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Abstract—The machine learning performance usually could be
improved by training with massive data. However, requesters
can only select a subset of devices with limited training data
to execute federated learning (FL) tasks as a result of their
limited budgets in today’s IoT scenario. To resolve this pressing
issue, we devise a blockchain-enhanced FL market (BFL) to
(i) make data in computationally bounded devices available
for training with social Internet of things, (ii) maximize the
amount of training data with given budgets for an FL task, and
(iii) decentralize the FL market with blockchain. To achieve
these goals, we firstly propose a trust-enhanced collaborative
learning strategy (TCL) and a quality-oriented task allocation
algorithm (QTA), where TCL enables training data sharing
among trusted devices with social Internet of things, and QTA
allocates suitable devices to execute FL tasks while maximizing
the training quality with fixed budgets. Then, we devise an
encrypted model training scheme (EMT) based on a simple
but countervailable differential privacy methodology to prevent
attacks from malicious devices. In addition, we also propose a
contribution-driven delegated proof of stake (DPoS) consensus
mechanism to guarantee the fairness of reward distribution
in the block generation process. Finally, extensive evaluations
are conducted to verify the proposed BFL could improve the
total utility of requesters and average accuracy of FL models
significantly.

Index Terms—Federated learning, blockchain, social Internet
of things, task allocation, data sharing

I. INTRODUCTION

With the proliferation of smart IoT devices, how to improve
federated learning (FL) [1]–[3] performance has always been
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Fig. 1: An example of BFL market with SIoT

a great concern for all stakeholders in the IoT scenario.
Unlike traditional machine learning algorithms that require
centralized data to train a global machine learning model, FL
leverages edge devices to train local machine learning models
and aggregates them together to generate a global model. In
general, FL training performance could be improved while
the estimation variance could also be decreased [4], [5] by
leveraging more data from various kinds of related devices.

However, it is not practical to leverage massive data to
train an FL task mainly for two reasons in the IoT scenario.
Firstly, FL requesters usually have fixed budgets to fulfil an
FL task. The budgets are mainly for compensation for the
resource consumption (e.g., computing, communication, etc.)
on IoT devices which participate in the FL training. Secondly,
a number of IoT devices are computationally bounded and
cannot support the training process in practice, although they
hold valuable data that can contribute to the training. These
data could not be utilized at all since the current FL paradigm
only allows models to be trained locally, i.e., on the device
where data are generated.

To solve this pressing issue, our rationale is to share
training data among trusted IoT devices. To be specific,
the training data could be transferred from computationally
bounded devices to trusted computationally capable devices
by considering the device relationship with social Internet of
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things (SIoT) [6]. As a result, requesters could maximize the
amount of training data with given budgets for an FL task.
Meanwhile, we also guarantee the sustainable development of
the market by addressing the possible malicious participants
as well as market fairness. Without sustainable development,
the market would fail as few devices will eventually take the
most portion if not all of the market. Such a monopoly will
drive away the requesters as they cannot benefit from utilizing
the data on various devices with a reasonable price.

Nevertheless, it is challenging to achieve the above goals
as it calls for solutions to three major problems. The first
problem is how to organize all IoT devices and their trust
relationship, and share data among them. This is challenging
because of the heterogeneity of devices [7], i.e., devices
are different in computing resources, data volume, and data
quality, etc. The second problem is how to allocate FL tasks
to all computationally capable devices while maximizing the
training quality of requesters given limited budgets. The third
problem is how to organize the FL tasks and IoT devices in
blockchain and prevent attacks from malicious devices, thus
ensure that all FL tasks in the blockchain system can conduct
model training securely.

Our solution is to devise a blockchain-enhanced federated
learning (BFL) market with SIoT, as depicted in Figure 1.
In the market, devices could buy or sell their FL services,
e.g., requesting an FL task, executing a local model training
process, etc. In addition, computationally bounded IoT devices
can share data to their trusted computationally capable devices
with SIoT to increase the training data volume. Blockchain
is leveraged to standardize the market order and record the
related transactions. More concretely, it can prevent attacks
from malicious devices, ensure that all FL tasks can conduct
model training securely, and guarantee the fairness of reward
distribution.

Towards a blockchain-enhanced federated learning market
with social Internet of things, we make the following major
contributions:

• We devise the BFL market to improve the federated
learning performance by making data on computationally
bounded devices available for training with SIoT. To the
best of our knowledge, this is the first work to optimize
FL with both blockchain and SIoT. We formulate the
problem as the collaborative federated learning (CFL)
problem, which is proven to be NP-hard.

• To provide a theoretically feasible solution for CFL prob-
lem, we propose a trust-enhanced collaborative learning
strategy (TCL) and a quality-oriented task allocation
algorithm (QTA) separately. TCL organizes the trust
relationship of heterogeneous IoT devices, and guides the
data sharing among mutually trusted devices with SIoT.
QTA aims to allocate FL tasks to computationally capable
devices by maximizing the training quality of the FL
requesters with fixed budgets.

• Then, we devise an encrypted model training scheme
(EMT) and a contribution-driven delegated proof of
stake (DPoS) for blockchain to ensure the long-term
stable operation of TCL and QTA in the actual BFL

market by preventing attacks from malicious devices and
ensuring the fairness of reward distribution separately.

• We further conduct extensive evaluations with real-world
dataset and show that BFL could improve the system
utility of all requesters by 65.7% on average compared
with the other benchmarks while improving the overall
FL model training accuracy.

The rest of this paper is organized as follows. In Section II,
we depict the system architecture of the BFL market and
formalize the CFL problem, which is proven to be NP-hard.
Then, we devise the blockchain-enhanced federated learning
market including TCL, QTA, EMT and DPoS in Section III.
Extensive evaluations are conducted in Section IV. Section V
reviews the related work, and we conclude the paper in
Section VI.

II. PRELIMINARIES

In this section, we elaborate the proposed system archi-
tecture of the BFL market and formulate the collaborative
federated learning (CFL) problem in the IoT scenario.

A. System architecture

We aim to devise a blockchain-enhanced federated learn-
ing market (BFL) in this paper. The system architecture is
decentralized as shown in Figure 1, and all transactions and
related operations are recorded in the blockchain. The BFL
market consists of a requester set R = {r1, r2, . . . , rM} and a
device set E = {e1, e2, . . . , eN}. In the market, each requester
ri(1 ≤ i ≤ M) ∈ R can post an FL task ki with deadline
Ti. Correspondingly, each device ej(1 ≤ j ≤ N) ∈ E has the
amount of data gi,j for task ki, and device ej decides whether
to participate in task ki according to its capability and benefit
or not. Device ej could send the generated data to nearby
trusted devices before the requester purchases the data if it is
computationally bounded in our system architecture.

In our devised system architecture, an FL task allocation
in the BFL market includes two stages. The first stage is that
computationally bounded devices send their data to computa-
tionally capable devices they trust, and the second stage is that
computationally capable devices are selected by the requester
to participate in the corresponding FL task. Each FL task
will be trained according to the allocation results. Specifically,
computationally capable devices complete the local model
training and submit their local update to the requester, which
aggregates results and updates the global model. To ensure the
robustness of the proposed blockchain based architecture, en-
crypted model training scheme and contribution-driven DPoS
consensus mechanism are also should be devised to enhance
the security of data transmission and fairness of the market.

B. Problem formulation

The problem to be solved is to maximize the amount of
training data purchased by requesters with given fixed budgets.
When requester ri posts an FL task ki with the deadline Ti,
all devices in device set E can decide whether to participate
in this FL task or not. We consider that the maximum amount
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of data each device ej has is Gi,j for task ki and the amount
of data that device ej can train in one CPU cycle is βj . We
define γi,j = Gi,j−gi,j , where gi,j is the amount of data that
device ej can be trained before the deadline Ti, and γi,j is the
amount of data that cannot be trained before the deadline Ti by
device ej . In particular, γi,j = 0 for the device with sufficient
computing resources, and gi,j = 0 for the computationally
bounded device. In fact, the maximum amount of data that can
be trained in Ti is βj × |Ti|, where |Ti| indicates the number
of CPU cycles included in Ti. After completing the data
sharing, the data volume of computationally capable device ej
is ĝi,j = gi,j+

∑
k xk,jγi,k, where xk,j ∈ {0, 1} indicates that

whether computationally bounded device ek transfers data to
computationally capable device ej . Then, the computationally
capable device ej will have a selling price vi,j for its unit data.

