
MegaTE: Extending WAN Traffic Engineering to
Millions of Endpoints in Virtualized Cloud

Congcong Miao1∗ Zhizhen Zhong2∗ Yunming Xiao3∗ Feng Yang1∗ Senkuo Zhang1∗
Yinan Jiang4 Zizhuo Bai4 Chaodong Lu1 Jingyi Geng1 Zekun He1

Yachen Wang1 Xianneng Zou1 Chuanchuan Yang4
1Tencent 2Massachusetts Institute of Technology 3Northwestern University 4Peking University

Abstract

In today’s virtualized cloud, containers and virtual machines (VMs)
are prevailing methods to deploy applications with different tenant
requirements. However, these requirements are at odds with the
resource allocation capabilities of conventional networking stacks
in wide-area networks (WANs). In particular, existing WAN traffic
engineering (TE) systems at the granularity of aggregated traffic
flows are not designed to cater to each individual flow. In this pa-
per, we advocate for a radical new approach to extend TE systems
to involve millions of virtual instance endpoints. We propose and
implement a first-of-its-kind system, called MegaTE, to satisfy the
needs of each fine-grained traffic flow at the virtual instance level.
At the core of theMegaTE system is the paradigm shift from the
top-down centralized control to the bottom-up asynchronous query
in the TE control loop, combined with eBPF-based segment routing
on the data plane and TE optimization contraction on the control
plane. We evaluate MegaTE using flow-level simulations with pro-
duction traffic traces. Our results show that MegaTE supports 20×
more endpoints with the similar algorithm run time compared to
prior work. MegaTE has been adopted by large-scale public cloud
providers. Notably, Tencent rolled out MegaTE in its cloud WAN
since December 2022. Our production analysis shows thatMegaTE
reduces the packet latency of real-time applications by up to 51%.

CCS Concepts

• Networks→ Traffic engineering algorithms; Network perfor-
mance evaluation; Wide area networks; Network architectures.

Keywords

Wide-Area Networks, Traffic Engineering, Segment Routing, eBPF,
Network Optimization, Virtualized Cloud
ACM Reference Format:

Congcong Miao, Zhizhen Zhong, Yunming Xiao, Feng Yang, Senkuo Zhang,
Yinan Jiang, Zizhuo Bai, Chaodong Lu, Jingyi Geng, ZekunHe, YachenWang,
Xianneng Zou, Chuanchuan Yang. 2024. MegaTE: Extending WAN Traffic

∗Equal contribution.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0614-1/24/08
https://doi.org/10.1145/3651890.3672242

Engineering to Millions of Endpoints in Virtualized Cloud. In ACM SIG-
COMM 2024 Conference (ACM SIGCOMM ’24), August 4–8, 2024, Sydney,
NSW, Australia. ACM, New York, NY, USA, 14 pages. https://doi.org/10.
1145/3651890.3672242

1 Introduction

The advent of cloud computing has catalyzed a fundamental evo-
lution in how applications are deployed and managed in modern
computer systems. By allowing multiple tenants to provision and
run virtual instances like containers, virtual machines (VMs), and
virtual private networks (VPNs) on the same physical infrastruc-
ture with a “pay-as-you-go" model, significant cost-sharing benefits
have been achieved [4, 38].

Currently, as cloud applications become more latency sensitive
and geologically distributed, the requirements of cloud tenants have
evolved from basic computing resources like CPU cores, memory,
disk, etc. to networking demands like packet latency (e.g., round-
trip time) and connection bandwidth. In today’s networking stack,
these requirements are primarily handled by the traffic engineering
(TE) system on the IP layer. In particular, when traffic flows arrive
at routers, the TE control plane decides the routing paths (i.e., TE
tunnels) to forward the packet, and the TE data plane devices (e.g.,
routers and switches) split the aggregated data flows by forwarding
each individual packet according to the five tuples of the IP packet
header.1 Through splitting traffic across multiple tunnels routed
over the network, TE systems play a crucial role in optimizing
network utilization and minimizing link congestion in WANs [19,
20, 31, 37, 46]. However, our measurement study on a large-scale
public cloud shows that today’s WAN running conventional TE
systems cannot satisfy the networking requirements of tenants’
virtual instances on the application layer (§2.1).

The root cause of why existing TE systems do not meet virtual
instance service requirements is that conventional TE operates on
the IP layer at network switches and routers that handle traffic at
the granularity of aggregated flows. The dynamic provisioning and
decommissioning of millions of virtual instances on the application
layer result in the fact that multiple flows of the same tenant have
different identifiers in five tuples of IP packets. Hence, after hashing
on routers, these flows may be routed on different TE tunnels and
experience different packet latencies. As a result, there is no guar-
antee that multiple flows of the same virtual instance have the same
packet latency, harming application-level performance. This funda-
mental mismatch between the capabilities of traditional TE systems
and the nuanced demands of modern virtual instances highlights

1The five-tuple in IP networking is a set of five different values that uniquely
identify a network connection or session: source IP address, destination IP address,
source port, destination port, and transport protocol.

https://doi.org/10.1145/3651890.3672242
https://doi.org/10.1145/3651890.3672242
https://doi.org/10.1145/3651890.3672242

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Miao, Zhong, Xiao, Yang, Zhang, et al.

the need for a new TE system that manages each individual flow at
the virtual instance level (§2.2).

In this paper, we advocate for extending TE systems to involve
millions of virtual instance endpoints in the context of a large-
scale public cloud. We first identify the key challenges in designing
such a TE system (§3.1). Then, we propose MegaTE, a novel TE
system that accommodates the fine-grained and instance-specific
requirements of virtual instances. To the best of our knowledge,
MegaTE is the first TE system that guarantees virtual instance
flow performance. To achieve this,MegaTE proposes to rearchitect
the TE control loop from top-down centralized control to bottom-
up asynchronous database query (§3.2). Specifically, in traditional
TE control loops, decisions on traffic routing and resource allo-
cation are dispatched from the control plane (e.g., a centralized
controller [19] or multiple decentralized controllers [28]) through a
large number of persistent connections, leading to scalability issues
and a lack of responsiveness to real-time changes in network con-
ditions when network size grows larger. This approach struggles to
accommodate the dynamic requirements of a modern virtualized
cloud, where the networking needs of individual instances vary sig-
nificantly and change rapidly across millions of endpoints. Instead,
our bottom-up approach allows each endpoint on the data plane to
query the TE results asynchronously with the eventual consistency
mechanisms [5] such that the controller does not need to maintain
persistent connections with millions of endpoints.

To implement and deploy MegaTE’s novel bottom-up control
loop at the scale of millions of virtual instance endpoints, we present
key implementation components on both control and data planes.

On the control plane,MegaTE formulates the TE optimization
problem with network contraction [2] to reduce the size of the prob-
lem. In particular, we leverage the fact that millions of endpoints
are connected in a hierarchy through orders of magnitude fewer
routers to contract the network topology. We further formulate
the problem into a subset sum problem (SSP) and propose a fast
approximate algorithm to solve the TE optimization within the TE
update interval (e.g., 5 min [19]) for millions of endpoints (§4).

On the data plane, we build MegaTE on the synergy between
eBPF (i.e., extended Berkeley Packet Filter)-based end host network-
ing stacks to achieve efficiency and adaptability. By integrating
eBPF for efficient packet processing and programmable network
devices for dynamic path selection,MegaTE dynamically adjusts
to changing network conditions and application demands, ensur-
ing optimal performance and resource utilization across the cloud
infrastructure (§5).

We first evaluateMegaTE using large-scale flow-level simula-
tions. Our results show thatMegaTE supports 20× more endpoints
with a similar algorithm run time compared to state-of-the-art TE
systems. Meanwhile, MegaTE satisfies at most 8.2% more demand
than state-of-the-art TE algorithms in failure scenarios (§6).

MegaTE has been rolled out at TencentWAN (TWAN), a large-
scale public cloud provider with millions of virtual instance end-
points, since December 2022. Production measurement results show
thatMegaTE reduces the packet latency for the time-sensitive appli-
cations by 51%, ensuring availability for high-priority applications
with an average availability of 99.995%, and reduces the cost by 50%
for the low-priority applications (§7).

Tunnel #1: High latency

Tunnel #2: Low latency

Host OS

Co
nt

ai
ne

r#
n

Co
nt

ai
ne

r#
m

Host server

Data center #A

Host OS

Co
nt

ai
ne

r#
1

Co
nt

ai
ne

r#
2

Host server

Host OS

Co
nt

ai
ne

r#
1

Co
nt

ai
ne

r#
2

Host server

…

…

Host OS

Co
nt

ai
ne

r#
n

Co
nt

ai
ne

r#
m

Host server

Data center #B

Host OS

Co
nt

ai
ne

r#
1

Co
nt

ai
ne

r#
2

Host server

Host OS

Co
nt

ai
ne

r#
1

Co
nt

ai
ne

r#
2

Host server

…

…

Operating boundary of conventional TE

Router/switch #A
Router/switch #B

Flow #1

Flow #2

Flow #1

Flow #2

Flow #1

Flow #2

Tunnel #1
Tunnel #2Hash

Figure 1: Conventional TE systems splits aggregated traf-

fic flows on network routers/switches, orthogonal to host

servers or virtual instance endpoints.

2 Background and Motivation

In the modern virtualized cloud, containers and VMs are primary
methods for deploying, managing, and scaling applications across
distributed computing resources. Containers, being lightweight and
modular, package applications with their required dependencies on
top of the operating system (OS), ensuring consistency across differ-
ent platforms. Conversely, VMs offer strong isolation and security
by simulating entire hardware systems, each with a complete OS
stack. These virtualization technologies allow cloud operators to
customize computing resources for each instance with unparalleled
flexibility. Nevertheless, the networking stack, particularly the TE
system, has yet to achieve the same level of efficiency.

In this section, we first perform a measurement study on a pub-
lic cloud provider to quantitatively understand the limitations of
existing TE systems in handling traffic flows of virtual instances
(§2.1). We then identify the need to design new TE systems that
meet the requirements of cloud tenants (§2.2).

2.1 Conventional TE Fails Cloud Tenants QoS

We begin by measuring the packet latency over time between four
virtual instance pairs in geologically distributed data centers. Fig-
ure 1 is a graphical illustration of a cloud WAN that interconnects
geologically distributed data center sites, where millions of virtual
instances are dynamically provisioned and decommissioned. For
conventional TE systems, they operate only on network router-
s/switches that split aggregated traffic flows onto different TE tun-
nels. In this case, multiple traffic flows initiated from the same
virtual instance endpoint2 enter the WAN through the edge router
that aggregates and splits multiple flows. Due to dynamic provi-
sioning and decommissioning of virtual instances, it is not practical
to install flow entries for each individual flow on the routers. There-
fore, the hash function of packet splitting cannot guarantee that
all flows from the same virtual instances are routed on the same
TE tunnel, resulting in possible violations of the packet latency re-
quirements of cloud tenants. Figure 2(a) depicts the packet latency
distributions using the box plot among four virtual instances mea-
sured for one day. It shows that the packet latency of these virtual
instances has a large variance and cannot produce a stable packet

2The term virtual instance endpoint describes the source or destination of cloud
tenants’ traffic flows, such as VMs or containers.

