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Abstract
ECMP (equal-cost multi-path) has become a fundamental
mechanism in data centers, which distributes flows along mul-
tiple equivalent paths based on their hash values. Randomized
distribution optimizes for the aggregate case, spreading load
across flows over time. However, there exists a class of impor-
tant Precise Traffic Control (PTC) tasks that are at odds with
ECMP randomness. For instance, if an end host perceives
that its flows are traversing a problematic switch/link, it often
needs to change their paths before a fix can be rolled out. With
randomized hashing, existing solutions resort to modifying
flow tuples; since hashing mechanisms are unknown and they
vary across switches/vendors, it may take many trials before
yielding a new path. Many other similar cases exist where
precise and timely response is critical to the network.

We propose programmable ECMP (P-ECMP), a program-
ming model, compiler, and runtime that provides precise traf-
fic control. P-ECMP leverages an oft-ignored feature, ECMP
groups, which allows for a constrained set of capabilities that
are nonetheless sufficiently expressive for our tasks. An op-
erator supplies high-level descriptions of their topology and
policies, and our compiler generates PTC configurations for
each switch. End hosts can reconfigure specific flows to use
different PTC policies precisely and quickly, addressing a
range of important use cases. We have evaluated P-ECMP
using simulation at scale, and deployed one use case to a
real-world data center that serves live user traffic.

1 Introduction

ECMP (equal-cost multipath) is foundational to modern data
centers, for distributing traffic stochastically along multiple
paths. ECMP is widely adopted not only because Fat-tree
topologies [12,26] naturally expose equivalent paths, but also
because of its ease of implementation. The flow hashing mech-
anism at its core is efficiently realizable in ASICs and is
widely available in commodity off-the-shelf switches.

∗Equal contribution.

Randomized flow hashing has turned out to be a simple
yet effective mechanism. In data center networks, traffic pat-
terns are hard to predict and they fluctuate over time. ECMP
embraces this observation and optimizes for the aggregate.
Individual flows might still fall victim to unfortunate choices
of randomness (e.g., hash collisions between large flows);
however, given enough flows, and when considering a long
timespan, this randomness produces a good traffic spread and
utilizes the underlying network efficiently. All production
data center networks that we are aware of make use of ECMP.

However, strong aggregate performance does not remove
the pitfalls of randomness in specific scenarios. In particu-
lar, we have identified a set of Precise Traffic Control (PTC)
scenarios where rapid and precise response to network anoma-
lies is key but randomness hinders it. Consider the case of
switch/link failures that render an ECMP path unavailable
or unstable [49, 56, 66]: it is then critical to quickly redirect
network traffic off this path before we roll out a fix. In the pres-
ence of ECMP, this is no easy task: state-of-the-art solutions
(e.g., Google’s PLB [49] or PRR [56]) resort to random mod-
ification of flow tuples (e.g., by varying TCP ports), hoping
that it would eventually yield a new path. This trial-and-error
process could take minutes to complete [49]. Likewise, net-
work monitoring systems [28, 31, 32] often need to quickly
probe all paths to localize a fault; with randomness, we again
need repeated flow modifications until all paths are covered.
What these PTC scenarios have in common is the need to 1)
exert precise control over traffic paths 2) against the backdrop
of ECMP—the latter is equally important, as we cannot afford
to disable ECMP, even if momentarily. In other words, the
majority of network traffic should still be subjected to ECMP,
while we seek a way to impose precise control over ECMP.

We propose to achieve this by carefully leveraging a com-
modity switch feature, ECMP groups, which is as simple,
efficient, and widely available as basic ECMP itself. Basic
ECMP maps a flow f to a preconfigured list of outgoing ports
l = [p0, p2, · · · , pn] based on the range that hash( f ) falls into.
ECMP groups allow a flow to carry a selector s in its packet
header, where each s maps to a its own port list ls. Operators
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can configure the default ECMP group, say ⟨s = 0, ls=0⟩, in
conjunction with other ⟨s, ls⟩ in an ECMP matrix. By doing
so, operators could ensure, for instance, paths in ls and ls′ are
always disjoint, and that precise control can be achieved by a
single modification to the packet header field s. By leverag-
ing this long-overlooked feature, we could instantiate ECMP
matrices for each switch, so that traffic can enter/exit random
modes of control by the end hosts toggling a packet header.

We call our key design programmable ECMP (P-ECMP),
which does not require fanciful features (e.g., P4 programma-
bility [29, 35, 39, 62]) but only exposes a restricted amount of
reconfiguration for ECMP. The key challenge is to develop
the 1) programming model, 2) compilation support, and 3)
update mechanism for P-ECMP. While we could ask the op-
erator to handcraft an ECMP matrix for each switch in her
network, this is a tedious and error-prone undertaking. In-
stead, the operator describes her network in a topology matrix
T , her PTC policies in control matrix C, and our compiler
generates the ECMP matrices across the topology to realize
precise control—while taking into account SRAM constraints
across heterogeneous switches. Our consistent update mecha-
nism further provides atomic transactions within and across
switches, whether to repopulate the ECMP matrices or to
dynamically change the selectors while traffic is still in flight.