The amount of data that can be purchased by the requester
from the computationally capable device ej is yi,j ĝi,j , where
yi,j represents the purchased percentage. The problem can be
formulated to be a collaborative federated learning (CFL)
problem as presented as follows.

max
∑
i

∑
j

yi,j ĝi,j (1)

s.t.
∑
j

xk,j ∈ {0, 1} (1a)∑
k

xk,jγi,k + gi,j ≤ βj × |Ti| (1b)∑
j

yi,j ĝi,jvi,j = Bi (1c)

ci,j ≥ bi,k (1d)
Lj,k ≥ ξ (1e)
∥ ej , ek ∥≤ Rj (1f)
xk,j ∈ {0, 1}, yi,j ∈ [0, 1] (1g)

Where Equation 1 indicates that our objective is to max-
imize the amount of data for FL tasks while the following
conditions are required to be satisfied simultaneously: (i)
Equation 1a indicates that the computationally bounded device
can only send its own data to at most one device. (ii)
Equation 1b indicates that the device cannot train more data
than its computing resource. (iii) Equation 1c indicates that
the requester ri can just select devices within the given budget.
(iv) Equation 1d, Equation 1e and Equation 1f indicate the
restrictions on the collaborative learning strategy: the payment
needs to exceed the device reserve price, the trustworthiness of
the collaborative learning needs to exceed the threshold, and
the collaborative learning needs to be within the communica-
tion range, respectively. (v) Equation 1g illustrates whether
the collaborative learning occurs and the proportion of data
purchased by the requester respectively. We summarize the
main notations in Table I.

Theorem 1. The CFL problem is NP-hard.

Proof. The BFL market contains a device set E and a re-
quester set R. The device set E consists of a computationally
bounded device set El = {e1, e2, . . . , eNl

} and a computation-
ally capable device set Ec = {e1, e2, . . . , eNc

}. We consider

TABLE I: Main notations employed in this paper

Notation Explanation
R Requester set
ri The i-th requester in requester set R
ki FL task posted by requester ri
Ti Task deadline of task ki
E Device set
ej The j-th device in device set E
Gi,j The maximum data volume owned by ej for task ki
βj The upper limit that can be trained in one CPU cycle
gi,j The data volume that can be trained by ej for task ki
γi,j The data volume that cannot be trained by ej for task ki

Li,j Trustworthiness of device ei to device ej
ξj Trustworthiness threshold selected by device ej
Rj Communication range radius of device ej
aj,k Asking price of device ej to device ek
bj Budget of device ej
ci,j Payment of requester ri to device ej
Bi Budget of requester ri
vi,j Selling price of device ej to requester ri
u Utility of devices or requesters
Ẽ

c
i Device set selected by requester ri.

Wi Parameters of global model for task ki
π Training result set
πj Training result of device ej in result set π
ϵj Model accuracy of device ej
θ Model accuracy threshold for FL task

ℓi,j Contribution of device ej for task ki
Sj Stake of device ej
χj Device ej ’s proportion of votes

a special case of the CFL problem as follows. In this case,
we assume that the values of trustworthiness L between any
two devices exceed the threshold ξ, and the communication
range of all devices is large enough, i.e., all computationally
bounded devices can send data to any computationally ca-
pable devices in the market. Each computationally bounded
device ek(1 ≤ k ≤ Nl) ∈ El needs to send its data to
computationally capable device ej(1 ≤ j ≤ Nc) ∈ Ec before
deadline Ti and gets payment ck,j . Besides, we assume that
the requester ri has sufficient budget to select all devices that
have the relevant data to train. We define the amount of data
participated in the FL task is proportional to the profit. As
a result, the problem is simplified to the following: For M
tasks with deadlines and profits posted by M requesters, the
BFL market allocates Nc computationally capable devices to
complete them. Our target is to complete all tasks with the
maximum profit, i.e., maximum the amount of data for each
task. To sum up, the CFL problem in a special case is a
job sequencing with deadline problem, which is a NP-hard
problem obviously [8]. Therefore, the CFL problem is NP-
hard at least.

III. BLOCKCHAIN-ENHANCED FEDERATED LEARNING
MARKET WITH SIOT

In this section, we decompose the CFL problem into
two stages, i.e., data transmission and task allocation. The
overall process of TCL, QTA EMT and DPoS in the BFL
market is shown in Figure 2. We devise (i) trust-enhanced
collaborative learning strategy (TCL) based on double data
auction mechanism to ensure the trusted sharing of private
data among devices and (ii) quality-oriented task allocation
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Fig. 2: The overall process of blockchain-enhanced federated learning market

algorithm (QTA) based on greedy strategy to support data
transactions after TCL completes data sharing. Besides, we
also devise (iii) encrypted model training scheme (EMT)
and (iv) contribution-driven DPoS consensus mechanism to
enhance the security and fairness of the market respectively.

A. Trust-enhanced collaborative learning strategy
In this subsection, we firstly give an overview of TCL and

propose an auction-based data sharing strategy, which aims
to ensure that the computationally bounded devices send their
data to trusted nearby computationally capable devices for FL
training as much as possible. Then, we establish the trust-
worthiness model and mobility model of devices. We show
the details of TCL and implement it on the smart contract.
Finally, we theoretically demonstrate that our proposed data
auction mechanism is robust.

1) Overview of TCL: When a requester ri(1 ≤ i ≤ M) ∈
R posts an FL task ki in the BFL market, computationally
capable devices which possess relevant data can participate
in ki whereas computationally bounded devices need to send
their data to computationally capable devices through TCL.
As shown in Figure 3, we comprehensively consider the
sociality and mobility of devices in the SIoT scenario, and
firstly propose the trustworthiness model and mobility model
of devices. Then, we devise a double data auction algorithm
based on the second price sealed auction to ensure that the
data is auctioned at a truthful price. Computationally bounded
devices can send data to their trusted devices within the
communication range through data auction, which ensures the
computationally bounded devices can also participate in model
training and requester ri can obtain more data under the same
budget. Note that this process should be completed before
requester ri selects the devices in the BFL market.

2) Trustworthiness model: Considering the sociality of IoT
devices, data sharing among devices is limited. It can only
take place in mutually trusted devices due to privacy problem.
To achieve the goal, we establish a trustworthiness model by
defining trustworthiness as the trust metric, which refers to the
degree of trust that one device believes that another device will
not disclose its data to others. According to the information
theory, entropy is a natural measure of uncertainty, so we
description the trustworthiness model based on entropy [9].
Firstly, we divide the trust probability interval 0 to 1 into
eleven levels in the step of 0.1 for each device to choose,
so as to obtain trust probability pab of device ea to any device
eb. We map trustful probability pab to [−1, 1] to calculate the
trustworthiness between two devices. Specifically, we define
an entropy function φ(·) to compute the trustworthiness L as
illustrated in Equation 2., where L is φ(p) − 1 when p is
greater than or equal to 0 and less than 0.5. Otherwise, L is
1− φ(p).

φ(p) = −p log2(p)− (1− p) log2(1− p) (2)

In a complete social network, the trustworthiness can be
calculated via concatenation and multipath propagations. The
concatenation propagation is a trust propagation single chain
containing multiple intermediate recommenders, and trustwor-
thiness Lac of device ea to device ec is Lab times Lbc. The
multipath propagation is a trust propagation multiple chains
containing multiple direct recommenders, and trustworthiness
Lad can be obtained by multi-path weighted average, as
illustrated in Equation 3.

Lad =
Lab

Lab + Lac
LabLbd +

Lac

Lab + Lac
LacLcd (3)
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Notice that the social network graph with complete trustwor-
thiness will be obtained through these two basic propagations.
Last, each computationally bounded device can independently
select trustworthiness threshold ξ and only when the trustwor-
thiness between two devices exceeds this threshold can they
carry out the collaborative learning.

3) Mobility model: The mobility of IoT devices is equally
important as well. Successful data sharing can only be carried
out when the communication conditions are met, and the result
of device mobility is the change in the communication range
of each device. The communication range of a mobile device
may vary from device to device and depends on the relevant
preferences or limitations of the device owner. We assume
that it is realistic that the communication range of device ei
depends on its current location li, and each device in device
set E broadcasts its location, and other devices can determine
the set of devices that can communicate with. Each device
ei has a communication range radius Ri, which divides the
communication range into different layers along the radius
direction. We assume that devices located in the same layer
have the same communication rate, and the larger the radius,
the lower the communication rate. For the data sender, that is,
the computationally bounded devices, the transmission delay
is equal to the amount of data divided by the communication
rate. The data can be successfully transmitted only when
the device energy exceeds the transmission power multiplied
by the transmission delay. The privacy protection of device
location information is beyond the scope of this paper and
will not be considered here.