MegaTE: Extending WAN TE to Millions of Endpoints ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

(a) Packet latency distribution (b) Instance pair #4

Figure 2: Measured packet latency in a public cloud provider

running conventional TE.

latency. If we zoom in on one of the virtual instance pairs (virtual
instance pair #4) as shown in Figure 2(b), we find that packet latency
is mostly clustered into two groups around 42 ms and 20 ms. The
reason is that today’s TE system cannot identify the flows at the
instance level and hence naively hashed the flow onto two different
tunnels dynamically, resulting in two different packet latencies over
time. Ideally, tenants require the flow between instance pair #1 and
instance pair #4 to be running on the low-latency path, while the
other flow between instance pair #2 and instance pair #3 does not
have latency requirements and therefore should be routed on the
high-latency path.

2.2 The Need for TE to Manage Individual Flow

The traditional TE systems use hash functions to assign network
flows to specific tunnels or paths based on parameters such as
source and destination IP addresses, ports, and protocol types [11].
Although this method offers a simple and computationally efficient
way to distribute traffic across available paths, it does not consider
the unique characteristics and needs of individual flows. In par-
ticular, for a virtualized cloud environment, characterized by high
traffic density and short-lived virtual instances, the static nature
of five-tuple-based IP routing rules often falls short. This issue is
particularly evident in microservice architectures for containers,
where the complex and frequent communications among these mi-
croservices require more flexible and responsive routing solutions.
Furthermore, the use of VPNs for robust security and isolation adds
additional complexity to packet processing, which complicates the
forwarding process. Consequently, it can result in suboptimal path
selections, where latency sensitive or high priority traffic may be
routed through longer or more congested paths, inadvertently in-
creasing latency. Furthermore, hash-based mapping is not effective
in real-time adaptation to dynamic network conditions, such as
varying traffic loads or changing network topologies, which can
further exacerbate latency issues. Therefore, there is a growing
need for more intelligent and adaptive TE systems to handle each
individual traffic flow and ensure optimal tunnel selection.

3 Supporting Millions of Endpoints in TE

In this section, we first identify several challenges in designing
MegaTE to manage each individual flow of millions of virtual
instance endpoints in the cloud (§3.1). Then, we explain how the
key idea of this work, rearchitecting the TE control loop, alleviates
the scaling bottleneck of supporting millions of endpoints (§3.2).

3.1 The TE Granularity Challenge

MegaTE, as the first TE system that extends its control loop to
millions of endpoints to provide virtual-instance-level performance
guarantees, has faced a set of challenges. The millions of endpoints,
i.e., the virtual instances of tenants in the cloud that generates
traffic flows, serve as a key factor that differentiates MegaTE from
traditional WAN TEmethodologies, which only operate on network
routers/switches with aggregated traffic flows. Next, we elaborate
on these key challenges.
Handling individual flow on the data plane. Conventional
TE systems do not support TE in the granularity of individual
traffic flows between virtual instance endpoints due to the limited
number of flow tables in the router. Therefore, inMegaTE, segment
routing (SR) is used to allow WAN routers to identify and adhere
to the specified routes. This SR information should be inserted at
the end host servers hosting the virtual instance endpoints, since
identifying the flow’s required QoS is not possible when the packets
leave the server due to containerization. Specifically, we need to
be able to (𝑖) collect flow level metrics and send them to the TE
control plane; (𝑖𝑖) acquire TE results from the TE control plane
and label outgoing packets with SR details based on TE decisions.
However, these desired functions introduce unique challenges to
today’s TE systems. In particular, the first task requires accurate
flow identification at the level of containers or VMs. The second
task involves end host servers adding TE results to packet headers
such that the subsequent routers/switches are able to forward the
packets as designated.
Combating TE optimization complexity on the control plane.

Another core challenge inMegaTE is the computational complexity
involved in formulating optimal TE decisions at the control plane.
Upon receiving data from the endpoints, the controller is tasked
with determining traffic allocations among all pairs of nodes, which
may be virtual machines or containers. Traditional TE systems man-
age aggregated traffic on only hundreds or up to a few thousand
nodes. In contrast, MegaTE must manage the traffic between all
pairs of endpoints. The presence of millions of endpoints magnifies
the problem scale by three orders of magnitude. Additionally, the
indivisible nature of endpoint traffic renders the TE optimization
problem NP-hard. To tackle this issue without compromising accu-
racy, a novel algorithm that accommodates the new TE formulation
and effectively reduces the problem’s scale is imperative.

3.2 Rearchitecting the TE Control Loop

In conventional TE systems (as shown in Figure 3(a)), at every
TE interval, the routers in the TE data plane collect the network
states at the granularity of aggregated flows and send them to the
bandwidth broker on the TE control plane. After that, the bandwidth
broker forwards the network topology and traffic demand to the TE
optimizer, which performs the optimization computation to obtain
traffic flow allocations. The TE controller receives the optimized
flow allocations and pushes them back to the data plane through
persistent connections.
Extending conventional TE’s control loop. AsMegaTE extends
the WAN TE to involve millions of endpoints to enable the manage-
ment of flows from millions of virtual instances on the cloud, an
intuitive and simple approach is to directly extend the conventional

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Miao, Zhong, Xiao, Yang, Zhang, et al.

Router

Router

RouterServer

Server

Server

Server

Server

Server

WANsData center Data center

Conventional TE

TE
Optimizer

SDN
Controller

Network topology
& traffic demand

TE config. push

Traffic
allocationsBandwidth

Broker

Network state
TE Control Plane
TE Data Plane

(a) Conventional TE runs only on routers with a top-down control loop.

Router

Router

Router
Server

Server

Server

Server

Server

Server

WANs

Data center Data center

MegaTE

TE
Optimizer

Network topology
& traffic demand

TE config.
asynchronous pull

Traffic
allocationsBandwidth

Broker
Network state at
VM/container level

TE
Database

TE Control Plane
TE Data Plane

Conventional TE

Millions of
endpoints

(VMs &
Containers)

Millions of
endpoints

(VMs &
Containers)

(b) MegaTE involves millions of endpoints with a bottom-up control loop.

Figure 3:MegaTE rearchitects TE control loop with asynchronous database query and endpoints involvement.

TE’s control loop to endpoints. Specifically, as shown in Figure 4(a),
each endpoint will initialize a persistent connection, establishing
communications between the TE controller and the endpoints. The
TE controller then pushes the TE configurations to the endpoints
whenever necessary, e.g., during the regular TE configuration in-
tervals or in response to a network failure. To ensure immediate
synchronization of the TE configurations, the connections between
the TE controller and the endpoints should be persistent. There-
fore, a heartbeat packet is periodically generated by the endpoint
and sent to the TE controller to keep the connection alive. This
mechanism ensures that the connection remains active even if there
are no TE configurations to be transferred. However, millions of
endpoints require the controller to maintain millions of persistent
connections to synchronize the TE configurations. This approach
consumes a lot of resources and overwhelms the control plane.
Trade data plane consistency for control plane scalability.

The conventional TE’s top-down control loop that maintains a
real-time synchronization between millions of endpoints and the
control software will greatly hinder the control plane scalability.
In contrast, a more attractive approach is to leverage distributed
cloud databases to offload the millions of controller connections. As
shown in Figure 3(b),MegaTE uses a bottom-up approach in which
the TE controller is replaced by a TE database. The calculated TE
configurations are queried by the endpoints in an asynchronous
manner, rather than being pushed to the data plane via persistent
connections. Therefore, the asynchronous query relaxes the re-
quirement that all endpoints must update their TE configurations
at exactly the same time, significantly improving the control plane
scalability.
Towards eventual consistency. Different from conventional TE’s
control loop,MegaTE leverages distributed cloud databases and em-
ploys a bottom-up approach to achieve the eventual consistency [5]
of TE configurations such that the controller does not need to main-
tain persistent connections with millions of endpoints. Specifically,
as shown in Figure 4(b), the centralized controller updates the TE
configurations periodically or whenever there is a network failure,
and stores the new updates into the cloud databases with an incre-
menting version number. Each endpoint periodically queries the
cloud databases to check for the latest TE configuration version
using a short connection. Upon detecting a discrepancy between

Router Controller

Endpoint

Server

Heartbeat

Heartbeat

…
…

or
TE Optimizer

TE config. push

TE config. push

Heartbeat

Heartbeat

…
…

…

TE interval (e.g., 5 m
in)

traffic allocations

traffic allocations

(a) The top-down control loop needs to
maintain a huge number of persistent con-
nections to push TE configurations.

TE Database
Endpoint

Server TE Optimizer

traffic allocations

traffic allocations

…

TE interval (e.g., 5 m
in)

TE config. pull

TE config. pull

TE config. pull

…

(b) The bottom-up control loop allows
endpoints to pull up-to-date TE configu-
rations in a connectionless manner.

Figure 4: TE configuration synchronization.

the version number of its current TE configurations and that pro-
vided by the controller, the endpoint initiates a connection to the
databases to pull the new TE configurations and proceeds to update
its settings accordingly.

Highly concurrent key-value store as TE database. Given that
MegaTE needs to handle frequent queries from millions of end-
points, we build an in-memory key-value database based on Re-
dis [10] to support high-performance data read and write, particu-
larly suitable for our scenario that requires high concurrency. Here,
our customized database supports up to 160,000 concurrent queries
per second using two shards. The performance of the database
could be linearly scaled with more shard resources. In order not
to introduce additional resources, but to use two shards to handle
millions of queries, we divide all endpoints into several parts, and
each part initiates queries asynchronously during a specific time
period (e.g., 10 seconds). This approach will reduce the query loads
at a specific time by equally spreading them over the timeline. As
all TE configurations are loaded at the end of the time period, the
endpoints update the configurations in the packet header. Despite
the lack of immediate synchronization, all nodes in the network
will converge on a consistent view of the network state over time.

MegaTE: Extending WAN TE to Millions of Endpoints ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

Input

𝐺 (𝑉 , 𝐸) Site topology with node set 𝑉 and link
set E.

𝑘 ∈ 𝐾 k-𝑡ℎ index of site pair set 𝐾 .
𝑖 ∈ 𝐼𝑘 i-𝑡ℎ index of endpoint pair set 𝐼𝑘 connect-

ing k-𝑡ℎ site pair.
𝑐𝑒 Bandwidth capacity of link 𝑒 ∈ 𝐸.
𝑇𝑘 Set of pre-established tunnels for site pair

𝑘 .
𝑑𝑖
𝑘

Bandwidth demand of 𝑖-th endpoint pair
connecting 𝑘-th site pair in a TE interval.

𝐿(𝑡, 𝑒) 1 if tunnel 𝑡 uses link 𝑒 and 0 otherwise.
𝑤𝑡 Weight of tunnel 𝑡 ∈ 𝑇𝑘 .

Output 𝑓 𝑖
𝑘,𝑡

1 if the traffic 𝑑𝑖
𝑘
is routed on tunnel 𝑡 , 0

otherwise.
Table 1: MegaTE notations.