We demonstrate a set of P-ECMP use cases that were pre-
viously difficult to achieve due to the lack of precise control:

• Network failover: End hosts can precisely re-path their
flows to avoid perceived failures, whether silent packet
drops or link flaps along an existing ECMP path.

• Failure localization: Network monitoring systems can
precisely cover a set of underlying paths with their
probes, e.g., to localize failures efficiently.

• Load imbalance: When skewed traffic patterns lead to
performance degradation, end hosts can act upon con-
gestion signals (e.g., ECN) to re-path select flows.

• Multipath protocols: With multipath protocols (e.g.,
MPTCP [50], MPRDMA [40]), we can ensure that each
flow traverses a disjoint path for best performance.

• Packet spraying: Workloads that are resilient to network
reordering [24] can spray packets across multiple paths
for higher fairness and efficiency [21].

• Segment routing: Hosts can even precisely dictate all or
parts of the forwarding paths for their flows, e.g., so that
they traverse specific middleboxes.

The last use case, segment routing, points to the upperbound
flexibility of P-ECMP in exerting precise control: over the
entirety of a network path. The first use case, network failover,
has been deployed and evaluated in a live data center network
at scale. At the same time, all use cases are deployable in
commodity data centers with legacy devices, and traffic that
does not trigger PTC policies will continue to be handled by
ECMP. Our evaluation with simulation and testbed experi-
ments shows the effectiveness and low overhead of P-ECMP.

SrcIP

SrcPort
DstIP

DstPort
Proto ......

N-
10 1 ...

Header Fields

Pre-Processing Hashing Post-Processing Mapping

Input Port Processing

Figure 1: Four stages of ECMP processing.

2 Motivation

Many equal-cost paths exist in Clos topologies [12, 26], of-
fering a natural opportunity for ECMP-based load balanc-
ing. When a packet arrives at an ingress port, relevant head-
ers such as IP addresses and protocol types are parsed for
further processing, including routing decisions and ECMP.
The SAI (switch abstraction interface) [7] standard defines
ECMP processing in four stages: pre-processing, hashing,
post-processing, and mapping, as shown in Figure 1. During
pre-processing, the switch performs bit-wise operations to ob-
tain the flow ID, e.g., the five-tuple <src_ip, dst_ip, src_port,
dst_port, protocol>. The flow ID is then hashed by the hash-
ing stage using ASIC functions (e.g., CRC) and reduced to
a small integer. The post-processing stage also performs bit-
wise operations, usually fixed in their logic, on the hash out-
puts. Finally, the mapping stage bins the hash output into one
of the next hops {0,1, . . . ,N − 1} for forwarding. All four
stages are simple to realize in ASIC, so ECMP is widely
available in commercial off-the-shelf switches.

2.1 The Pitfalls of Randomness

Since ECMP decisions are determined by the flow ID and the
hash functions, across many flows the spreading pattern is es-
sentially random. Furthermore, this randomness is difficult to
predict or control, since switch vendors might employ differ-
ent hash functions and their details are opaque to the network
operator. While the pitfalls of ECMP regarding hash collisions
resulting in (temporary) load imbalance are well-known, we
have identified a more severe class of problems that, once they
manifest, produce a more persistent issue inside the network.

Example: Network failover by re-pathing flows. Timely re-
sponse to network failures is critical for high availability and
service-level objectives (SLOs). Network failures can stem
from a variety of issues, including hardware malfunctions in
switches, software bugs, or configuration errors. While many
of these failures can be addressed by the network control
plane – for example, by using protocols like BFD to quickly
detect failures and reroute traffic – others are more challeng-
ing. Failures such as silent packet drops, whether caused by
misconfigured ACLs, routing blackholes, or errors in CRC
computation, often affect only a subset of traffic and evade
timely detection by traditional control-plane mechanisms.

In these cases, applications will perceive the failures earlier
and the traditional wisdom is to produce a faster response
from the end host side before the control plane fixes come in.
Google [56] and Alibaba [66] have proposed using additional
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header fields to modify the hash input used in network path
selection, effectively tricking ECMP into recalculating the
path. Applications can therefore re-path affected flows to
bypass failures [56, 66]. Figure 2(a) shows an example where
Flow B successfully avoids the failure encountered by Flow
A on the original path.
Problem: Lack of precise control. Since ECMP makes ran-
dom decisions, and hash functions are opaque to operators,
this re-pathing effort is essentially a trial-and-error process. It
is common to encounter multiple failed re-pathing attempts
due to hash collisions [56]. Figure 2(b)1 illustrates a failed
re-path attempt, where the re-pathed flow (Flow B) is mapped
to the same path as the original flow (Flow A), encountering
the same failure at Switch A.