4) Algorithm design: In the BFL market, we consider a
practical scenario, in which each computationally bounded
device independently decides where its data goes. Devices
with data required for task ki form a device set Ei, Ei(1 ≤
i ≤ M) ⊆ E. And all devices in Ei will determine whether
they are capable of local training based on the size of the
model. If device ej(1 ≤ j ≤ N) ∈ Ei fails to fulfill the
local training, it will transfer its data to other trusted devices.

We assume that each computationally capable device can
receive data from multiple computationally bounded devices,
and each device is capable of receiving all asking prices from
computationally capable devices within its communication
range. The TCL is designed as follows.

We consider a double data auction initiated by compu-
tationally bounded device ek(1 ≤ k ≤ N) ∈ Ei, which
needs to perform FL task ki posted by requester ri. Then,
device ej ∈ Ei within device ek’s communication range
participates in the auction. The double data auction consists
of the following four steps:

• Initiate an auction: The computationally bounded device
ek broadcasts its reserved data volume γi,k and task ki’s
deadline Ti. Besides, ek has a budget of unit data bi,k,
which represents the final cost of data.

• Buyers give asking price: Each device calculates the
maximum amount of data it can receive. If device ej
meets gi,j + γi,k ≤ βk × |Ti|, ej will submit its asking
price aj,k to ek. In addition, asking price aj,k beyond the
auction deadline will be discarded.

• Select potential winner: Device ek receives an asking
price set Ak = {a1,k, a2,k, . . . , aλ,k}, where λ is the
number of asking prices received within the deadline.
Then device ek removes the asking prices that are
higher than its budget bi,k and obtains a new set Ãk.
Next, device ek sorts set Ãk in ascending order, i.e.,
aj,k ≥ aj,k′ ≥ · · · ≥ bi,k. Finally, device ek selects
the trusted device with the highest asking price as the
potential winner and sends payment ck,j to ej , which
can be calculated as illustrated in Equation 4.

ck,j = max{aj,k′ , bi,k} (4)

• Determine the winner: Device ek determines the winner
ẽj of the auction, and records this transaction in the
ledger, which includes data volume γi,k and payment
ck,j . Once device ẽj is selected by requester ri, device
ek sends data to ẽj and gets payment ck,j .



IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS. VOL.XX , NO.XX , XXXX 2022 6

Note that the following situations are possible: If potential
winner ẽj of auctioneer ek is selected by other auctioneers at
the same time, potential winner ẽj will choose one of them
according to the utility in this auction uj , which is computed
as illustrated in Equation 5.

uj = γi,k(aj,k − ck,j) (5)

The final winner will exit the current auction and participate
in the other auctions if it has surplus computing resources.
If the potential winner of auctioneer ek doesn’t choose ek, it
will start the next round of auctions until no device gives the
asking price or the time limit is reached. At the same time, the
losers of auctions will continue to compete with other devices
until all auctioneers stop the auction. Thus, it is possible that
computationally bounded devices may fail to transfer their data
within limited time.

In addition, devices that cannot complete the FL task before
task ki’s deadline Ti also need to send a part of its data to the
trusted device. For example, if device ej has more data than
βj × |Ti|, the extra part needs to be auctioned. Otherwise, if
device ej has the ability to complete the local training, it will
not send data to trusted devices because the redundant data
transmission will increase the total consumption of the BFL
market.

5) Smart contract of TCL: As shown in Algorithm 1,
we devise a smart contract for TCL to automatically and
efficiently execute the algorithm. The input of TCL includes
device set Ei and requester set R, and the output is new device
set Ẽi, in which all devices are computationally capable for
the requester. Firstly, we divide the device set Ei according to
whether the device is computationally bounded. The compu-
tationally bounded devices are listed in one set Q1, while the
devices with surplus computing resources are listed in another
set Q2(lines 1 to 9). Note that Q1 ∩Q2 may not be equal to
device set Ei, the reason is that there may be some devices
in Ei that can just complete tasks on time without surplus
computing resources.

Secondly, each device ek in computationally bounded device
set Q1 initiates an auction and devices within ek’s commu-
nication range in device set Q2 give an asking price. The
auction initiated by device ek will expire after a period of
time and it will receive a asking price set Ak(lines 12 to 17).
Then, device ek removes asking prices which come from the
untrusted devices or are lower than the budget bi,k(lines 20
to 24). Next, device ek sorts the remaining asking prices in
ascending order, and selects the device with the highest asking
price as the potential winner ẽj(lines 25 to 26).

Thirdly, device ek gives a payment ck,j to potential winner
ẽj . If potential winner ẽj selects ek at the same time, a
transaction record will be generated. At the end of this section,
we elaborate on the data structure of transactions generated in
TCL, QTA and EMT. For TCL, the transaction record includes
the transaction ID, transaction type, address of device ek,
address of device ẽj , data volume γi,k and payment ck,j . After
the transaction is endorsed, it will be recorded in the ledger
and written into the blockchain in the next block generate
cycle.

Algorithm 1 Trust-enhanced collaborative learning strategy

Input: device set Ei, requester set R, trustworthiness matrix
L, trustworthiness threshold ξ

Output: computationally capable device set Ẽi

1: Q1 ← ∅, Q2 ← ∅
2: for ei in Ei do
3: if ei is computationally bounded or unable to complete

the task on time then
4: Q1 ← Q1 ∪ ei
5: end if
6: if ei has surplus computing resources then
7: Q2 ← Q2 ∪ ei
8: end if
9: end for

10: Ẽi = Ei −Q1

11: for ek in Q1 do
12: The asking price set Ak ← ∅
13: for ej in Ei do
14: if ej in the communication range of ek then
15: ej gives a asking price aj,k to ek
16: Ak ← Ak ∪ {aj,k}
17: end if
18: end for
19: for aj,k in Ak do
20: if aj,k ≤ bi,k or Lj,k ≤ ξk then
21: Ak = Ak\{aj,k}
22: end if
23: end for
24: ek sorts asking price set Ak in ascending order, i.e.,

Ak = {a1,k, a2,k, · · · , aλ′,k}, a1,k ≤ a2,k ≤ · · · ≤
aλ′,k where λ′ is the number of asking price

25: ek selects the device ẽj with the highest asking price
as the potential winner and gives a payment ck,j to ẽj .

26: end for
27: return Ẽi

6) Property Analysis: An economic-robust auction refers
to an auction which can simultaneously achieve individual
rationality, budget balance, and truthfulness [10]. As a result,
our proposed TCL is an economic-robust auction as we
demonstrate by theoretical analysis of the above three prop-
erties. Moreover, we also prove that TCL is computationally
efficient.

Theorem 2. TCL ensures individual rationality for all devices.

Proof. If device ej is the loser of an auction, its utility uj = 0.
If device ej is the winner of an auction, ej will be selected as
the potential winner of at least one computationally bounded
device ek. If device ek receives asking price other than ej , the
payment of ek to potential winner ẽj will be the next highest
asking price aj,k′ , aj,k′ ≤ aj,k. If device ek only receives one
asking price form device ej , the payment is ek’s budget bi,k,
bi,k ≤ aj,k. Thus, according to Equation 5, the utility of device
ej is greater than or equal to zero, which proves that the TCL
strategy ensures individual rationality for all devices.

Theorem 3. TCL is budget-balanced for all devices.
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Proof. Device ek removes all asking prices higher than budget
bi,k after receiving the asking price set Ak. Thus, budget
bi,k is greater than all asking prices, and payment ck,j =
max{aj,k′ , bi,k}, aj,k ≥ aj,k′ ≥ bi,k. Hence, we have
bi,k ≤ ck,j , which ensures budget balance for all devices.

Theorem 4. TCL ensures computational efficiency.

Proof. We assume that there are m computationally bounded
devices, where each device ek can communicate with an
average of n devices, and the time complexity of the sorting
algorithm is O(nlogn). Considering the worst case of reverse
auction, if the potential winner ẽj selected by computationally
bounded device ek in each round of auction does not choose
itself, device ek will need to go through n rounds of the
auction and the time complexity is O(n2logn). Thus, the
time complexity of TCL algorithm is O(mn2logn), which
can be completed in polynomial time and is computationally
efficient.

Theorem 5. TCL guarantees truthfulness for all devices.

Proof. Proof of this theorem is equivalent to proving that
in each auction of computationally bounded device ek, other
devices ej cannot enhance its utility by submitting an asking
price ãj,k ̸= aj,k. This can be proved through the following
cases.