4 MegaTE Control Plane

In this section, we first provide the formulation of our TE problem.
Unlike a conventional TE formulation that is based on a multi-
commodity flow (MCF) problem, the traffic flow at the virtual in-
stance level has a binary state of accept or reject. This turns our
problem into an NP-Hard decision problem which is difficult to
solve (§4.1). We then propose a two-stage optimization algorithm
to contract the network topology to make sure that the run time of
our algorithm is within the TE update intervals (§4.2).

4.1 Problem Formulation

Different from prior TE systems [2, 15, 16, 19, 25, 35] where traffic
flows are allowed to be split at the router sites over multiple paths,
however, inMegaTE, we address the TE problem at the granular-
ity of the virtual instance endpoint, where the traffic flows from
the virtual instances cannot be arbitrarily divided. Since there will
always be multiple flows between an endpoint pair, routing these
flows from the same tenant over multiple paths would lead to un-
stable latency, degrading the application quality of experience. The
introduction of the binary state of the traffic flow at the endpoint
changes the traditional TE formulation into a new paradigm. We
will describe it below in detail.

TE input. As listed in Table 1, we define network topology to be
a graph 𝐺 = (𝑉 , 𝐸), where 𝑉 and 𝐸 represent the sets of nodes
and edges, respectively. Let 𝑐𝑒 represent the capacity of the edges.
Here, as the capacity of the edges between the endpoint and the
site is sufficient, we focus on the capacity of the edges between
router site pairs. We then sequentially list and order all possible
pairs of sites, using 𝑘 ∈ 𝐾 as the index for each pair. For each
site pair 𝑘 , we pre-establish a set of paths (or TE tunnels) 𝑇𝑘 to
route traffic, where each tunnel 𝑡 is assigned weight𝑤𝑡 . Here,𝑤𝑡

can be determined by the network latency where the higher value
means larger network latency. Let 𝐿(𝑡, 𝑒) denote if the tunnel 𝑡 uses
the link 𝑒 . For a specific site pair 𝑘 , we enumerate and order all
pairs of endpoints, one from each network site, assigning an index
𝑖 ∈ 𝐼𝑘 to each of these endpoint pairs. There is a set of pairs of
source-destination endpoints (or “flows”) that connect the site pair
𝑘 , where each pair of endpoints is associated with a demand 𝑑𝑖

𝑘
.

TE Output. Our goal is to determine the paths for flows from
virtual instance endpoints to provide virtual-instance-level perfor-
mance guarantees. As the flow from the instance cannot be split,
we use a binary variable 𝑓 𝑖

𝑘,𝑡
to indicate the path of the flow where

1 represents the flow 𝑑𝑖
𝑘
is routed on the tunnel 𝑡 .

Optimization goal and constraints.When calculating bandwidth
allocation for endpoint-to-endpoint traffic, our goal is to maximize
the total satisfied network traffic across all demand pairs (which
we refer to as MaxAllFlow problem). We present the formulation
of our TE problem which is shown below.

max
𝑓

:
∑︁
𝑘,𝑖,𝑡

𝑑𝑖
𝑘
𝑓 𝑖
𝑘,𝑡
− 𝜖

∑︁
𝑘,𝑖,𝑡

𝑤𝑡𝑑
𝑖
𝑘
𝑓 𝑖
𝑘,𝑡

(1)

s.t.

∀𝑒 :
∑︁
𝑘,𝑖,𝑡

𝑑𝑖
𝑘
𝑓 𝑖
𝑘,𝑡
𝐿(𝑡, 𝑒) ≤ 𝑐𝑒 (1a)

∀𝑘, 𝑖 :
∑︁
𝑡

𝑓 𝑖
𝑘,𝑡
≤ 1 (1b)

∀𝑘, 𝑖, 𝑡 : 𝑓 𝑖
𝑘,𝑡
∈ {0, 1} (1c)

Notably, our objective function (1) is tomaximize overall through-
put while preferring shorter paths. 𝜖 is a small constant. Constraint
(1a) states that no link should be overloaded. Constraint (1b) guar-
antees that each flow can only be allocated on at most one tunnel,
ensuring that endpoint-to-endpoint flow is indivisible over paths.
Constraint (1c) states that 𝑓 𝑖

𝑘,𝑡
is binary and 1 represents the flow

𝑑𝑖
𝑘
is routed on the tunnel 𝑡 . The introduction of integer variable

renders MaxAllFlow problem as an NP-Hard problem. Readers can
refer to Appendix A.1 for more details.

Although each endpoint flow connecting to the same router site
pair will be routed to only one path, all flows connecting to the
same site pair will most likely be assigned to different paths. The
aggregated flows at the router site will appear to be split among
paths, showing consistency with previous work [15, 16, 25].

TE among multiple QoS classes.We classify the traffic into three
service classes. We refer to them as QoS classes 1 to 3, where QoS
class 1 is the highest priority, which contains essential network
control traffic and a few critical services such as cloud gaming.
These applications are always time-sensitive; QoS class 2 is for
most of user application traffic and internal application traffic;
and QoS class 3 is for heavy and bulk data transfer, such as logs.
Since combining all QoS traffic together will make the problem size
prohibitively large, similar to [19], we resort to separating the traffic
to reduce the solving time of the optimization problem. Specifically,
we determine bandwidth allocation rate by invoking MaxAllFlow
separately for QoS classes in priority order. Once a higher QoS
class is allocated, the remaining capacity of link 𝑒 is updated by
𝑐𝑒 = 𝑐𝑒 −

∑
𝑘,𝑖,𝑡 𝑑

𝑖
𝑘
𝑓 𝑖
𝑘,𝑡
𝐿(𝑡, 𝑒), which is then used for the lower QoS

class to calculate the optimal bandwidth allocation.

4.2 Two-Stage Optimizaiontion Algorithm

Despite recent advances such as NCflow [2] and TEAL [44] acceler-
ated TE calculation on the large network topology, these methods

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Miao, Zhong, Xiao, Yang, Zhang, et al.

Figure 5: Traditional MaxAllFlow problem is hard to solve

on the hyper-scale network topology as well as its NP-

Hard nature. We contract the network in two layers and

propose a two-stage optimization algorithm where we

solve the MaxSiteFlow problem in the first layer and the

MaxEndpointFlow in the second layer.

can only effectively address graphs featuring up to several thou-
sand network nodes. MegaTE significantly increases the size of
the network topology by three orders of magnitude to millions
of endpoints, making existing TE solutions impractical to address
such a hyper-scale network. Meanwhile, the NP-Hard nature of
MaxAllFlow problem further hinders existing TE approaches to
provide the TE allocations in a short time.
Contracting the Problem Size. To address this challenge, a more
attractive approach is to contract the network topology to reduce
the scale of the problem and facilitate parallel computation. This
approach has been proposed in previous work such as POP [36]
and NCFlow [2]. However, POP [36] does not fit our scenario since
these traffic flows whose originated endpoints connect to the same
sites should be split into the same sub-problem and the random par-
titioning in POP could drop these flows into different sub-problems.
We embrace an approach akin to that of NCFlow [2]. However,
different from NCFlow, a better way can be applied to contract the
network topology. As shown in Figure 5, an important observation
inMegaTE network topology reveals that it consists of two distinct
layers of connectivity, where the first layer represents a highly
meshed topology among the network sites and the second layer
includes the network sites, each forming a hub that connects to
multiple endpoints. These connections are singular and direct, with
each endpoint linked to only one network site. Based on this ob-
servation, we simply separate the graph into two layers following
the above description and propose a two-stage optimization algo-
rithm to solve the MaxAllFlow problem on each layer separately
where we solve the MaxSiteFlow problem on the first layer and
the MaxEndpointFlow on the second layer.
• MaxSiteFlow: On the first layer, we first aggregate the traffic
flows of endpoint pairs connecting to the same site pair to generate
the traffic demands 𝐷𝑘 at the site level (line 1-6). In this way, the
flow allocation for the first layer, referred to as MaxSiteFlow, then
aligns with the optimization objectives found in existing TE studies,
where it becomes an MCF (multi-commodity flow) problem and the
number of nodes is a few hundred or fewer. It can thus be easily
solved using existing TE approaches [2, 19] to obtain the bandwidth
allocation 𝐹𝑘,𝑡 between site pair 𝑘 and on the tunnel 𝑡 (line 7-9).

Algorithm 1: Two-stage optimization
Input: {𝑑𝑖

𝑘
}, {𝑐𝑒 }, {𝑇𝑘 }, {𝐿(𝑡, 𝑒)}, {𝑤𝑡 } ⊲ An endpoint

decision problem
Output: {𝑓 𝑖

𝑘,𝑡
} ⊲ Solution

1 Function SiteMerge({𝑑𝑖
𝑘
}):

2 foreach 𝑘 ∈ 𝐾 do

3 𝐷𝑘 ←
∑
𝑖 𝑑

𝑖
𝑘

⊲ Aggregate the demands at site level
4 end

5 return {𝐷𝑘 }
6 End Function

7 Function MaxSiteFlow({𝐷𝑘 }, {𝑐𝑒 }, {𝑇𝑘 }, {𝐿(𝑡, 𝑒)}, {𝑤𝑡 }):
8 Solve LP:

argmax
𝐹

∑︁
𝑘,𝑡

𝐹𝑘,𝑡 − 𝜖
∑︁
𝑘,𝑡

𝑤𝑡 𝐹𝑘,𝑡

𝑠 .𝑡 .
∑︁
𝑡

𝐹𝑘,𝑡 ≤ 𝐷𝑘 , ∀𝑘∑︁
𝑘,𝑡

𝐹𝑘,𝑡𝐿(𝑡, 𝑒) ≤ 𝑐𝑒 , ∀𝑒

𝐹𝑘,𝑡 ≥ 0, ∀𝑘, 𝑡

9 return {𝐹𝑘,𝑡 }
10 End Function

11 Function MaxEndpointFlow(𝐹𝑘,𝑡 , {𝑑𝑖𝑘 }): ⊲ Parallelizable
12 𝑚𝑘,𝑡 ← FastSSP(𝐹𝑘,𝑡, {𝑑𝑖𝑘 })
13 Transform {𝑓 𝑖

𝑘,𝑡
} ←𝑚𝑘,𝑡

14 return {𝑓 𝑖
𝑘,𝑡
}

15 End Function

• MaxEndpointFlow: In the second layer, we need to solve the
traffic allocation for the endpoint pairs. Specifically, for a specific
site pair 𝑘 , given the bandwidth allocation 𝐹𝑘,𝑡 and bandwidth
demand set {𝑑𝑖

𝑘
}, the MaxEndpointFlow problem is to select a subset

of the bandwidth demands whose total traffic is closet to, without
exceeding, 𝐹𝑘,𝑡 . The MaxEndpointFlow problem is a typical subset
sum problem (SSP), which is a special scenario of the Knapsack
problem. Note, the MaxEndpointFlow problem with different site
pairs can be solved in parallel to accelerate the TE optimization.
Due to its NP-Hardness, various algorithms have been introduced
to tackle this problem in pseudopolynomial time, with dynamic
programming (DP) [6] being a typical method of choice. However,
the DP approach is not ideal due to its high complexity when
dealing with small values of endpoint pair demands 𝑑𝑖

𝑘
against a

large number of endpoint pairs |𝐼𝑘 | as well as a large value of site-
pair bandwidth allocation 𝐹𝑘,𝑡 . 3 Therefore, we propose a novel
semi-DP technique that significantly reduces complexity while
allowing for controllable precision in the solution. We refer to this
algorithm as FastSSP, which is an approximation of the optimal
solution.

