because 
the dimensionality of the linear systems is the same in RNA and DNA, the extra cost is 
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Algorithm 7: DNA—A unified framework.
1 Input : Initial point, x0 ∈ Rn and stepsize sequence {αi}, regularizer λ > 0, reference vector, 

y ∈ RK+1 or e ∈ RK+1 (for DNA-2 and 3, respectively);
2 for i = 1, 2 · · · , K + 1 do
3 xi = xi−1 − αi∇f(xi−1);

end
4 while not convergent do
5 Initialize : Sequence of iterates, {xi}K+1

i=1 ; sequence of step sizes, {αi}K
i=1; regularizer λ > 0 (if 

using unconstrained variants–DNA-2 and 3); and a reference vector, y ∈ RK+1 or 
e ∈ RK+1 (for DNA-2 and 3, respectively);

6 Set X = [x0, . . . , xK ];
7 Calculate R̃ via Step 1 of Algorithm 4; or calculate R via Step 1 of Algorithm 3, 5, or 6;
8 Set c as a solution of the linear system via Step 2 of Algorithm 3, 4, 5, or 6;
9 Calculate: x̂ =

∑K
k=0 ckxk;

10 Set: x̂ = x0;
for i = 1, 2 · · · , K + 1 do

11 xi = xi−1 − αi∇f(xi−1);
end

end

the same in both approaches. In our experiments, we consider a fixed stepsize αk = 1/L
for GD, where L is the Lipschitz constant of ∇f . We note that for DNA-1 and 2 we need 
to use the stepsize explicitly to construct R as defined in Lemma 1.

Least squares. We consider a least squares regression problem of the form

min
x

f(x) := 1
2‖Ax− y‖2, (21)

where A ∈ Rm×n with m > n is the data matrix, y ∈ Rm is the response vector. For 
m > n and rank(A) = n, the objective function f in (21) is strongly convex. The optimal 
solution x� to (21) is given by x� = argminx f(x) = (A�A)−1A�y. For least squares we 
only consider the overdetermined systems, that is, m > n.

Ridge regression. The classic ridge regression problem is of the form:

min
x

f(x) := 1
2‖Ax− y‖2 + 1

2n‖x‖
2, (22)

where A ∈ Rm×n is the data matrix, y ∈ Rn is the response vector. The optimal solution 
x� to (22) is given by x� = argminx f(x) = (A�A + 1

2nI)
−1A�y.

Logistic regression. In logistic regression with �2 regularization, the objective function 
f(x) is the summation of n loss function of the form:

fi(x) = log(1 + exp(−yi〈A(:, i), x〉) + 1
2m‖x‖2. (23)

We use the MATLAB function fminunc to numerically obtain the minimizer of f in this 
case.

Synthetic data. To compare the performance of different methods under different ac-
celeration schemes, we are interested in the case where matrix A has a known singular 



value distribution and we consider the cases where A has varying condition numbers. We 
note that the condition number of A is defined as κ(A) := λmax(A)/λmin(A), where λ is the 
eigenvalue of A. We first generate a random matrix and let UΣV � be its SVD. Next we 
create a vector S ∈ Rmin{m,n} with entries si ∈ R+ arranged in an nonincreasing order 
such that s1 is maximum and smin{m,n} is minimum. Finally, we form the test matrix A
as A = Udiag(s1 s2 · · · smin{m,n})V � such that A will have a higher condition number 
if s1/smin{m,n} is large and smaller condition number if s1/smin{m,n} is small. We create the 
vector y as a random vector.

Real data. We use 15 different real-world datasets from the LIBSVM repository [8]. 
We set apart the datasets with y-labels as {−1, 1} for Logistic regression and used the 
remaining 12 multi-label datasets for least squares and ridge regression problems. We use 
the matrix A in its crude form, that is, without any scaling/normalizing or centralizing 
its rows or columns.

Acceleration results. We use GD as our baseline algorithm and the online acceleration 
scheme as explained in [22] for both RNA and DNAs to accelerate the GD iterates. For 
synthetic data (see Fig. 1), we see that for smaller condition numbers and for quadratic 
objective functions, DNA-1 and RNA has almost similar performance and DNA-2 and 
3 show faster decrease of f(xk) − f(x�), but all of them are very competitive. As the 
condition number of the problems becomes huge, DNA-2 and 3 outperform RNA by 
large margins. However, for logistic regression problems we see performance gains for 
all versions of DNA compared to RNA. Though for huge condition numbers, for logistic 
regression problems, the performance of DNA-2 depends on the hyperparameter λ.2
We argue with experimental evidence as in Fig. 1 that for huge condition numbers 
the sensitivity of the performance of DNA-2 is problem specific. We use an additional 
regularizer ε‖c‖2, where ε ≈ 10−14 to find a stable solution to (19) of DNA-2. Next, 
on real-world datasets in Figs. 2 and 3, we see that all versions of DNA outperform 
RNA, except in a few cases, where RNA and DNA-1 have almost similar performance. 
We indicate the oscillating nature of DNA-2 in some plots is due to its problem-specific 
sensitivity to the regularizer. In Fig. 4, we find for logistic regression problems on real 
datasets, DNA outperfoms RNA. We owe the success of DNA on non-quadratic problems 
to its adaptive gradient approximation. We note that the performance of all algorithms 
on the offline scheme of [22] is similar to online scheme of [22]. However, on the second 
online scheme used in [23], all the algorithms perform extremely poorly. Therefore, we 
do not report the results in this paper.