Case 1: ãj,k ̸= aj,k and device ej loses the auction both
ãj,k and aj,k. In this case, the utility uj of device ej from
ek’s auction is zero.

Case 2: ãj,k > aj,k and device ej wins with ãj,k and
loses with aj,k. we assume that the data size of device ek
for requester ri is γi,k. Because device ej loses with aj,k, we
can get ãj,k ≥ aj,k′ ≥ aj,k ≥ bi,k. According to equation 4,
the payment ck,j = aj,k′ , so the payment ck,j ≥ aj,k. Thus,
the device ej’s utility uj = γi,k × (aj,k − ck,j) ≤ 0, and the
device ej cannot get a higher utility.

Case 3: ãj,k > aj,k and device ej wins the auction with
both ãj,k and aj,k. Because the device ej wins the auction
with both ãj,k and aj,k, we can get ãj,k > aj,k ≥ aj,k′ ≥ bi,k.
According to equation 4, the payment ck,j is the same in both
asking price ãj,k and aj,k. According to equation 5, the utility
of device ej is ũj = γi,k × (aj,k − ck,j) = uj , so device ej
cannot get a higher utility.

Case 4: ãj,k < aj,k and device ej wins with aj,k and loses
with ãj,k. In this case, the utility of device ej for asking
price ãj,k is zero, so device ej cannot get a higher utility
corresponding to aj,k.

Case 5: ãj,k < aj,k and device ej wins the auction with
both ãj,k and aj,k. Similar to Case 3, we can get aj,k >
ãj,k ≥ aj,k′ ≥ bi,k. According to Equation 4, the payment ck,j
is the same in both asking price ãj,k and aj,k. According to
Equation 5, the utility of device ej is ũj = γi,k×(aj,k−ck,j) =
uj , so the device ej cannot get a higher utility.

B. Quality-oriented task allocation algorithm

In this subsection, we still start with the overview of QTA,
which is leveraged to allocate the FL tasks posted by the
requesters in R to suitable computationally capable devices in

device set Ei, and the goal of QTA is to maximize the amount
of data under fixed budgets. Then we detail the algorithm
process and implement it on the smart contract.

1) Overview of QTA: We get a device set Ẽi after TCL,
and each device in Ẽi can complete the data training within
the deadline Ti. Thus, requester ri can select devices in device
set Ẽi to participate in FL task ki. We devise a task allocation
strategy based on the greedy strategy named QTA. At any time,
requesters select devices that are idle in the market, and give
priority to devices with low selling price to participate in the
FL tasks.

2) Algorithm design: We consider that requester ri has a
budget Bi for its task ki. Each device ej ∈ Ẽi has data volume
gi,j and a selling price vi,j for task ki. In fact, each device ej
will generate a selling price vector Vj = {v1,j , v2,j , . . . , vM,j}
for the smart contract. The smart contract gets a selling price
vector Vi = {vi,1, vi,2, . . . , vi,η} for requester ri, where η is
total number of prices. The QTA consists of the following
three steps:

• Selling price update: According to payment ck,j and
data volume γi,k of computationally bounded devices,
each computationally capable device ej updates selling
price vi,j and data volume ĝi,j for FL task ki.

• Computationally capable devices quotation: Each de-
vice ej ∈ Ẽi sends its new selling price vi,j to the
smart contract. Smart contract gets a selling price vector
Vi = {vi,1, vi,2, . . . , vi,η} for requester ri.

• Requester greedy selection: According to selling price
vector Vi, the smart contract selects the device by using
the greedy strategy until the budget Bi runs out.

The new selling price vi,j in step 1 will be calculated
as follows. Due to the limitation of computing resources,
computationally bounded devices hope to send data to com-
putationally capable devices to get rewards. The data price of
computationally capable devices is the sum of their data and
the cost of calculation, while the computationally bounded
devices only include their data. Therefore, payment cj,k of
computationally bounded device ek is less than the data price
of computationally capable devices in TCL. We assume that
computationally capable device ej will receive data volume
set γ = {γi,1, γi,2, . . . , γi,µ} from multiple computationally
bounded devices with payment set c = {c1,j , c2,j , . . . , cµ,j},
where µ indicates the number of computationally bounded
devices received. The original selling price of computationally
capable device ej is ṽi,j and the data volume is gi,j . We get
the total data volume as illustrated in Equation 6 and the new
selling price vi,j as illustrated in Equation 7.

ĝi,j = gi,j +

µ∑
k=1

γi,k (6)

vi,j =
gi,j
ĝi,j

ṽi,j +

µ∑
k=1

γi,k
ĝi,j

ck,j . (7)

With the increase of purchase data from computationally
bounded devices, selling price vi,j of computationally capable
devices decrease gradually. Besides, if the remaining budget
of requester ri is not enough to purchase all data of device
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ej , ri will purchase a part of the entire data. The purchase
percentage yi,j is illustrated in Equation 8.

yi,j =


0 , Bi ≥ 0

Bi

ĝi,jvi,j
, 0 < Bi < ĝi,jvi,j

1 , Bi ≤ ĝi,jvi,j

(8)

Next, we define the utility of computationally bounded
device ek, computationally capable device ej and requester
ri. The utility of computationally bounded devices is the
difference between payment and unit data price multiplied by
the total amount of transaction data, which can be defined as

ulimited
k = γi,k (ck,j − bi,k)) (9)

The actual energy consumed by device ej to calculate the unit
data as

Γ(ej) = κnjf
2
j (10)

where κ is the effective capacitance parameter of computing
chipset for device ej , nj represents the number of CPU
cycles that device ej processes unit data and fj indicates
the CPU-cycle frequency of device ej . Thus, the utility of
computationally capable device ej can be defined as

ucapablej = ĝi,jyi,j (vi,j − Γ(ej)) (11)

where yi,j is the percentage of the data selected by requester
ri. The utility of requester ri can be defined as

urequesteri =
∑
j

yi,j ĝi,j ṽi,j (12)

When device ej completes task ki, the utility will comply
with Equation 11, where they are greater than or equal to
zero. If device ej fails to participate in task ki or fails
to submit the local updates before the deadline, the utility
of computationally capable device ej and computationally
bounded devices sending data to ej is equal to zero.

A globally optimal solution can be achieved by QTA when
requesters post the FL task in a particular order. However, the
assumption that there exists a global coordinator to decide the
order of requesters is not practical. Even when we consider
this assumption to be true, finding the order is an NP-hard
problem by itself according to Theorem 1. Instead, we consider
an asynchronous market where all requesters post the FL
task independently from each other. Let us consider when
any requester joins the BFL market. Our proposed greedy
strategy ensures that the requester will maximize the training
data from all available IoT devices in the current market,
i.e., excluding the devices that have been selected by earlier
requesters. Therefore, our proposed greedy-selection-based
QTA is optimal in an asynchronous market.

3) Smart contract of QTA: As shown in Algorithm 2, we
devise a smart contract for QTA. The input of QTA includes
the requester set R and the computationally capable device set
Ẽi generated in TCL, and the output is the selected computa-
tionally capable devices set Ẽ

c

i by requester ri. Firstly, each
requester ri sends its budget Bi to the smart contract, and
each device ej ∈ Ẽi updates selling price vi,j and maximum

Algorithm 2 Quality-oriented task allocation algorithm

Input: requester set R, computationally capable device set
Ẽi

Output: selected device set Ẽ
c

i

1: Ec
i ← ∅

2: Each requester ri ∈ R sends the budget Bi to smart
contract

3: Each device ej ∈ Ẽi updates the selling price vi,j and
data volume ĝi,j for FL task ki

4: Each device ej sends selling price vi,j and maximum data
volume ĝi,j to smart contract

5: For each requester ri, smart contract gets all selling
prices and sorts it in ascending order, i.e., V i =
{vi,1, vi,2, . . . , vi,η}, vi,1 ≤ vi,2 ≤ · · · ≤ vi,η , where η
is the number of selling price

6: Smart contract executes the allocation function:
7: for ai,j in V i do
8: if Bi > 0 then
9: if Bi ≥ vi,j × ĝi,j then

10: yi,j ← 1, Bi ← Bi - vi,j ĝi,jyi,j
11: else
12: yi,j ← Bi

ai,j ĝi,j
, Bi ← 0

13: end if
14: Ẽ

c

i ← Ẽ
c

i ∪ ej
15: else
16: break
17: end if
18: end for
19: return Ẽ

c

i

data volume ĝi,j (lines 2 to 3). Secondly, each device ej
sends its selling price vi,j and maximum data volume ĝi,j
to smart contract (line 4). The smart contract gets all selling
prices and sorts them in ascending order to get selling prices
vector V i = {vi,1, vi,2, . . . , vi,η}, where η is total number of
price (line 5). Thirdly, each requester ri purchases training
data according to the selling price vector V i(lines 6 to 18).
Once the task allocation is completed, a transaction will be
generated, which includes the transaction ID, transaction type,
address of device ej , address of requester ri, data volume
ĝi,jyi,j and selling price vi,j . After the transaction is endorsed,
it will be recorded on the blockchain in the next block generate
cycle.