The FastSSP algorithm (line 12) operates through a structured
four-step process. Step 1 (Clustering): Initially, it groups all endpoint

3The time complexity of the DP is𝑂 (|𝐼𝑘 |𝐹𝑘,𝑡) .

MegaTE: Extending WAN TE to Millions of Endpoints ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

flows into𝑚 large traffic demands where each traffic demand meets
or exceeds a threshold𝑀 , setting the stage for subsequent normal-
ization. Here,𝑚 is a small integer, determined by𝑀 . Step 2 (Normal-
ization): Next, the aggregated demands are normalized with a factor
𝛿 , simplifying the problem and reducing the computational com-
plexity by 𝛿 faced by the DP methods. Step 3 (DP solving): Following
this, we employ a traditional DP strategy [6] to address the SSP
challenge to obtain the optimal solution. Here, the time complexity
of DP reduces from 𝑂 (|𝐼𝑘 |𝐹𝑘,𝑡) to 𝑂 (𝑚⌊

𝐹𝑘,𝑡
𝛿
⌋). Step 4 (Sorted-based

greedy algorithm): The final step involves managing the minor flows
excluded after the DP computation phase. Although this remains an
SSP issue, the aggregate demand of these residual flows is relatively
minor, meaning any suboptimal allocations will not significantly
impact the overall solution. Consequently, we implement a sorting-
based greedy algorithm for the efficient allocation of these residual
flows. The time complexity is 𝑂 (|𝐼𝑘 |𝑙𝑜𝑔 |𝐼𝑘 |). Please refer to Appen-
dix A.2 for more details.

In this way, we obtain a set of endpoint pairs allocated with
network bandwidth, represented as𝑚𝑘,𝑡 by solving the FastSSP.
We finally transform the set 𝑚𝑘,𝑡 into a set of 𝑓 𝑖

𝑘,𝑡
to indicate if

traffic 𝑑𝑖
𝑘
is routed on tunnel 𝑡 (line 13).

Overall Procedure. The overall procedure for the two-stage opti-
mization algorithm is outlined in Algorithm 1. Initially, we contract
the network topology into two distinct layers, leveraging our obser-
vation of topology’s inherent characteristics. The first layer deals
with flow allocations at the site level, i.e., MaxSiteFlow, mirror-
ing conventional TE strategies. The solution of the first layer is
adopted as the input for the subproblem MaxEndpointFlow at the
second layer, which is a series of SSP problems that we introduce
an innovative approximation algorithm FastSSP to address.

5 MegaTE Data Plane

In this section, we present the data plane implementation ofMegaTE.
In particular, we first describe the eBPF-based host stack for instance
identification and instance-level flow collection (§5.1). Then, we in-
troduce segment routing to route packets from the endpoints (§5.2).

5.1 eBPF-Based Host Networking Stack

In the virtualized cloud, the dynamic provisioning and decommis-
sioning of millions of virtual instances on the application layer
result in the fact that multiple flows of the same tenant have dif-
ferent identifiers in five tuples <src_ip, dst_ip, proto, src_port,
dst_port> of IP packets. These flows from the same tenant can
not be distinguished on the router sites, limiting the conventional
TE systems [12, 20, 25] to provide network resources in a way that
aligns with the specific needs of each virtual instance. Meeting the
QoS demand for each virtual instance requires the insertion of SR
information into the packet header in end hosts, enabling WAN
routers to identify and adhere to the specified routes.

eBPF [14, 34] enables user-space applications to customize com-
plex operations inside the kernel, such as packet tracing and packet
processing [18, 45]. Each eBPF program should be attached to a
hook, such as kernel probes, kernel tracepoints, and traffic control
(TC) [33], which will be triggered by a kernel event. The eBPF maps
are generic key-value stores used to store eBPF program states,

Figure 6: eBPF implementation onMegaTE.

enabling communications among various eBPF programs and be-
tween eBPF programs and user-space processes. In each end host,
there is an endpoint agent, which is used for the interaction be-
tween the controller and endpoint. The powerful functionality of
eBPF provides a promising way to achieve instance-level segment
routing in end hosts. We will describe the implementation of eBPF
in detail below.
Instance identification.Mapping the packet in the TC layer to
its originated virtual instance is critical for achieving the instant-
level flow collection and segment routing at the virtual instance.
However, it is hard to directly identify the packet using five tu-
ples at the TC hook to its originated instance. To address this, as
shown in Figure 6, we attach the eBPF programs at different ker-
nel hooks to obtain the related information. Specifically, the eBPF
program is attached at syscalls/sys_enter_execve tracepoint
hook to collect the process ID (pid) and instance ID (ins_id) once
the instance runs a process, and then stores them into the eBPF
map named env_map. When the process creates a socket connec-
tion for packet transmission, it will trigger another eBPF program
attached at kprobe/ctnetlink_conntrack_event to collect five
tuples (5tuple) and process ID (pid) of the connection and store them
into the eBPFmap named contk_map. Then this eBPF program com-
bines the env_map and contk_map to obtain inf_map with the key
and value being 5tuple and ins_id respectively. Therefore, each five-
tuple item of a packet will be accurately mapped to its originated
virtual instance.
Instance-level flow collection. The instance-level flow collection
module consists of two parts: (𝑖) a kernel-space eBPF program for
profiling packets and storing flow statistics into the traffic_map,
and (𝑖𝑖) a user-space process executed periodically to read the data
from the eBPF map. Specifically, as the TC layer is the closest layer
to the NIC that has access to the entire Ethernet frame, we attach
the eBPF program at the TC layer to precisely capture the packet in-
formation. Once a packet arrives at the TC layer, the eBPF program
is triggered to process the packet to obtain the packet statistics (e.g.,
five tuples, packet bytes). If the five-tuple field of the packet is not
found in the traffic_map, the eBPF program will add a new item
in the map with the key and value being the 5tuple and traffic vol-
ume respectively. Otherwise, the eBPF program updates the traffic
volume on the map by counting the packet size. For a large packet
with a size exceeding the maximum transmission unit (MTU), it

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Miao, Zhong, Xiao, Yang, Zhang, et al.

(a) Header hierarchy. (b) SR Header.

Figure 7: Segment routing header design.

should be fragmented into several fragments and these fragments
share the same identification (ipid) [39]. The eBPF program stores
the traffic volume in the traffic_map and ipid and 5tuple in the
frag_map when it receives the first fragmentation. Upon receiving
subsequent fragmentations, the eBPF program obtains the 5tuple
of the fragmentations by mapping the ipid in the frag_map, and
then updates the traffic volume of that 5tuple in the traffic_map.
The endpoint agent will periodically (e.g., a TE period [19]) initiate
a user-space process to read the instance-level flow data contain-
ing a tuple of ins_id and volume by combining the inf_map and
traffic_map and store them into the backend server.

5.2 Segment Routing

Segment routing information insertion. In the cloud environ-
ment, Virtual Extensible LAN (VXLAN) [32] technology is adopted
for communications among different containers. As shown in Fig-
ure 7(a), each Ethernet frame has a VXLAN header added and is
then encapsulated in a UDP-IP packet. Once the centralized con-
troller calculates the optimal path decision for each instance after
the TE optimization, it will notify the endpoint agent to initiate a
process to store the instance ID and packet path in the eBPF maps,
namely path_map (see Figure 6). Upon receiving a packet, the eBPF
program attached at the TC layer firstly captures the five tuples
to obtain the optimal path of the packet from the eBPF maps by
operating on the inf_map and path_map. The path of the packet is
then inserted into the packet header, represented as theMegaTE SR
header. Here, the SR header is inserted subsequent to the VXLAN
header. Figure 7(b) shows the specifications of the SR header de-
signed for packet routing. The “Hop_Number” field represents the
total number of hops; the “Hop[]” array is a sequence of next hops,
specifying the detailed path of the packet traversing the WANs; the
“Offset” field is the current offset of the hop in the hop[]. Meanwhile,
the eBPF program will also insert a flag in the “Reserved” field of
the VXLAN header to indicate whether the packet is inserted with
the MegaTE SR information.
Router implementation. The router site profiles the packet and
analyzes the VXLAN header to identify if the packet uses MegaTE
SR information. If it is identified as aMegaTE SR header, the router
obtains the hop information from the SR header and forwards the
packet to the specified path.

6 Evaluations

In this section, we first describe the experiment setup (§6.1). Next,
we compare MegaTE with state-of-the-art TE schemes to show

10m 10m+210m−2

1

0.5

0

Number

CD
F

Empirical

Weibull

Figure 8: Endpoint number.

Topology Sites Endpoints

B4* 12 120,000

Deltacom* 113 1,130,000

Cogentco* 197 1,970,000

TWAN O(100) O(1,000,000)

Table 2: Network Topology.

that MegaTE supports a larger number of endpoints with near-
optimal flow allocations (§6.2), and demonstrate the robustness
of MegaTE to handle link failures (§6.3). Finally, we show that
MegaTE introduces negligible overhead when connecting millions
of endpoints (§6.4).

6.1 Experimental Setup

Network topologies at the granularity of endpoints.We study
the distribution of the endpoint number in the production WAN
that a router site connects. Figure 8 plots the CDF for the endpoint
number across the router sites, derived by the empirical traces of
the TWAN network. The x-axis represents the endpoint number
connecting the router site, parameterized by𝑚.4 An important ob-
servation is that the number of endpoints that a router site connects
varies significantly in orders of magnitude. We use a Weibull prob-
ability distribution to fit the empirical data collected from TWAN.
We then consider four topologies ranging from tens to hundreds
of router sites: our production TWAN, B4* [25], Deltacom* [1] and
Cogentco* [1]. Here, * indicates that we have made the modification
to the original topology by adding endpoints to sites. The number
of sites and the maximum number of endpoints of these topologies
are summarized in Table 2. Then we change the scale parameter
of our Weibull distribution to study the impact of the endpoint
number that a site connects on the network performance.
Traffic matrices at the granularity of endpoints. We collected
instance-level flow data from endpoints for a typical day from
TWAN. The flow data observed during each TE period (e.g., 5 min-
utes) between each source-destination endpoint pair is regarded
as their traffic demand. To generate instance-level traffic demand
on other network topologies, i.e., B4*, Deltacom*, and Cogentco*,
we firstly map each new site pair to a random site pair in TWAN,
and then map the instance-level traffic demand in each new end-
point pair connecting to the site pair to a random endpoint pair
connecting the mapped site pair in TWAN. For different topology
scales (i.e., different numbers of endpoints connecting to a router
site), we randomly select the traffic demands from endpoint pairs
connecting to the same site pair.
TE Benchmark schemes. We compare our proposed MegaTE
against several state-of-the-art TE schemes that aim at solving TE
problems with large topologies quickly.
• NCFlow [2]: NCFlow divides the network topology into multiple
disjoint clusters and solves the TE optimization subproblem in

4The exact value of𝑚 is omitted for confidentiality.