Solving the linear system. The linear system that arises within DNA is very small. 
The coefficient matrix is of dimension (K + 1) × (K + 1), where K is generally small. 
In our experiments, K is set to 3, 5 or 6. Since one can view the (vector) extrapolation 
technique (RNA or DNA) as some type of a restarting scheme, K never grows larger as 
the iteration progresses and the computational cost in finding the extrapolation coeffi-

2 We note that, multiplying the function, f by a factor, β, makes the linear system of standard AA, β2

larger, while the linear system of DNA is multiplied by a factor β.
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Fig. 1. Acceleration on synthetic data by using online acceleration scheme in [22]. First and second row 
represent quadratic, strong convex objective function as Least Squares and Ridge Regression, respectively. 
The last row represents non-quadratic but strong convex objective function as Logistic Regression. For all 
plots we use k = 3. For RNA, we have λ = 10−8; for DNA, we set λ = 10−8, except for the last LR plot 
where for DNA-2, we set λ = 10.

Fig. 2. Acceleration on LIBSVM dataset by using online acceleration scheme in [22] on Least Squares problems. 
For all datasets, we use k = 3. For RNA and DNA, we set λ = 10−8.
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Fig. 3. Acceleration on LIBSVM dataset by using online acceleration scheme in [22] on Ridge Regression 
problems. For all datasets, we use k = 3. For RNA and DNA, we set λ = 10−8.

Fig. 4. Acceleration on LIBSVM dataset by using online acceleration scheme in [22] on Logistic Regression 
problems. For all datasets, we use k = 3. For RNA and DNA, we set λ = 10−8.

cients remains very modest. For instance, the solution of the linear system can be done 
by using Gaussian elimination or by using an iterative method. It takes at most O(K3)
flops but as K is very small, practically it only adds a negligible computation overhead 
compared to a full gradient calculation in higher dimensions.

Effect of different K. Note that, K is a hyper parameter of the algorithms. For larger 
K, we observe the better the performance of the algorithms. It is natural because larger 
K implies more information from the oracle algorithm. In Fig. 5, we see that for K = 3, 
RNA and DNA-1 have similar performances, but when K increases RNA is better than 
DNA-1. Fig. 6 shows similar performances for DNA-2 and 3 for small K and DNA-2 
becomes better for larger values of K. DNA-1 and RNA have almost similar performances 
for all the values of K. An in-depth study of the impact of this parameter is left to future 
work.

Comparison with Nesterov’s acceleration. We performed some preliminary experi-
ments (see Fig. 7), where we compared DNA with Nesterov’s acceleration (NA) on logistic 
regression problems. DNA outperforms NA in all cases. Our preliminary insight is that 
NA is based only on the last two iterations while DNA supports more than two iterates. 
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Fig. 5. Acceleration on synthetic dataset by using online acceleration scheme in [22] on Least Squares prob-
lems. For all datasets, we use K = 3, K = 10 and K = 15 respectively. We set λ = 10−8.

Fig. 6. Acceleration on synthetic dataset by using online acceleration scheme in [22] on Ridge Regression 
problems. For all datasets, we use K = 3, K = 8 and K = 15 respectively. We set λ = 10−8.

Fig. 7. Acceleration on synthetic data to solve logistic regression (LR) problem by using online acceleration 
scheme. For all plots we use k = 3. In all cases, RNA and DNA outperform Nesterov’s acceleration. For 
RNA and DNA, we set λ = 10−8.

However, this needs a thorough investigation (both in theory and in practice) and this 
is not the scope of this paper.

Application to the non-convex world: accelerating neural network training. Modern 
deep learning requires optimization algorithms to work in a nonconvex setup. Although 
this is not the main goal of this paper, nevertheless, we implement our acceleration 
techniques for training neural networks and obtain surprisingly promising results. We 
only use DNA-1 for experiments in this section. Tuning the hyperparameter λ for the 
other versions of DNAs requires more time, and we leave this for future research. The
Pytorch implementation of RNA is based on [23].
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Fig. 8. Accelerating neural-network training. (a) A 2-layer neural network with GD optimizer and fixed 
stepsize 0.0001. (b) A 2-layer neural network with SGD optimizer and fixed stepsize 0.0001. For both, we 
use k = 5. (c) ResNet18 on CIFAR10 dataset with SGD optimizer and fixed stepsize 0.0001. We use k = 6. 
Note that these are not the best stepsize setting for the networks. Codebase Pytorch.