After the execution of QTA, we complete the task allocation
and establish the task relationship between requester ri and
device set Ẽi. As a result, we generate a device set Ẽ

c

i , each
of which will train the local data for task ki. Notice that if
there are no devices in device set Ẽ

c

i , the task allocation will
fail and restart.

C. Encrypted model training scheme

This subsection proposes EMT to ensure that FL tasks can
be securely trained in the BFL market. In order to ensure the
consistency, we introduce EMT with the same structure as
QTA as follows.
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1) Overview of EMT: After requester ri completes the
QTA, it will get its device set Ẽ

c

i . Each device ej ∈ Ẽ
c

i

will start training after the requester sends them the model
and initial parameters with EMT. In EMT, we first propose a
simple, countervailable differential privacy noise to encrypt
the local update information submitted by computationally
capable devices, then we add the validation of local update
to ensure that the global model is trained efficiently and
stably. After receiving the local update submitted by devices,
requester ri aggregates verified local updates. In this process,
the differential privacy noise is eliminated. Finally, requesters
carry out the back propagation for global update.

2) Algorithm design: We get device set Ẽ
c

i =
{e1, e2, . . . , eσ} after QTA, where σ is the total number of
device set Ẽ

c

i . At this stage, we conduct FL on these devices.
The EMT consists of the following four steps:

• FL initialization: The smart contract sends parameters
of the global model Wi, noise δj to each device ej ∈ Ẽ

c

i

for FL task ki. In order to make noise δj play a role of the
privacy protection, we use (ε, ζ)−differential privacy
mechanism [11]. Noise δj ∈ Y ∼ N(0, σ2) is generated
randomly, where ζ ∈ (0, 1), σ >

√
2ln(2.5/ζ)∆f/ε and

∆f represents the maximum L2 distance to query the
output of the adjacent dataset. We generate σ noise for
task ki, which are recorded as δ = {δ1, δ2, . . . , δσ}. In
order to ensure the elimination of noise after aggregation,
we define the noisy key δ̃ = −

∑
j δj .

• Local training: Each device ej conducts the local
training and obtain final parameters of the local model
W̃i,j . Then, device ej calculates parameters difference
and completes encryption with differential privacy as
illustrated in Equation 13.

∆Wi,j = W̃i,j −Wi + δj . (13)

Lastly, device ej generates a signature ϱi,j and sends
signature ϱi,j and parameters difference ∆Wi,j to the
smart contract.

• Model validation: Requester ri sends the test data and
accuracy threshold θ to the smart contract. Then, the
smart contract uses the parameters of the local model
W̃i,j = ∆Wi,j + Wi to get the accuracy ϑi,j of the
validation data for each device ej . The smart contract will
discard parameters difference ∆Wi,j and update noisy
key δ̃ = δ̃+ δj if the accuracy ϑi,j is less than threshold
θ.

• Model aggregation: The smart contract aggregates all
parameters of the local model to complete the validation
and decrypt it as illustrated in Equation 14.

Wi =Wi +
∑
j

∆Wi,j + δ̃. (14)

3) Smart contract of EMT: As described in Algorithm 3, we
devise a smart contract for EMT. The input of EMT includes
selected device set Ẽ

c

i , parameters of the global model Wi and
accuracy threshold θ, and the output is the updated parameters
of the global model W ′

i . Firstly, the smart contract generates a
differential noise set δ = {δ1, δ2, . . . , δσ} and a noisy key δ̃,

then it sends differential noise set δ and initial parameters
Wi to device set Ẽ

c

i (lines 1 to 2). Secondly, device ej
trains the local model and obtains updated parameters W̃i,j .
Then, device ej generates a signature ϱi,j and encrypts the
difference of parameters like ∆Wi,j = W̃i,j −Wi+ δj , which
is encapsulated with signature ϱi,j and the final result of the FL
task is πi,j = (∆Wi,j ||ϱi,j)(lines 3 to 7). Thirdly, requester
ri sends validation dataset and accuracy threshold θ to the
smart contract. For each received result πi,j , the smart contract
utilizes W̃i = Wi + ∆Wi,j to test the validation dataset and
obtain the corresponding accuracy ϵi,j . If accuracy ϵi,j < θ,
the smart contract will discard result πi,j and update the noisy
key δ̃ = δ̃ + δj(lines 9 to 14). Finally, the smart contract
aggregates all local updates and noisy key δ̃. Because the sum
of noisy key δ̃ and other differential privacy noise are zero,
the noise is eliminated in the aggregation. In terms of security,
noisy key δ̃ is generated by the smart contract and saved in the
smart contract, so the security can be guaranteed. Then, the
smart contract encapsulates its signature ϑi and the difference
of parameters ∆Wi as (∆Wi||ϑi), which is sent to requester ri
to update the global model (lines 15 to 17). At the same time,
a transaction can be generated, which includes the transaction
ID, transaction type, address of device ej , address of requester
ri and accuracy ϵi,j . After the transaction is endorsed, it will
be recorded in the ledger and written into the blockchain in
the next block generate cycle.

D. Consensus mechanism

In order to ensure the consistency of transaction records
of all devices, we propose a consensus mechanism for the
BFL market in this section. We first introduce the conventional
PoS consensus mechanism. Then, we propose the contribution
model and the contribution-driven DPoS consensus mecha-
nism.

1) Conventional PoS consensus mechanism: Although PoW
is currently the most widely used consensus algorithm in
blockchain platforms, and its reliability has been extensively
verified, PoW is not without its flaws. On the contrary, its large
consumption of energy has been criticized, and the centraliza-
tion caused by mining pools has been criticized has also been
controversial. To solve these problems, the PoS consensus
mechanism comes into being. In the PoS mechanism, each
entity use coinage as a measure of its equity. The coinage is
defined as coin× t, where t represents time. The more stake
an entity has, the more likely it is to become the next block
producer. As a result, the PoS no longer requires entities to per-
form a large number of hash operations, which greatly reduces
the energy consumption [12]. However, the characteristics of
the PoS mechanism also bring some new problems. Due to
the low cost of malicious attacks, the blockchain system is
vulnerable to uninterested attacks by entities, and is prone to
the Matthew effect [13], thereby increasing the gap between
the rich and the poor, and ultimately a few rich devices have
the right to generate blocks and mint coins, which aggravates
the degree of centralization.

2) Contribution model for devices: In order to establish a
stable and reliable BFL market, we establish a contribution
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Algorithm 3 Encrypted model training scheme

Input: selected device set Ẽ
c

i , parameters of the global model
Wi, accuracy threshold θ

Output: updated parameters of the global model W ′
i

1: The smart contract generates the differential privacy noise
set δ = {δ1, δ2, . . . , δσ} and noisy key δ̃

2: The smart contract sends parameters of the global model
Wi and noise δj to device ej ∈ Ẽ

c

i for FL task ki
3: for ej in Ẽ

c

i do
4: device ej gets parameters of the global model Wi and

obtains parameters of the local model W̃i,j after the
local training

5: ej generates a signature ϱi,j and encrypts the parame-
ters difference ∆Wi,j = W̃i,j −Wi + δj

6: ej sends result πi,j ← (∆Wi,j ||ϱi,j) to the smart
contract

7: end for
8: The smart contract receives result set πi ←
{πi,1, πi,2, ..., πi,σ} , where σ is the total number
of devices

9: for πi,j in πi do
10: The smart contract verifies signature ϱi,j and tests the

validation dataset with parameters of the local model
W̃i,j ← ∆Wi,j +Wi to get accuracy ϵi,j

11: if ϵi,j < θ then
12: The smart contract discards ∆Wi,j and updates noisy

key δ̃ = δ̃ + δj
13: end if
14: end for
15: The smart contract aggregates parameters difference

∆Wi =
∑σ

j=1 ∆Wi,j + δ̃ and generates a signature ϑi.
16: The smart contract sends (∆Wi||ϑi) to requester ri
17: Requester ri updates parameters of the global model

W ′
i ←Wi +∆Wi

18: return W ′
i

model to evaluate the service quality of devices in the market.
The contribution of each device is associated with FL tasks
that the device has participated in the past. Therefore, the con-
tribution can intuitively reflect the service quality of devices.
For FL task ki, the contribution ℓi,j of devices ej can be
measured by the accuracy ϵi,j of the local update submitted
by devices on the testset, which is recorded in transactions
on the blockchain. Considering that accuracy ϵi,j ∈ [0, 1],
in order to reward devices that provide high-quality data
and punish devices that provide low-quality data, we define
the contribution ℓi,j ∈ [−1, 1] of each device ej . Referring
to the calculation method of the trustworthiness, we also
propose a contribution calculation equation based on entropy
as illustrated in Equation 15, and ℓi,j is ψ(ϵi,j)− 1 when ϵi,j
is greater than or equal to 0 and less than 0.5, and ℓi,j is
1− ψ(ϵi,j) otherwise.