MegaTE: Extending WAN TE to Millions of Endpoints ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia
R

u
n

ti
m

e
(s

)

Endpoint number

LP-all

NCFLow

TEAL

MegaTE

103

102

101

100

10−1

10−2

(a) B4*
R

u
n

ti
m

e
(s

)

Endpoint number

LP-all

NCFLow

TEAL

MegaTE

103

102

101

100

10−1

(b) Cogentco*

R
u

n
ti

m
e

(s
)

Endpoint number

LP-all

NCFLow

TEAL

MegaTE

103

102

101

100

10−1

10−2

(c) Deltacom*

R
u

n
ti

m
e

(s
)

LP-all

NCFLow

TEAL

MegaTE

103

102

101

100

10−1

10−2

Endpoint number

(d) TWAN

Figure 9: [Simulation] TE algorithm run time on four different network topologies.

Sa
ti

sf
ie

d
 d

em
an

d
(%

)

Endpoint number

LP-all

NCFLow

TEAL

MegaTE

90

88

86

84

82

(a) B4*

Sa
ti

sf
ie

d
 d

em
an

d
(%

)

Endpoint number

LP-all

NCFLow

TEAL

MegaTE

100

98

96

94

92

(b) Cogentco*
Sa

ti
sf

ie
d

 d
em

an
d

(%
)

Endpoint number

LP-all

NCFLow

TEAL

MegaTE

100

98

96

94

92

(c) Deltacom*

Sa
ti

sf
ie

d
 d

em
an

d
(%

)

Endpoint number

LP-all

NCFLow

TEAL

MegaTE
90

100

98

96

94

92

(d) TWAN

Figure 10: [Simulation] Satisfied demand on four different network topologies.

each cluster in parallel, and the results from these clusters are
merged to obtain a global allocation.
• TEAL [44]: TEAL is a learning-based TE algorithm that utilizes
the graph neural network (NN) andAlternating DirectionMethod
of Multipliers (ADMM) to generate a valid global allocation.
• LP-all: LP-all scheme is a linear programming (LP) algorithm that
solves the multi-commodity flow (MCF) problem for the demands
between endpoints.

Metrics. We consider the following performance metrics for TE.
• Computation time: We measure the average elapsed time required
by each approach to compute the flow allocation among all traffic
matrices. The measurement of TEAL is carried out using an
additional GPU (Nvidia A30) following the setup in [44] while
the rest is carried out on the server with 24 CPU threads (Intel
Xeon Gold 5317) and 128GB of memory. We use the Gurobi to
solve the LP-all, NCFlow, andMegaTE. The computation time of
TEAL is the pure GPU run time, and LP-all, NCFlow, andMegaTE
is the Gurobi solver run time.
• Satisfied demand: We use the satisfied demand to evaluate these
TE schemes that optimize the total flow which is represented
as the ratio of the total guaranteed demand to the total traffic
demand across all traffic matrices.
• Packet latency: To measure the packet latency experienced by
virtual instances’ traffic flows, we sum the measured latency for
each hop along the path for TWAN. For other topologies, i.e., B4*,
Deltacom*, and Cogentco*, we simplify the packet latency as the
number of hops in the network.

6.2 MegaTE vs. the state-of-the-art

We compare MegaTE with the state-of-the-art TE schemes on
four network topologies.MegaTE achieves more than 20× larger

network topology with a similar optimization run time compared
to state-of-the-art TE systems (Figure 9). Meanwhile,MegaTE does
not lose the optimality to achieve high satisfied demand even if the
number of endpoints increases to millions (Figure 10). Furthermore,
MegaTE achieves a fine-grained traffic allocation to reduce the
packet latency for time-sensitive services (Figure 11).
TE computation time. Figure 9 presents the TE computation
time as the network scale increases among four typical networks.
On the small topology with about 100 endpoints, almost all TE
schemes obtain the optimal TE decisions within one second. TEAL
performs the best since it only needs to perform one forward pass
on the NN model and several iterations of ADMM to obtain TE
decisions, while the rest of TE schemes spend a certain amount of
time by (integer) linear optimization-based solvers. As the network
topology scales to thousands of endpoints, the performance varies
among these TE schemes. For example, as for Deltacom*, the LP-
all still completes the TE computation for the network with 1130
endpoints and it takes 18 seconds to complete the TE computation.
This is attributable to the special structure of our network topol-
ogy which greatly reduces the solution time. Both NCFlow and
TEAL reduce the computation time to 5 seconds for the network
topology with 1130 endpoints since NCFlow contracts the network
into clusters and solves these clusters in parallel, and TEAL lever-
ages NN and ADMM to accelerate the TE computation. In contrast,
MegaTE completes the flow allocation among 22,600 endpoints
with a lower optimization run time (i.e., 2 seconds) compared to
NCFlow and TEAL, achieving more than 20× larger network topol-
ogy. As for hyper-scale network topologies with tens of thousands
to millions of endpoints, traditional TE schemes are not practical
for performing TE computation since they will encounter out-of-
memory issues due to a lot of memory consumption during the
computation.MegaTE contracts the network topology to reduce

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Miao, Zhong, Xiao, Yang, Zhang, et al.

0.4

0.6

0.8

1

113 1130 5650 11300 22600 565K 1130K

Pa
ck

et
 la

te
n

cy

Endpoint number

NCFlow TEAL MegaTE

o
u

t
o

f
m

em
o

ry

o
u

t
o

f
m

em
o

ry

o
u

t
o

f
m

em
o

ry

o
u

t
o

f
m

em
o

ry

o
u

t
o

f
m

em
o

ry

Figure 11: [Simulation] Packet latency in Delatcom*.

the scale of the problem and facilitate the parallel computation,
and further introduces FastSSP algorithm to solve the problem.
MegaTE completes the flow allocation with tens of seconds even if
the network scales up to O(1,000,000) endpoints in TWAN.
Satisfied demand. Figure 10 presents the satisfied demand as the
network scale increases among four typical networks. We observe
that MegaTE retains a demand that is close to the optimal. For
example, with 120 endpoints in B4*, MegaTE satisfies a demand
of 88.1%, which is slightly lower than the optimal (vs. 88.2% for
LP-all). As the network topology scales up to thousands of end-
points, such as 1130 endpoints in Deltacom*, both NCFlow and
TEAL only satisfy 92.4% and 94.0% of the demand, respectively. The
main reason is that these schemes overemphasize accelerating the
TE computation and they always lose the optimality to support
more satisfied demand. In contrast,MegaTE maintains 96.8% sat-
isfied demand. Furthermore, we observe that MegaTE does not
lose optimality even if the network topology scales to millions of
endpoints, showing less degradation compared to the optimal re-
sults of LP-all. MegaTE contracts the network topology where the
first layer leverages LP to compute the optimal aggregated traffic
distribution and then allocates the bandwidth within the cluster
using FastSSP. The FastSSP is an approximation of the optimal
solution. Therefore,MegaTE is always optimal even if the network
becomes larger with a larger number of connected endpoints.
Packet latency. Figure 11 shows the normalized packet latency
of QoS classes 1 (i.e., time-intensive services) of a typical site pair
in Deltacom. We observe that both NCFlow and TEAL perform
poorly on these high-priority and time-intensive services.MegaTE
achieves low latency, reducing the time by 25% and 33% compared to
NCFlow and TEAL, respectively. The main reason is that previous
approaches make TE decisions between router sites based on ag-
gregated traffic. Once the aggregated traffic contains the flow with
multiple classes, the higher class will be mistakenly allocated to
the path with larger network latency. In contrast, MegaTE enables
a finer-grained scheduling of network traffic at the endpoint level.
Each flow could be accurately assigned to the appropriate path to
meet its demand. For example, the flow from these time-sensitive
applications will be allocated to the shortest path.

6.3 MegaTE Under Failures

MegaTE can obtain the flow allocation in seconds, even for hyper-
scale topologies with millions of endpoints. The real-time compu-
tation allows MegaTE to efficiently address link failures [2, 31, 44],
asMegaTE can quickly recompute flow allocation on the altered
topology. Figure 12(a) shows the satisfied demand of TE schemes
in the presence of different numbers of link failures (e.g., 2 and 5

0 link 2 link 5 link

NCFlow TEAL MegaTE

Link failure number

100

95

90

85

80

Sa
ti

sf
ie

d
 d

e
m

an
d

(%
)

(a) Endpoint=1130

0 link 2 link 5 link

NCFlow TEAL MegaTE

Link failure number

100

95

90

85

80

Sa
ti

sf
ie

d
 d

e
m

an
d

(%
)

o
u

t
o

f
m

em
o

ry

o
u

t
o

f
m

em
o

ry

o
u

t
o

f
m

em
o

ry

(b) Endpoint=5650

Figure 12: [Simulation] Satisfied demand under failures in

Delatcom*.

C
P

U
 u

ti
liz

at
io

n
(%

)

Connections

100

80

60

0
20

1K 2K 3K 4K 5K 6K

40

(a) CPU core utilization

M
em

o
ry

 (
M

B
)

Connections

800

600

400

0

200

1K 2K 3K 4K 5K 6K

(b) Memory usage

Figure 13: [Simulation] CPU utilization and memory usage.

C
P

U
 c

o
re

 n
u

m
b

er

Endpoints

103

102

101

100
102 103 104 105 106

Top-down approach
Bottom-up approach

(a) CPU core

M
em

o
ry

 (
G

B
)

Endpoints

103

102

101

100
102 103 104 105 106

Top-down approach
Bottom-up approach

(b) Memory usage

Figure 14: [Simulation] CPU core counts and memory usage.

link failures) in Delatcom*. For the network with 1130 endpoints,
we observe a stable gap (about 4%) of the satisfied demand among
NCFlow andMegaTE since they perform TE recomputation once
the link fails, and the new flow allocation is computed within sec-
onds to avoid packet loss during the recomputation period. As the
network topology becomes larger with a total of 5650 endpoints in
Figure 12(b), we observe that the gap between the satisfied demand
by NCFlow andMegaTE increases, reaching a value of 8.2%. The
main reason is that NCFlow takes about 100 seconds to recompute
the new traffic allocation. A large portion of network flows that
have traversed the failed links will be dropped during the TE recom-
putation period. In contrast,MegaTE takes less than one second
to recompute new traffic allocation upon link failures, satisfying
more traffic demand than NCFlow. As for the hyper-scale topology
with millions of nodes, previous TE approaches such as NCFlow
and TEAL require a large memory size and a long time to execute
the new TE policies, and are not practical. In contrast,MegaTE can
still react to these failures in a timely manner (i.e., tens of seconds)
to maintain a high satisfied demand.

6.4 MegaTE Synchronization Overhead

In the traditional TE system, [2, 8, 19, 20, 29, 31, 37, 40, 42, 46], the
TE’s control loop is top-down that the SDN controller only needs

MegaTE: Extending WAN TE to Millions of Endpoints ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

to keep a persistent connection with each router to synchronize
the TE policies. In such a system, synchronizing TE configuration
is less of a concern because the controller only needs a manageable
number of routers or switches, ranging from tens to a few thou-
sand. However, the problem becomes challenging if we extend the
top-down control loop to millions of endpoints. We evaluate the
overhead of the conventional top-down control loop andMegaTE’s
bottom-up control loop.