Fig. 9. Acceleration on Neural Network. (a) Experiment implementing ResNet18 on Cifar10 dataset with 
SGD as training algorithm with decaying stepsize across the epochs. For both DNA-1 and RNA, the window 
size is set to k = 6, and we use the offline scheme of [22]. (b) Experiment implementing ResNet18 on Cifar10 
dataset with SGD as training algorithm with decaying stepsize across the epochs. For both DNA-1 and RNA, 
the window size is set to k = 6, and we use the online scheme of [22]. In both cases, RNA and DNA-1 fail 
to accelerate the SGD iterates.

MNIST classification. First, we trained a simple two-layer neural network classifier 
on MNIST dataset [15] via GD and accelerate the GD iterates via the online scheme in 
[22] for both RNA and DNA-1. The two-layer neural network is widely adopted in most 
tutorials that use MNIST dataset.3

In Fig. 8 (a), DNA-1 gains acceleration by using GD iterates with a window size 
k = 5. However, RNA fails to accelerate the GD iterates. This motivated us to train the 
same network on MNIST dataset classification [15] via SGD as baseline algorithm and 
accelerate the SGD iterates via the online scheme in [22] for both RNA and DNA-1 (as 
in Fig. 8 (b)). Again, with window size k = 5, DNA-1 achieves better acceleration than 
RNA.

3 https://github .com /pytorch /examples /blob /master /mnist /main .py.

https://github.com/pytorch/examples/blob/master/mnist/main.py
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ResNet18 on CIFAR10. Finally, we train the ResNet18 network [12] on CIFAR10 
dataset [14] by SGD. Each epoch of SGD consists of multiple iterations and each iteration 
applies to 128 training samples. The size of the training set is 5 × 104 and the size of 
validation set is 104. Each sample is a 32 × 32 resolution color image and they are 
categorized into 10 classes. We accelerate the SGD iterates via the online scheme in [22]
for both RNA and DNA-1. Again DNA-1 outperforms RNA in lowering the generalization 
error of the network (see Fig. 8 (c)).

Effect of decaying step-size. Finally, in Fig. 9 we show training ResNet18 on Cifar10 
dataset with SGD as training algorithm with decaying stepsize across the epochs. In 
both cases, RNA and DNA-1 fail to accelerate the SGD iterates. This indicates the fact 
that the stepsize is an important hyperparameter, and one needs to further explore it in 
case of accelerating a neural network training.
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Appendix A. Acceleration schema

In this section, we explain different acceleration schema used by Scieur et al. in [22,23]
for completeness.

Remark 5. For GD, the updates of the iterates are done via the simple update rule (2), 
which is explained in Fig. 10(a).

A.0.1. Online Scheme 1
We explain the acceleration scheme proposed in [22] herein. First, we run k iterations 

of GD to produce the sequence of iterates {xi}ki=1 and then use extrapolation to generate 
a new point x′

k. We use x′
k as the initial point of GD and produce a set of next k iterates 

via GD. At this end, we further use the extrapolation scheme to produce a second offline 
update x′

k+1 which is used as next the initial point of GD, and this process continues. 
See Fig. 10(b).

A.0.2. Online Scheme 2
The acceleration scheme proposed in [23], is more involved than the one proposed

in [22]. First, we run k iterations of GD to produce a sequence of iterates {xi}ki=1 and 
then use extrapolation to generate x′

k. Next, we use x′
k as the starting point of GD to 
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Fig. 10. Updates via: (a) gradient descent, (b) online extrapolation on gradient descent [22], (c) online 
extrapolation on gradient descent [23], and (d) offline scheme.

produce xk+1. Now, we start from the second iterate x2 and consider a set of k iterates 
{x2, x3, · · · , xk, xk+1} to produce the second offline update x′

k+1 via extrapolation which 
is to be used as the next starting point of GD, and this process continues. See Fig. 10(c).

A.0.3. Offline scheme
Lastly, we describe an offline update scheme, as illustrated in Fig. 10(d). First, we 

run the GD to produce the sequence of iterates {xk} and then use the acceleration 
on the set of first k iterates to produce the first offline update x′

k and concatenate it 
with the previous (k − 1) GD updates. Next, we start from the second iterate x2 and 
consider a set of k iterates to produce the second offline update x′

k+1 via acceleration 
and this process continues. As a result, the offline accelerated updates are generated as 
{x1, x2 · · · , x′

k, x
′
k+1, · · · }.

Appendix B. Reproducible research

See the LIBSVM dataset from the repository online: https://www .csie .ntu .edu .tw /
~cjlin /libsvmtools /datasets/. See the source code of RNA from: https://github .com /
windows7lover /RegularizedNonlinearAcceleration. For MATLAB and Pytorch code that is 
used to produce all the results for our DNA, please email the authors.
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