ψ(ϵ) = −ϵ log2(ϵ)− (1− ϵ) log2(1− ϵ) (15)

Since device ej may have different contributions in each
task, the average contribution is used to measure the contri-

bution of device.

˜ℓi,j =
1

k

k∑
j=1

ℓi,j (16)

3) Contribution-driven DPoS consensus mechanism: The
conventional PoW/PoS mechanism has certain limitations,
whether it is the computing power that dominates in PoW, or
the entity that owns a large number of coins in PoS, can obtain
the right to verify the transaction and get rewards from it [14].
Therefore, the conventional PoW/PoS mechanism motivates
devices in the market to pursue either computing power or
coins, both of which ignore the issue of quality of service,
which is crucial in the market. To solve this problem, we define
the stake as the weighted sum of the coins accumulated in the
transaction and the average contribution in the FL task, and
propose a contribution-driven DPoS consensus mechanism.

We define the stake Sj of device ej as Equation 17 and
the vote distribution strategy as Equation 18 in our proposed
contribution-driven DPoS consensus mechanism. On the one
hand, the introduction of the contribution model makes the
devices no longer take the pursuit of the data volume as the
only goal, and the data quality also affects their stakes. As
a result, the devices not only tend to provide more data, but
also to provide high-quality data, which reduces the rounds
of the global model training, so as to reduce the energy
consumption of the BFL market. On the other hand, consid-
ering that computationally bounded devices are incapable of
storing and calculating the distributed ledgers, the stake of
computationally bounded devices are delegated to winners of
the latest auction in TCL, and those computationally capable
devices as their delegators.

Sj = w × coinage+ (1− w)×
∑
i

˜ℓi,j (17)

χj =
Sj∑N
i=1 Si

(18)

In addition, if device ej fails to complete task ki within the
deadline Ti, it will be punished, such as being unable to get
any payment. If stake Sj of device ej are less than zero, it
will not be allowed to participate in the data sharing and model
training. In this way, the market access threshold can be raised
to prevent the emergence of a large number of computationally
bounded devices in the market and disrupt the reasonable
competition order.

The voting process of our proposed contribution-driven
DPoS consensus mechanism is divided into four steps:

• Proportion of votes: Requester ri independently chooses
a contribution weight w according to its preferences for
competence and integrity. Specially, if the weight w = 1,
the stake of devices is only determined by the coinage. If
the weight w = 0, the stake of devices is only determined
by the average contribution. If the weight w ∈ (0, 1),
the stake of the device is determined by the weighted
sum of coinage and the average contribution, and as the
w increases, the influence of coinage is becoming more
and more prominent. After the smart contract determines
weight w, the stake of all devices can be calculated as
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Transaction ID

Sender's AddressRecipient's Address

Payload data:
<Data providers,Data volumes,Transaction payments,

Validation accuracy,Contribution of device>

Endorsement

Transaction Type

Fig. 4: The data structure of transactions on the blockchain

illustrated in Equation 17 and the proportion of votes can
be calculated as illustrated in Equation 18.

• Election delegators: Computationally bounded devices
select the winners in the latest data auction as the
delegators according to the transaction records and vote
for them. As a result, the stake of delegator ej is Sj =∑

k Sk, where Sk is the stake of the computationally
bounded devices.

• Voting: All delegators compete for the right to generate
the next block according to the consensus mechanism,
and the winner gets the reward.

• Reward distribution: Once the block is confirmed, the
block publisher will receive the corresponding reward,
who will distribute the reward to its supporters according
to the Shapley value [15].

Meanwhile, the system stores the transactions generated by
above algorithms on the blockchain. Here, we give the data
structure of these transactions. As shown in Figure 4, the data
structure of the transaction includes transaction ID, transaction
type, recipient’s address, sender’s address, payload data, and
endorsement. The transaction ID is the unique identifier of
the current transaction record. The transaction type includes
TCL, QTA, and EMT. The payload data of TCL and QTA
includes their respective data volume and transaction fee,
and EMT records the validation accuracy. The endorsement
indicates the validity of the transaction. In the BFL market,
the information transfer between devices will be written on
blockchain according to the data structure.

IV. PERFORMANCE EVALUATION

This section evaluates the performance of our proposed
algorithms. Firstly, we introduce the default settings, dataset,
benchmarks and metrics in detail. Secondly, to demonstrate
that our proposed algorithms can ensure an FL task to
maximize the amount of training data with given budgets,
we evaluate the performance of the BFL market on data
utilization, average model accuracy and total utility of all
requesters. We also evaluate the performance of the proposed
contribution-driven DPoS consensus mechanism on average
reward percentile of poor devices to demonstrate that our
proposed consensus mechanism can guarantee the fairness
of reward distribution in the block generation and reduce
the wealth inequality among devices. Lastly, we evaluate

the performance of blockchain in the execution time and
throughput of the auction and the FL task allocation.

A. Evaluation default settings

This subsection describes the default settings for our eval-
uations. We consider the BFL market consisting of requesters
and devices. To reduce the parameter search space, we set
the number of requesters is 50 and that of devices is 500
in our evaluation. Considering that the storage resources of
computationally bounded devices may also be limited, we set
that the average amount of data owned by computationally
bounded devices is half of computationally capable devices,
and the unit price of data is also half of computationally
capable devices. With reference to [16], the trustworthiness
threshold is randomly selected over [0,1] and the number of
devices within the communication range of each device is
randomly selected over [4,10]. We randomly set the duration
of the FL tasks posted by requesters, and we ensure that each
requester posts the FL task at least once. We set the number of
global model iterations to 200 via mini-batch SGD optimizer,
and the size of mini-batch is set to 50 with reference to [17].

B. Dataset

In this subsection we introduce the dataset used in our
evaluations. We utilize a well-known image classification
dataset named CIFAR-10 [18], which consists of 60000 32x32
colour images in 10 classes with 50000 training images and
10000 test images, and per class includes 6000 images. We
separate the training set of CIFAR-10 into devices during the
initialization phase. Specifically, each device samples without
replacement from the scrambled training set according to the
initialized data volume. In order to match the training set and
devices, the mean of the devices at initialization is set as
the total data volume of the training set divided by the total
number of devices. We train the model according to part of the
data purchased by requesters, and test the average accuracy of
the global model on test set. Besides, in order to reasonably
simulate the direct trust probability between devices, we utilize
the social connectedness index (SCI), a measure of the social
connectedness between different geographies [19], between
Facebook users as the initial trust probability of different
devices. Precisely, SCI measures the intensity of connected-
ness between locations and reflects the relative probability
that two individuals across two locations become friends with
each other. Thus, SCI can properly simulate the initial trust
probability between two devices.

C. Benchmarks

This subsection introduces the benchmarks of our evalua-
tions. To the best of our knowledge, our paper is the first to
optimize FL with both blockchain and SIoT. Hence, there are
no similar benchmark algorithms. To evaluate the effectiveness
of the proposed algorithms, on the one hand, we compare the
effectiveness of the TCL and QTA. For TCL, due to TCL
is an improved algorithm devised based on the first-price
sealed auction (FPSB) [20], it is suitable to select FPSB as
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the benchmark. In FPSB, the requester pays the winner the
highest asking price, whereas in TCL the requester pays the
second highest asking price. Compared with the FPSB, TCL
can better reflect the real asking price of the buyer for the
data. For QTA, we choose not to use QTA as the benchmark,
that is, the requester randomly selects computationally capable
devices to participate in its FL task. On the other hand, we
compare the impact of whether data sharing is allowed in
the market. Specifically, random selection and QTA are the
situations where data sharing is not allowed, and FPSB+TCL
and QTA+TCL are the situations where data sharing is al-
lowed. As a result, we choose these four cases for comparative
evaluation. In addition, DPoS is an improvement algorithm to
PoS, and we introduce the contribution degree for DPoS in
this paper. In order to compare the respective effectiveness of
DPoS and contribution, we choose four combinations of PoS,
Contribution-based PoS, DPoS, and Contribution-based DPoS
for comparison.