As the control software is deployed in the cloud for robust consid-
eration, we use the same cloud environment to faithfully evaluate
the overhead in a real-world setting. We conducted a pressure test
on CPU utilization and memory usage using a virtual machine
with 1 CPU core and 1 GB memory, while varying the number
of persistent connections. Figure 13 shows the CPU and memory
overhead as the number of persistent connections increases. When
the number of connections is 6,000, the CPU utilization reaches
90% and memory usage amounts to 750 MB. Based on the feed-
back from network operators, consistent and sustained high CPU
utilization (e.g., 90%) will cause the risk of failures.

Figure 14 shows the number of CPU cores and memory usage
as the number of endpoints increases. We observe that more re-
sources are required as the number of endpoints increases. When
the number of endpoints is 1,000, we can adopt the conventional
top-down approach which maintains persistent connections be-
tween the controller and endpoints to synchronize the TE policies
since this approach only consumes little resources. However, as
the endpoint number increases to one million, maintaining persis-
tent connections between the controller and all endpoints is quite
resource-consuming, requiring at least 167 CPU cores running at
high usage and 125 GB of memory. A more attractive approach is
the bottom-up approach which offloads the millions of controller
connections into database queries by leveraging the distributed
cloud databases. We only need to use 1 CPU core and 1 GB of mem-
ory to synchronize the TE configurations to the database, which
greatly reduces the load on the controller.

7 Production Deployment at TencentWAN

MegaTE has been deployed in the production WAN of Tencent
to serve millions of tenants since December 2022. We compare our
MegaTE with our traditional TE approach, which does not differ-
entiate the QoS class of endpoint flows, and directly distributes
the traffic in the backbone using Multi-Commodity Flow (MCF).
We use several real-world cases to evaluate MegaTE in production.
Compared to the traditional approach,MegaTE reduces the latency
for time-sensitive applications at most by 51%, ensuring availabil-
ity for high-priority applications with an average of 99.995%, and
reduces the cost by 50% for the low-priority applications.

Latency reduction for time-sensitive applications. Figure 15
shows five typical time-sensitive network applications with video
streaming (App 1), live streaming (App 2), real-time message (App
3), financial payment (App 4), and online gaming (App 5). The y-
axis represents the latency which is not disclosed for confidentiality
reasons. We observe that MegaTE can reduce the network latency
for all of these time-sensitive applications. Especially for APP1, the
latency is reduced by more than 51%. As the traditional approach
always allocates the aggregated network traffic at each site, some

N
o

rm
al

iz
ed

 la
te

n
cy

0

0.2

0.4

0.6

0.8

1

App1 App2 App3 App4 App5

Traditional

MegaTE

Figure 15: [Production] Packet latency reductions.

A
va
ila
b
ili
ty
(%

)

1.0

2022-12 2023-122023-06

0.99999

0.9999

0.999
0.99
0.9

APP6
APP7

Figure 16: [Production] Customized service availability.

0

0.2

0.4

0.6

0.8

1

APP8

APP9N
o

rm
al

iz
ed

 c
o

st

2022-12 2023-122023-06

Figure 17: [Production] Cost reductions.

of the time-sensitive network traffic will be allocated to the long
paths. In contrast, our proposed MegaTE enables to manage the
network traffic at the endpoint, and thus meets the requirements
of these time-sensitive applications.
Availability guarantee for high-priority traffic. Figure 16 shows
the availability of two applications with App 6 belonging to QoS
class 1 (99.99%) and App 7 belonging to QoS class 3 (99%). Upon
the deployment ofMegaTE in December, 2022, we observed that
there is a large gap in their availability. But neither of them breaks
the availability requirements. Specifically, we observe that the tra-
ditional approach may break up the availability requirements for
App 6 with the availability of 99.988% in October, 2022. After the
deployment ofMegaTE, the average availability of App 6 maintains
more than 99.995%, greatly exceeding the availability requirements.
The main reason is that the flows of App 6 are precisely allocated
to the high availability path. As for App 7, the generated flows
are dispatched to a lower availability path which still meets the
availability requirements.
Low cost for low-priority application. Figure 17 shows the cost
of two typical applications. App 8 is an online gaming application
(QoS class 1) and App 9 is a bulk transfer application (QoS class 3).
Since the initial system cannot differentiate traffic with multiple
priorities, all flows will be routed to the high-availability path to
ensure the availability of high-priority applications. However, this
operation will introduce additional costs for these low-priority
applications. Upon the deployment ofMegaTE, we observe that the
cost of App 9 is reduced by 50%. The main reason is that the traffic

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Miao, Zhong, Xiao, Yang, Zhang, et al.

generated by the bulk transfer application is accurately dispatched
to the low-cost path and the cost of the traffic per Gbps is reduced.

8 Discussions

TE with application-level statistics. MegaTE operates under
a model of weak coupling with applications, where our scheduler
makes decisions based solely on the observed ongoing traffic band-
width. However, recent studies [3] have suggested considering TE
with strong application coupling, where the flow sizes for a sig-
nificant portion of the traffic are known in advance. These flow
sizes can also be predicted through various methods [7]. Having
such knowledge about flows presents an opportunity to make more
informed TE decisions [26], though it also introduces complexity
to the modeling process [3]. We plan to explore the incorporation
of additional flow characteristics into our TE model in future work.

Parallelism in SSP. The number of SSPs that need to be solved in
MegaTE is 𝑂 (𝑁 2), where N represents the number of site nodes.
In large-scale networks, the total computation time is significantly
increased due to the limitation of CPU threads. Improving the
parallelism of SSP, using a similar approach as Teal [44], to reduce
processing latency with GPU acceleration will be our future work.

AcceleratingMaxSiteFlow solving.AlthoughMegaTE efficiently
handles special network topologies with millions of leaf nodes, the
solving time for MaxSiteFlow increases significantly when there are
a large number of site nodes. A synergy between NCFlow or TEAL
and SSP to accelerate the solving of MaxSiteFlow is also worth
further investigation.

Hybrid approach on TE configuration synchronization. The
eventual consistency approach greatly reduces resource consump-
tion compared to the conventional approach. However, it takes
several seconds to synchronize the TE configurations among all
endpoints in failure scenarios, causing a part of the traffic loss dur-
ing the synchronization period. Our measurements in TWAN show
that a small part of the flows account for most of the network traffic.
A hybrid approach that maintains persistent connections for these
heavy-traffic endpoints and performs eventual consistency for the
rest of the endpoints will be our future work.

9 Related Work

Traffic engineering. TE, as one of the core networking problems,
has been widely studied in both industry and academia with the
goal of maximizing network throughput, guaranteeing load balance
among links, and failure resilience [2, 8, 19, 20, 26, 29, 31, 37, 40, 42,
46]. As network scale and trafficmatrices increase, the time required
to obtain TE decisions has become a bottleneck in the control loop.
Some works focused on accelerating the TE computation time on
large network topology [2, 36, 44]. However, these works only
addressed the network topology with thousands of nodes and will
suffer from long computation time and excessive use of network
resources (e.g., tens of thousands of GPUs) when being applied to a
million-node network. In contrast, MegaTE contracts the network
topology where the first layer leverages the LP to compute the
optimal aggregated traffic distribution and then allocates bandwidth
within the cluster using FastSSP. Therefore, MegaTE only uses

tens of seconds to calculate the flow allocation with millions of
endpoints.
eBPF-based host networking stack. eBPF [14] is a general ker-
nel technology evolved from BPF [34], which enables kernel pro-
grams in a secure, high-performance and scalable manner. It has
opened up many new application scenarios in telemetry [17, 18],
networking [45], security [43] and other fields. In terms of teleme-
try, Millisampler [17] accurately collected burst traffic data on the
host with high precision, resolving the contradiction between sig-
nificant performance overhead and collection accuracy brought
about by traditional collection methods. PowerTCP [18] not only
supported the collection of TCP INT signaling, but also achieved
more accurate congestion control through eBPF without modifying
network devices and invasive impact on host services. In network-
ing, the load balancer by Katran [45] has been widely deployed in
production network environments. In contrast, MegaTE uses eBPF
to collect flow statistics at the instance level and add TE results to
packet headers to route traffic flows at the instance level.
Knapsack problem and SSP. Both fall in the scope of combina-
torial optimization, which consists of finding an optimal object
from a finite set of objects. Early research includes the renowned
dynamic programming algorithm [6], partition methods that ac-
celerate dynamic programming algorithms [22], and quantization
approximation methods with controllable errors [30]. All of these
methods provide the final solution. Currently, mainstream research
on SSP focuses on answering whether a solution exists [9, 13, 27],
in near-linear pseudopolynomial time. In contrast,MegaTE utilizes
the FastSSP to significantly reduce the time complexity.

10 Conclusion

We propose and implement a first-of-its-kind TE system, called
MegaTE, to adapt to the requirements of each fine-grained flow
between virtual instances. At the core of MegaTE is the paradigm
shift from the top-down centralized control to bottom-up asynchro-
nous database query in TE’s control loop, combined with eBPF-
based segment routing in endpoints and network contraction in TE
optimization, to scale to support millions of endpoints. We evalu-
ateMegaTE using large-scale simulations with production traffic
traces. Our simulation results show that MegaTE supports 20×
larger network topology with a similar optimization run time com-
pared to prior work. MegaTE has been rolled out in a global-scale
public cloud provider since December 2022. Our production results
show thatMegaTE reduces the packet latency for time-sensitive
applications by 51% and reduces the cost by 50% for low-priority
applications.

This work does not raise ethical issues.

Acknowledgment

We sincerely thank our shepherd Behnaz Arzani and anonymous
SIGCOMM reviewers for their insightful comments. We are grateful
to Sirui Li, Jaichen Dong, and Zhihao Wang for their help with
the simulation evaluations. We also thank the software engineers,
network architects, and senior management of the engineering
teams at Tencent for their support and effort to deployMegaTE
to the production WAN. Chuanchuan Yang is the corresponding
author.

MegaTE: Extending WAN TE to Millions of Endpoints ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

References

[1] 2021. The Internet Topology Zoo. http://www.topology-zoo.org/.
[2] Firas Abuzaid, Srikanth Kandula, Behnaz Arzani, Ishai Menache, Matei Zaharia,

and Peter Bailis. 2021. Contracting Wide-area Network Topologies to Solve Flow
Problems Quickly. In 18th {USENIX} Symposium on Networked Systems Design
and Implementation ({NSDI} 21). 175–200.

[3] Behnaz Arzani, Siva Kesava Reddy Kakarla, Miguel Castro, Srikanth Kandula,
Saeed Maleki, and Luke Marshall. 2023. Rethinking Machine Learning Collective
Communication as a Multi-Commodity Flow Problem. CoRR abs/2305.13479
(2023). https://doi.org/10.48550/ARXIV.2305.13479 arXiv:2305.13479

[4] Siamak Azodolmolky, Philipp Wieder, and Ramin Yahyapour. 2013. Cloud com-
puting networking: Challenges and opportunities for innovations. IEEE Commu-
nications Magazine 51, 7 (2013), 54–62.

[5] Valter Balegas, Sérgio Duarte, Carla Ferreira, Rodrigo Rodrigues, Nuno Preguiça,
Mahsa Najafzadeh, and Marc Shapiro. 2015. Putting consistency back into even-
tual consistency. In Proceedings of the Tenth European Conference on Computer
Systems. 1–16.

[6] Richard Bellman. 1957. Dynamic Programming. Princeton University Press.
[7] Theophilus Benson, Ashok Anand, Aditya Akella, and Ming Zhang. 2011. Mi-

croTE: fine grained traffic engineering for data centers. In Proceedings of the
2011 Conference on Emerging Networking Experiments and Technologies, Co-NEXT
’11, Tokyo, Japan, December 6-9, 2011. ACM, 8. https://doi.org/10.1145/2079296.
2079304

[8] Jeremy Bogle, Nikhil Bhatia, Manya Ghobadi, Ishai Menache, Nikolaj Bjørner,
Asaf Valadarsky, and Michael Schapira. 2019. TEAVAR: striking the right
utilization-availability balance in WAN traffic engineering. In Proceedings of the
ACM Special Interest Group on Data Communication. 29–43.

[9] Karl Bringmann. 2017. A near-linear pseudopolynomial time algorithm for
subset sum. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium
on Discrete Algorithms (Barcelona, Spain) (SODA ’17). Society for Industrial and
Applied Mathematics, USA, 1073–1084.

[10] Josiah Carlson. 2013. Redis in action. Simon and Schuster.
[11] Shawn Shuoshuo Chen, Keqiang He, Rui Wang, Srinivasan Seshan, and Peter

Steenkiste. 2024. Precise Data Center Traffic Engineering with Constrained
Hardware Resources. In 21st USENIX Symposium on Networked Systems Design
and Implementation (NSDI 24). 669–690.

[12] Marek Denis, Yuanjun Yao, Ashley Hatch, Qin Zhang, Chiun Lin Lim, Shuqiang
Zhang, Kyle Sugrue, Henry Kwok, Mikel Jimenez Fernandez, Petr Lapukhov,
et al. 2023. Ebb: Reliable and evolvable express backbone network in meta. In
Proceedings of the ACM SIGCOMM 2023 Conference. 346–359.

[13] Martin E. Dyer. 2003. Approximate counting by dynamic programming. In
Proceedings of the 35th Annual ACM Symposium on Theory of Computing, June
9-11, 2003, San Diego, CA, USA.

[14] eBPF. [n. d.]. eBPF - Introduction, Tutorials & Community Resources. https:
//ebpf.io/.

[15] Bernard Fortz, Jennifer Rexford, and Mikkel Thorup. 2002. Traffic engineering
with traditional IP routing protocols. IEEE communications Magazine 40, 10
(2002), 118–124.

[16] Bernard Fortz and Mikkel Thorup. 2000. Internet traffic engineering by optimiz-
ing OSPF weights. In Proceedings IEEE INFOCOM 2000. conference on computer
communications. Nineteenth annual joint conference of the IEEE computer and
communications societies (Cat. No. 00CH37064), Vol. 2. IEEE, 519–528.

[17] Ehab Ghabashneh, Yimeng Zhao, Cristian Lumezanu, Neil Spring, Srikanth Sun-
daresan, and Sanjay Rao. 2022. A microscopic view of bursts, buffer contention,
and loss in data centers. In Proceedings of the 22nd ACM Internet Measurement
Conference. 567–580.

[18] Jörn-Thorben Hinz, Vamsi Addanki, Csaba Györgyi, Theo Jepsen, and Stefan
Schmid. 2023. TCP’s Third Eye: Leveraging eBPF for Telemetry-Powered Con-
gestion Control. In Proceedings of the 1st Workshop on eBPF and Kernel Extensions.
1–7.

[19] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming Zhang, Vijay Gill, Mohan
Nanduri, and Roger Wattenhofer. 2013. Achieving high utilization with software-
driven WAN. In ACM SIGCOMM 2013 Conference, SIGCOMM 2013, Hong Kong,
August 12-16, 2013. ACM, 15–26. https://doi.org/10.1145/2486001.2486012

[20] Chi-Yao Hong, Subhasree Mandal, Mohammad Al-Fares, Min Zhu, Richard Alimi,
Chandan Bhagat, Sourabh Jain, Jay Kaimal, Shiyu Liang, Kirill Mendelev, et al.
2018. B4 and after: managing hierarchy, partitioning, and asymmetry for avail-
ability and scale in google’s software-defined WAN. In Proceedings of the 2018
Conference of the ACM Special Interest Group on Data Communication. 74–87.

[21] Ellis Horowitz and Sartaj Sahni. 1974. Computing partitions with applications to
the knapsack problem. Journal of the ACM (JACM) 21, 2 (1974), 277–292.

[22] Ellis Horowitz and Sartaj Sahni. 1974. Sahni, S.: Computing partitions with
applications to the knapsack problem. Journal of the ACM 21, 277-292. Journal
of the Acm 21, 2 (1974), 277–292.

[23] Oscar H Ibarra and Chul E Kim. 1975. Fast approximation algorithms for the
knapsack and sum of subset problems. Journal of the ACM (JACM) 22, 4 (1975),
463–468.

[24] Giorgio P Ingargiola and James F Korsh. 1973. Reduction algorithm for zero-one
single knapsack problems. Management science 20, 4-part-i (1973), 460–463.

[25] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon Poutievski, Arjun
Singh, Subbaiah Venkata, Jim Wanderer, Junlan Zhou, Min Zhu, et al. 2013. B4:
Experience with a globally-deployed software defined WAN. ACM SIGCOMM
Computer Communication Review 43, 4 (2013), 3–14.

[26] Srikanth Kandula, Ishai Menache, Roy Schwartz, and Spandana Raj Babbula.
2014. Calendaring for wide area networks. In ACM SIGCOMM 2014 Conference,
SIGCOMM’14, Chicago, IL, USA, August 17-22, 2014. ACM, 515–526. https://doi.
org/10.1145/2619239.2626336

[27] Konstantinos Koiliaris and Chao Xu. 2017. A faster pseudopolynomial time
algorithm for subset sum. In Proceedings of the Twenty-Eighth Annual ACM-SIAM
Symposium on Discrete Algorithms (Barcelona, Spain) (SODA ’17). Society for
Industrial and Applied Mathematics, USA, 1062–1072.

[28] Umesh Krishnaswamy, Rachee Singh, Nikolaj Bjørner, and Himanshu Raj.
2022. Decentralized cloud wide-area network traffic engineering with
{BLASTSHIELD}. In 19th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 22). 325–338.

[29] Praveen Kumar, Yang Yuan, Chris Yu, Nate Foster, Robert Kleinberg, Petr La-
pukhov, Chiun Lin Lim, and Robert Soulé. 2018. Semi-oblivious traffic engineer-
ing: The road not taken. In 15th {USENIX} Symposium on Networked Systems
Design and Implementation ({NSDI} 18). 157–170.

[30] Eugene L. Lawler. 1979. Fast Approximation Algorithms for Knapsack Problems.
Mathematics of Operations Research 4, 4 (1979), 339–356.

[31] Hongqiang Harry Liu, Srikanth Kandula, Ratul Mahajan, Ming Zhang, and David
Gelernter. 2014. Traffic engineering with forward fault correction. In Proceedings
of the 2014 ACM Conference on SIGCOMM. 527–538.

[32] M. Mahalingam, D. Dutt, K. Duda, P. Agarwal, L. Kreeger, T. Sridhar, M. Bursell,
and C. Wright. 2014. Virtual eXtensible Local Area Network (VXLAN): A Frame-
work for Overlaying Virtualized Layer 2 Networks over Layer 3 Networks. (2014).

[33] Linux Programmer’s Manual. [n. d.]. tc-bpf(8). https://man7.org/linux/man-
pages/man8/tc-bpf.8.html

[34] Steven McCanne and Van Jacobson. 1993. The BSD Packet Filter: A New Archi-
tecture for User-level Packet Capture.. In USENIX winter, Vol. 46. 259–270.

[35] Pooria Namyar, Behnaz Arzani, Srikanth Kandula, Santiago Segarra, Daniel
Crankshaw, Umesh Krishnaswamy, Ramesh Govindan, and Himanshu Raj. 2024.
Solving Max-Min Fair Resource Allocations Quickly on Large Graphs. In 21st
USENIX Symposium on Networked Systems Design and Implementation, NSDI 2024,
Santa Clara, CA, April 15-17, 2024. USENIX Association. https://www.usenix.
org/conference/nsdi24/presentation/namyar-solving

[36] Deepak Narayanan, Fiodar Kazhamiaka, Firas Abuzaid, Peter Kraft, Akshay
Agrawal, Srikanth Kandula, Stephen Boyd, andMatei Zaharia. 2021. Solving large-
scale granular resource allocation problems efficiently with pop. In Proceedings
of the ACM SIGOPS 28th Symposium on Operating Systems Principles. 521–537.

[37] Yarin Perry, Felipe Vieira Frujeri, Chaim Hoch, Srikanth Kandula, Ishai Menache,
Michael Schapira, and Aviv Tamar. 2023. DOTE: Rethinking (Predictive) WAN
Traffic Engineering. In 20th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 23). 1557–1581.

[38] Ben Pfaff, Justin Pettit, Keith Amidon, Martin Casado, Teemu Koponen, and Scott
Shenker. 2009. Extending networking into the virtualization layer.. In Hotnets.

[39] Jon Postel. 1981. Internet protocol. Technical Report.
[40] Sanjay Rao, Mohit Tawarmalani, et al. 2021. FloMore: Meeting bandwidth re-

quirements of flows. arXiv preprint arXiv:2108.03221 (2021).
[41] Sartaj Sahni. 1975. Approximate algorithms for the 0/1 knapsack problem. Journal

of the ACM (JACM) 22, 1 (1975), 115–124.
[42] Martin Suchara, Dahai Xu, Robert Doverspike, David Johnson, and Jennifer Rex-

ford. 2011. Network architecture for joint failure recovery and traffic engineering.
ACM SIGMETRICS Performance Evaluation Review 39, 1 (2011), 97–108.

[43] Lars Wüstrich, Markus Schacherbauer, Markus Budeus, Dominik Freiherr von
Künßberg, Sebastian Gallenmüller, Marc-Oliver Pahl, and Georg Carle. 2023.
Network Profiles for Detecting Application-Characteristic Behavior Using Linux
eBPF. In Proceedings of the 1st Workshop on eBPF and Kernel Extensions. 8–14.

[44] Zhiying Xu, Francis Y Yan, Rachee Singh, Justin T Chiu, Alexander M Rush,
and Minlan Yu. 2023. Teal: Learning-Accelerated Optimization of WAN Traffic
Engineering. In Proceedings of the ACM SIGCOMM 2023 Conference. 378–393.