D. Metrics

In this subsection, we describe the metrics in our evalua-
tions. Firstly, We evaluate the effectiveness of algorithms we
proposed in the BFL market with three basic metrics, including
the data utilization, the average model accuracy, and the total
utility of requesters. The data utilization represents the amount
of data purchased by the requesters divided by the total amount
of data in the BFL market. The model accuracy represents the
average global model accuracy obtained by the requesters in
the market and measures the training quality of FL tasks. The
total utility of requesters can be calculated by Equation 12,
which reflects the total value of the data obtained by the re-
questers. Secondly, we evaluate the average reward percentile
of poor devices, which is equal to the average reward received
by poor devices in the process of generating blocks divided
by the average reward received by all devices. Here, the poor
devices are those whose coinage is significantly lower than
the median. The average reward percentile of poor devices
can measure the effectiveness of our proposed consensus
mechanism in reducing the gap between the rich and the poor
devices in the market. Thirdly, we evaluate the performance
of the execution time and the throughput of the data auction
and FL task in the BFL market. The execution time of the
data auction represents the average time for each round of
auction, and the execution time of FL task allocation is the
average time spent by requesters in selecting computationally
capable devices. The throughput of data auction represents the
number of data auctions that can be completed per second, and
throughput of FL task allocation represents the number of FL
tasks that are successfully allocated per second.

E. Data utilization

To demonstrate that our proposed algorithms make full use
of the data of all devices under fixed budgets for requesters,
we adjust the percentage of computationally bounded devices
in the market from 10% to 80% to observe the data utilization
under different scenarios. The evaluation conditions follow
the default settings. As shown in Figure 5, we consider four
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Fig. 5: Performance on data utilization

scenarios where the requesters randomly select devices to
participate in FL tasks (dashed line and circle marks), select
devices by using QTA (dashed line and star marks), complete
data sharing by using FPSB and then select devices by using
QTA (solid line and triangle marks), and complete data sharing
by using TCL and then select devices by using QTA (solid line
and cross marks), respectively. Notice that there is no unit for
data utilization, or its unit can be considered as 1, and the data
utilization may exceed one because the data of each device in
the market can be reused by multiple requesters.

We use numerical simulation to simulate the data utilization
of the market in a fixed period of time. When the percentage
of computationally bounded devices is relatively low, the data
utilization is not much different in the four scenarios because
the amount of data owned by computationally bounded devices
only account for a small proportion of the total amount of data
in the market, and hence whether to allow data sharing has
little impact on the data utilization of the market. Nevertheless,
we observe that QTA brings higher data utilization than
random selection. When the percentage of computationally
bounded devices increases gradually, the data utilization under
scenarios of FPSB+QTA and TCL+QTA are significant higher
than other two scenarios because allowing data sharing enables
computationally bounded devices to send their data to com-
putationally capable devices through auction, and requesters
can choose computationally capable devices to participate in
FL tasks at a lower price, so as to purchase more data under
fixed budgets.

We further explain the performance difference in a more
intuitive way. We first look at FPSB+QTA and TCL+QTA.
Because TCL takes the second highest price as the payment
of the winner, it helps to reduce the unit data price of the
computationally capable devices. As a result, the requesters
can purchase more data under the same budget compared
to FPSB. It thus follows that the TCL obtains higher data
utilization than FPSB. We now look at QTA and random
selection. Given that there is no data sharing, the unit price of
data of the computationally capable device remains the same,
regardless of the changes of the portion of computationally
bounded devices. Thus, the amount of data available to the
requesters remains barely changed. Nevertheless, because the
requesters choose a lower data price under QTA scenario, the
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Fig. 6: Performance on data utilization by different trustwor-
thiness thresholds ξ

requesters get more data under the same budget. Hence, the
data utilization of QTA is higher than the random selection.

The above results demonstrate that our proposed algorithms
improve the data utilization in the BFL market. Notice that
when the percentage of computationally bounded devices
reaches 70% or more, the growth of data utilization slows
down in all scenarios. The reason is that almost all the comput-
ing resources in the market are occupied. Hence, although the
number of computationally bounded devices is still increasing,
there are no computationally capable devices that have extra
computing resources for the additional data.

Next, we evaluate the impact of different trustworthiness
thresholds of computationally bounded devices on data uti-
lization. As shown in Figure 6, we set the trustworthiness
threshold to 0.4, 0.6 and 0.8 respectively. In fact, the difference
in data utilization caused by the change of trustworthiness
threshold is the result of the joint influence of the trustwor-
thiness model and mobility model. After the trustworthiness
threshold is changed, the newly added trusted devices may not
be able to share data due to the limitation of the communica-
tion range. When the percentage of computationally bounded
devices is relatively low, the data utilization where there is no
data sharing is obviously lower than that in other cases, and the
impact of different trustworthiness thresholds is not obvious.
But as the percentage of computationally bounded devices
increases, the impact of different trustworthiness thresholds
increases as well. The lower the trustworthiness threshold,
the more sufficient the data circulation in the market. As
more computationally bounded devices send their data to
surrounding trusted devices, the data utilization in the market
becomes higher.

F. Average model accuracy

In this evaluation, we conduct the federated learning by
sampling from the dataset according to the amount of data
purchased by the requester and calculate the average model
accuracy in the above four scenarios. The evaluation condi-
tions follow the default settings as well. As shown in Figure 7,
no matter how the percentage of computationally bounded
devices changes, the average model accuracy under scenarios
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Fig. 7: Performance on average model accuracy

of random selection and QTA is barely changed and the
accuracy for random selection is lower than that of the QTA,
overall. Next, we look at the FPSB+QTA and TCL+QTA.
The average model accuracies under scenarios of FPSB+QTA
and TCL+QTA increase as the percentage of computationally
bounded devices increases because of higher data utilization.
Precisely, as a result of that TCL takes the second highest
price as the payment of the winner, the requesters purchase
more data with the same budget compared to the FPSB
through analysis in Section IV-E. It thus follows that the TCL
obtains higher average model accuracy than FPSB. Besides,
because of the excessive number of computationally bounded
devices, some of the computationally bounded devices cannot
complete data auction successfully when the percentage of
computationally bounded devices exceeds 70%. Therefore, the
growth of data obtained by requesters slows down, and the
growth of model accuracy obtained by requesters slows down
as well. The evaluation shows that the average model accuracy
of TCL+QTA is about 1.1% higher than FPSB+QTA, about
7% higher than the QTA and about 8% higher than the random
selection. Hence, our proposed algorithms can make full use
of the data of computationally bounded devices and improve
the average model accuracy of requesters under fixed budgets.

G. Total utility of requesters

To demonstrate that our proposed algorithms can increase
the utility of the requester, we adjust the percentage of
computationally bounded devices in the market from 10% to
80% to calculate the total utility of requesters in different
scenarios. As shown in Figure 8, similar to the trend of
model accuracy, the total utility of requesters under scenarios
of random selection and QTA is basically unchanged as the
percentage of computationally bounded devices increases. The
reason behind the similar trends is that both model accuracy
and total utility of requesters are positively correlated with
the total amount of data obtained by the requesters. Under the
scenarios of TCL+QTA and FPSB+QTA, as the percentage of
computationally bounded devices increases, the selling price
of computationally capable devices decreases, and requesters
are able to buy more data under fixed budgets and obtain
higher utility according to Equation 7. Therefore, the total
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Fig. 8: Performance on total utility of requesters

utility of requesters increases in the scenarios of TCL+QTA
and FPSB+QTA as the percentage of computationally bounded
devices increase, and that under TCL is higher than that under
FPSB as the previous evaluation. This evaluation shows that
the total utility of requesters in the case of TCL+QTA is about
7% higher than that of FPSB+QTA, 74% higher than that of
QTA and 116% higher than that of random selection.