[45] Rui Yang and Marios Kogias. 2023. HEELS: A Host-Enabled eBPF-Based Load Bal-
ancing Scheme. In Proceedings of the 1st Workshop on eBPF and Kernel Extensions.
77–83.

[46] Zhizhen Zhong, Manya Ghobadi, Alaa Khaddaj, Jonathan Leach, Yiting Xia, and
Ying Zhang. 2021. ARROW: restoration-aware traffic engineering. In Proceedings
of the 2021 ACM SIGCOMM 2021 Conference. 560–579.

http://www.topology-zoo.org/
https://doi.org/10.48550/ARXIV.2305.13479
https://arxiv.org/abs/2305.13479
https://doi.org/10.1145/2079296.2079304
https://doi.org/10.1145/2079296.2079304
https://ebpf.io/
https://ebpf.io/
https://doi.org/10.1145/2486001.2486012
https://doi.org/10.1145/2619239.2626336
https://doi.org/10.1145/2619239.2626336
https://man7.org/linux/man-pages/man8/tc-bpf.8.html
https://man7.org/linux/man-pages/man8/tc-bpf.8.html
https://www.usenix.org/conference/nsdi24/presentation/namyar-solving
https://www.usenix.org/conference/nsdi24/presentation/namyar-solving

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Miao, Zhong, Xiao, Yang, Zhang, et al.

Appendices are supportingmaterial that has not been peer-reviewed.

A TE Formulation

A.1 Proof of NP-Hardness

Theorem A.1. MaxAllFlow is an NP-Hard problem.
Proof. 0-1 knapsack is a well-known combinatorial optimiza-

tion problem which is NP-Hard [21, 24, 41]. We prove MaxAllFlow
problem is NP-Hard by showing that 0-1 knapsack problem is a spe-
cial case of MaxAllFlow. To reduce the 0-1 knapsack problem to an
instance of our problem, we create a graph with only one site pair
connected by a path, and a set of endpoint pairs 𝐼 associated with
the site pair. We then assume the bandwidth allocation𝐶 (backpack
capacity) between the site pair and corresponding endpoint pairs,
and traffic demands 𝑑𝑖 ,∀𝑖 ∈ 𝐼 (items). This creates a problem of
how to assign items (traffic demands between endpoint pairs) into
the backpack (bandwidth allocation) to maximize the total value
of the items transferred into the backpack. As a result, this is an
instance of a 0-1 knapsack problem. Since the 0-1 knapsack problem
is NP-hard, the MaxAllFlow problem is also NP-hard. □

A.2 Topology Contraction

As described in Section 4.2, we separate the graph into two layers.
First Layer. For the first layer, we aggregate the endpoint pairs
connecting to the same network site pair, i.e., ∀𝑘 ∈ 𝐾, 𝐹𝑘 =

∑
𝑡 𝐹𝑘,𝑡

where 𝐹𝑘 represents the traffic allocation between network site
pair 𝑘 and 𝐹𝑘,𝑡 specifies the bandwidth allocation on the tunnel
𝑡 . Similarly, we also aggregate the network site pair demands, i.e.,
∀𝑘 ∈ 𝐾, 𝐷𝑘 =

∑
𝑖 𝑑

𝑖
𝑘
where 𝐷𝑘 represents the demand between

network site pair 𝑘 . It follows that the TE optimization problem for
the first layer (MaxSiteFlow) is transformed to the following:

argmax
𝐹

∑︁
𝑘,𝑡

𝐹𝑘,𝑡 − 𝜖
∑︁
𝑘,𝑡

𝑤𝑡 𝐹𝑘,𝑡 (2)

𝑠 .𝑡 .
∑︁
𝑡

𝐹𝑘,𝑡 ≤ 𝐷𝑘 , ∀𝑘 (2a)∑︁
𝑘,𝑡

𝐹𝑘,𝑡𝐿(𝑡, 𝑒) ≤ 𝑐𝑒 , ∀𝑒 (2b)

𝐹𝑘,𝑡 ≥ 0, ∀𝑘, 𝑡 (2c)
The objective function (2) is to maximize the overall throughput
while preferring shorter paths. 𝜖 is a small constant. Constraint (2a)
states that the allocated bandwidth among all paths should be less
than the traffic demand. Constraint (2b) states that no link should be
overloaded. Constraint (2c) states the allocated bandwidth should
be non-negative. The first layer alone, i.e., Equation 2, aligns with
the optimization objectives found in existing TE studies [19], where
the number of network sites is up to a few thousand. Thus it can
be easily solved using existing methods [2, 19].
Second Layer. The TE problem at the second layer can be re-
garded as the traffic allocation on the path 𝑡 of site pair 𝑘 , referred
to as MaxEndpointFlow(𝐹𝑘,𝑡,{𝑑𝑖𝑘 }). We assume that 𝑡 ∈ 𝑇𝑘 is or-
dered by ascending𝑤𝑡 , meaning that paths with lower latency and
higher reliability are assigned lower subscripts 𝑡 . It is noteworthy
that MaxEndpointFlow(𝐹𝑘,𝑡,{𝑑𝑖𝑘 }) must be tackled sequentially,
with solutions for higher values (e.g., shorter paths) of 𝑡 building
upon the outcomes of lower ones. For instance, the resolution of

MaxEndpointFlow(𝐹𝑘,2,{𝑑𝑖𝑘 }) is contingent upon the results ob-
tained from MaxEndpointFlow(𝐹𝑘,1,{𝑑𝑖𝑘 }).
MaxEndpointFlow(𝐹𝑘,𝑡 , {𝑑𝑖𝑘 }): The MaxEndpointFlow problem is
a subset sum problem (SSP), a special scenario of the Knapsack prob-
lem which is classified as an NP-hard problem. This characteristic
raises the challenge of solving the MaxEndpointFlow problem in a
timely manner. Various pseudopolynomial algorithms have been
devised to tackle this issue, with dynamic programming (DP) being
the traditional method of choice. However, the DP approach is less
than ideal due to its high complexity when dealing with small val-
ues of {𝑑𝑖

𝑘
} against the large values of |𝐼𝑘 | and 𝐹𝑘,𝑡 . To mitigate this,

we propose a novel semi-DP technique that significantly reduces
complexity while allowing for controllable precision in the solution.
We refer to this algorithm as FastSSP(𝐹𝑘,𝑡,{𝑑𝑖𝑘 }), which is an ap-
proximation of optimal solution of MaxEndpointFlow(𝐹𝑘,𝑡,{𝑑𝑖𝑘 }).

FastSSP works as the following procedure:
(1) Clustering. As the endpoint flow 𝑑𝑖

𝑘
is small, we aggre-

gate these pair demands to meet or exceed a threshold 𝑀 .
Here, we set 𝑀 to 1

3𝜖
′𝐹𝑘,𝑡 where 𝜖′ is close to 0. The orig-

inal endpoint pair demands can be classified into 𝑚 size-
able demand clusters. Here,𝑚 is a small integer, determined
by 𝑀 . Let {𝑐𝑚

𝑘
} represent the aggregated demands, where

∀𝑥 ∈ [1,𝑚], 𝑐𝑚
𝑘
≥ 𝑀 and |{𝑐𝑥

𝑘
}| =𝑚.

(2) Normalization. As the time complexity of DP is closely
related to the value of 𝐹𝑘,𝑡 and aggregated demand number
𝑚, we reduce the time complexity of dynamic programming
(DP) with a factor 𝛿 . Specifically, the aggregated demand 𝑐𝑚

𝑘

is normalized to 𝑐𝑚
𝑘

= ⌈𝑐
𝑚
𝑘

𝛿
⌉ and bandwidth allocation 𝐹𝑘,𝑡

is normalized to 𝐹𝑘,𝑡 = ⌊
𝐹𝑘,𝑡
𝛿
⌋. Here, similar to [23], we set 𝛿

to 𝜖 ′
3 𝑀 (i.e., 𝜖 ′29 𝐹𝑘,𝑡). Therefore, the time complexity of DP

reduces from 𝑂 (𝑚𝐹𝑘,𝑡) to 𝑂 (𝑚⌊
𝐹𝑘,𝑡
𝛿
⌋).

(3) Solving DP. After normalization, we adopt the classic DP
approach [6] to solve the SSP and derive the selected normal-
ized demand set {𝑠 𝑗

𝑘
} ⊆ {𝑐𝑚

𝑘
} with maximizing the sum of

the subset
∑

𝑗 𝑠
𝑗

𝑘
subject to the constraint 𝐹𝑘,𝑡 . Note that we

can obtain the optimal solution by solving the DP without
introducing much time complexity since both𝑚 and 𝐹𝑘,𝑡 are
small. We then map the selected normalized demand set {𝑠 𝑗

𝑘
}

into its original demand set, represented as {𝑐∗𝑖
𝑘
}. According

to the {𝑐∗𝑖
𝑘
}, we obtain the selected pair demands {𝑑∗𝑖

𝑘
}.

(4) Sorted-based greedy algorithm. After solving DP and ob-
taining the selected demand set, there will be some residual
bandwidth 𝑅𝑘,𝑡 = 𝐹𝑘,𝑡 −

∑
𝑖 𝑐
∗𝑖
𝑘

with the residual demand set
{𝑟𝑘,𝑡 } = {𝑥 |𝑥 ∈ 𝑑𝑖𝑘and 𝑥 ∉ 𝑑∗𝑖

𝑘
}. The allocation for the resid-

ual flows is another SSP problem. Because the residual flows
have a relatively small demand, they will not pose a large
error to the final outcome. We thus adopt a sorted-based
greedy algorithm to solve the residual flow allocation, where
the solution is {𝑟∗𝑖

𝑘
} ⊂ {𝑟 𝑖

𝑘
}. Finally, we obtain the rest set

without bandwidth allocation {𝑟𝑘,𝑡 } = {𝑥 |𝑥 ∈ 𝑑𝑖𝑘and 𝑥 ∉

𝑑∗𝑖
𝑘
and 𝑥 ∉ 𝑟∗𝑖

𝑘
}. The error rate is 𝛽 ≤ min{𝑟𝑘,𝑡 }/𝐹𝑘,𝑡 .

The total time complexity of FastSSP is𝑂 (𝑚⌊ 𝐹𝑘,𝑡
𝛿
⌋)+|𝐼𝑘 |𝑙𝑜𝑔|𝐼𝑘 |)

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Conventional TE Fails Cloud Tenants QoS
	2.2 The Need for TE to Manage Individual Flow

	3 Supporting Millions of Endpoints in TE
	3.1 The TE Granularity Challenge
	3.2 Rearchitecting the TE Control Loop

	4 MegaTE Control Plane
	4.1 Problem Formulation
	4.2 Two-Stage Optimizaiontion Algorithm

	5 MegaTE Data Plane
	5.1 eBPF-Based Host Networking Stack
	5.2 Segment Routing

	6 Evaluations
	6.1 Experimental Setup
	6.2 MegaTE vs. the state-of-the-art
	6.3 MegaTE Under Failures
	6.4 MegaTE Synchronization Overhead

	7 Production Deployment at Tencent WAN
	8 Discussions
	9 Related Work
	10 Conclusion
	References
	A TE Formulation
	A.1 Proof of NP-Hardness
	A.2 Topology Contraction