H. Average reward percentile of poor devices

This subsection evaluates the average reward percentile of
poor devices. If a market is monopolized by a small number
of rich devices, fair competition rules of the market will be
broken. More and more devices will eventually exit the market,
and the training of FL tasks cannot be completed. Therefore,
we consider that such a market is unstable. To demonstrate that
our proposed consensus mechanism reduces wealth inequality
and promotes the market stability, we compare the average
reward of poor devices with four consensus mechanisms, as
shown in Figure 9. We consider 1, 000 devices including poor
devices, rich devices and ordinary devices in our evaluation,
where the ten rich devices own a fifth of total coinage, and
we adjust the number of poor devices in the market from
100 to 500 to evaluate the average reward percentile of poor
devices [21]. We first simulate the BFL market running for
a period of time and generate a fixed number of blocks. We
calculate the average reward of each poor, rich and ordinary
device during this period, then compute the percentile of
reward of each poor device as the y-axis.

We first compare all four consensus mechanisms. Compared
with the other three consensus mechanisms, we find that
the contribution-driven DPoS mechanism can allocate more
reward to poor devices. For example, when the number of
poor devices in the market is 100, our proposed contribution-
driven DPoS is 4.3% higher than DPoS, 9.1% higher than
contribution-driven PoS, and 13.9% higher than PoS in the
average reward of poor devices. This is most likely due to
that unlike the conventional PoS consensus mechanism that
only considers coinage, the stake of each device equals to
the weighted sum of contribution and coinage in contribution-
driven PoS consensus mechanism. Moreover, our proposed
contribution-driven DPoS mechanism provides an incentive for
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Fig. 10: Performance on average reward percentile of poor
devices by different contribution weights w

both computationally bounded devices and computationally
capable devices, and encourages them to provide data of a
higher quality for FL tasks. Thus, our proposed consensus
mechanism can reduce the wealth gap between the rich and
poor devices and the average reward percentile of poor devices
decreases as their number increases.

In addition, we also evaluate the impact of different con-
tribution weights w in our proposed contribution-driven DPoS
mechanism on the average reward of poor devices as shown in
Figure 10. We have the same settings as in Figure 9, and assign
0.4, 0.6 and 0.8 to the weight w in Equation 17. The evaluation
shows that with the increase of contribution weight, the
proportion of contribution increases, and the average reward
of poor devices increases. For example, when the number of
poor devices in the market is 100, the average reward when
w = 0.4 is 3.7% higher than that when w = 0.6, and 8%
higher than that when w = 0.8 in the average reward of poor
devices.

I. Performance of blockchain

To demonstrate our BFL market is stable and efficient, we
adjust the number of requesters from 100 to 400 to evaluate
the overall system performance by simulating the execution
time and throughput of data auctions and task allocations. For
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FL task allocation in blockchain

TCL, if a computationally bounded device is not chosen by
its potential winner, it will conduct the next auction round. In
the evaluation, we set the maximum number of rounds to a
fixed number, which is decided by computationally bounded
devices. As shown in Figure 11, with the increase of the
number of requesters, the average execution time of the data
auction and FL task allocation remain at a stable millisecond
level, which is negligible for the training duration of FL tasks.
In order to better reflect the performance of blockchain, we
increase the number of requesters and devices in the same
proportion in the evaluation. When the number of requesters
exceeds 300, some FL tasks posted by requesters cannot
be allocated immediately, as a result of the limitation of
computing and communication resources of the blockchain.
Therefore, the throughput tends to be stable and can be
maintained at a high level. Based on the above analysis, our
proposed BFL market is stable and efficient.

V. RELATED WORK

Google is the first to propose the FL framework which
goal is to develop a virtual keyboard for smartphones named
Gboard [22] aiming to provide auto-correction, word comple-
tion, and next-word prediction features. In recent years, FL
has been studied in various scenarios extensively. Wang et
al. [23] propose an FL method between different retailers to
train a high-precision model, which identifies the demographic
characteristics of electric power consumers via extracting
information from smart meter data, and then provides services
for them. Li et al. [24] promote healthcare services and solve
the problem of data islands between medical institutions. FL
creates a collaborative medical environment between different
hospitals to accelerate patient diagnosis and treatment without
sacrificing user privacy.

FL can provide many advantages in the IoT scenario, so
there are many works devoted to applying FL to various
scenarios. In this scenario, FL mainly trains the global model
on a large number of IoT devices and protects the data
privacy of all IoT devices through localized training [25],
[26]. With the support of FL, Otoum et al. [27] utilize the
computing, communication and intelligent functions of IoT
devices to realize energy trading and remote monitoring. Qu
et al. [28] find a balance between privacy and low efficiency
of fog computing, and propose a solution based on FL to
improve the performance of fog computing. Lin et al. [29]
propose an FL approach in intelligent healthcare with high data
integrity and low privacy leakage. However, these works do

not consider the limited computing resources widely existing
in IoT devices, and they assume that all IoT devices can
participate in FL tasks. In practice, many IoT devices are
resource limited [30], which are not guaranteed to complete
the model training within the deadline. Moreover, Nguyen et
al. [31] also find many problems of federated learning in the
IoT scenario, including the communication cost, security and
privacy protection, etc.

Besides, decentralized FL has also attracted extensive at-
tention due to the problems of single-point failure, commu-
nication bottleneck and trust in server centered FL paradigm.
As a distributed computing architecture, blockchain has been
widely studied in the Internet of things [32]–[35] recently.
Therefore, researchers have leveraged blockchain into FL to
achieve a practical decentralized and secure solution in recent
years. Li et al. [36] propose a blockchain based FL framework,
which avoids centralized server and reduces attacks from
malicious nodes. Khan et al. [37] utilize the blockchain to
achieve the high-quality FL, in which the game based incentive
mechanism can maximize the user utility in the set number
of iterations, and the base station can maximize the FL
performance using the user’s best response strategy. Cui et
al. [38] devise a decentralized asynchronous FL framework
of blockchain authorization for anomaly detection in the
IoT scenario, which ensures data integrity and prevents a
single point of failure. Cross-Device FL [39] realizes the
decentralized system by using the blockchain to protect the
reputation of participating devices. Cao et al. [40] propose
an asynchronous FL based on directed acyclic graph (DAG)
named DAG-FL, which improves the efficiency of FL, and
its special consensus algorithm avoids extra computational
consumption. Zhang et al. [41] propose an FL method based
on blockchain for device fault detection in industrial IoT,
which solves the problem of heterogeneous data and achieves
satisfactory results in accuracy and performance. However,
the devices lack motivations to participate in FL because of
their rationality and they need benefits from the requester as
motivation, such as money.

On the safety of FL, Ma et al. [42] put forward chal-
lenges in FL application, including information disclosures
and malicious attacks. On the one hand, the attackers pretend
to be a participant to attack the FL model, resulting in a
significant reduction in the accuracy of the model. On the other
hand, the attackers can deduce the original data information
through a small part of the original gradient information. Ex-
isting researches develop privacy protection solutions through
differential privacy [43]. Unfortunately, the introduction of
differential privacy noise may affect the performance of the
global model. Sun et al. [44] utilize a homomorphic encryption
to encrypt the parameters, and the malicious devices cannot
infer the original data information according to the ciphertext,
which ensures the security of the data level. However, the
efficiency of homomorphic encryption is brutal to improve
and the homomorphic multiplication of ciphertext through
tensor product operation will lead to a sharp expansion of
the ciphertext dimension.
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VI. CONCLUSION

In this paper, we propose a set of algorithms in the BFL mar-
ket aiming to make data in computationally bounded devices
available for federated learning with social Internet of things,
and ensure each FL task maximizes the amount of training data
with fixed budgets. We propose a trust-enhanced collaborative
learning strategy (TCL) and a quality-oriented task allocation
algorithm (QTA), where TCL enables training data sharing
among trusted devices with social Internet of things, and
QTA guides the FL task allocation to devices and maximizes
the training quality with fixed budgets. To ensure the long-
term stable operation of TCL and QTA in BFL market, we
devise an encrypted model training scheme (EMT) to prevent
the attack from malicious devices, and a contribution-driven
delegated proof of stake (DPoS) consensus mechanism to
guarantee the fairness of reward distribution by reducing the
wealth inequality. As a result, TCL and QTA theoretically
achieve our goal. EMT and DPoS ensure the security and
fairness of the BFL market respectively, so that TCL and QTA
can bring tangible benefits. To sum up, the four algorithms
complement each other and jointly achieve the ultimate goal of
the BFL market. Finally, extensive evaluations are conducted
to show that the proposed BFL could improve the total utility
of all requesters by 65.7% on average compared with the
benchmarks while improving the overall FL model training
accuracy.
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