Quantification of Failed Attempts. Quantitatively, the prob-
ability that either the “to” or “from” path of a new flow is
mapped to a healthy path under ECMP is N−1

N , where N is
the total number of equal-cost switches in the network tier
where the failure occurs. The probability that the flow success-
fully circumvents the failure on its first re-path attempt, i.e.,
both “to” and “from” paths avoid the failure point, is therefore
p = (N−1)2

N2 . If the flow fails to circumvent the failure on the
first attempt, both “to” and “from” paths need to be re-selected
randomly. Each re-path attempt is independent of the previ-
ous attempts and has the same probability of encountering the
network failure as before, i.e., 1

N . Let T be the number of re-
paths needed for successful failover. Then T has a geometric
distribution with parameter p, where P(T = k) = p(1− p)k−1.
The expectation of T is given by:

E[T ] =
1
p
=

N2

(N −1)2 . (1)

While the average number of new flows needed for a suc-
cessful failover is relatively low, with T being at most 4 when
N = 2 and decreasing when N > 2, its long-tail distribution
can lead to extremely slow failovers for critical flows, result-
ing in SLA violations. For example, privious study [49] has
shown that during a link failure, random re-pathing can cause
certain flows to be disabled for 1-2 minutes due to unlucky
failed re-pathing. This may further lead to unstable loads on
other links for more than 20 minutes. Another proposal from
Google is to re-path flows relying on TCP’s RTO signal to
indicates failures [56], where RTO’s duration is influenced by
RTT and subject to exponential backoff. Without a maximum
limit on RTO and with a success probability p ≤ 0.5, the av-
erage time for failure recovery using PRR cannot converge.
Fortunately, RTO typically has an upper bound, and p > 0.5
when there are three or more switches in the ECMP group.
Despite this, the recovery time in such setups is significantly
longer compared to situations where failover is guaranteed to
succeed on the initial attempt.

1For the sake of simplicity, examples in Figure 2 assume that the flow’s
“to” and “from” paths are identical. However, in reality, the “to” and “from”
paths of the same flow may be different, as the flow identifier, i.e., five-tuple
header fields, is different when the source and destination are reversed.

Server A Server B

Flow A
Flow B
Failure

(a) Succeeded case.
Server A Server B

Flow A
Flow B
Failure

(b) Failed case.

Figure 2: Demonstration of (a) succeeded and (b) failed failover by
flow re-pathing or multi-path protocols.

2.2 Precise Traffic Control

Re-pathing is not an isolated case where the lack of preci-
sion causes operational challenges. In fact, there are many
scenarios where precise traffic control (PTC) is critical.

Network failure localization. ECMP also hinders network
failure localization, a crucial function for maintaining and
ensuring high availability in modern data centers. Many data
centers employ systems similar to Pingmesh [28], where
servers regularly send ping (ICMP) packets to probe network
availability. However, due to the randomness of ECMP, these
probes are randomly distributed across available paths, with-
out guaranteed coverage of all network hops (i.e., switches).
As a result, achieving full path coverage requires an exces-
sive number of probe packets, often exceeding the number of
actual paths between any two servers. Further, the random-
ness in ECMP limits monitoring tools’ ability to effectively
identify localized network issues. While it can detect regional
problems, it lacks the granularity needed to precisely pinpoint
failures at the switch or link level [54].

Load imbalance. The goal of ECMP is to distribute flows
based on their five-tuples, achieving an even spread. However,
as the traffic loads are generally long tailed, the randomness
in ECMP may lead to imbalances in real-world workloads,
or even exacerbate congestion hotspots [13, 34]. To mitigate
this, Google introduced a method called PLB, where applica-
tions re-path their flows upon detecting congestion signals –
such as a few ECN-marked packets from switches – thereby
improving load balancing [49]. However, addressing load im-
balance in this way can lead to failed attempts. At certain
cases, flows can be disrupted for 1-2 minutes due to unlucky
attempts, destabilizing load distribution across other links for
over 20 minutes, as reported by Google’s PLB [49].

Multi-flow applications and multi-path protocols. Applica-
tions may initiate multiple flows for their transfer, and some
transport protocol such as MPTCP [16] or MPRDMA [40] are
inherently multipath. By exposing path diversity, we can lever-
age multiple paths for transmission, identify best paths, and
achieve better balance in terms of path utilization – assuming
that paths are independent. However, multi-flow applications
and multi-path protocols do not interact well with ECMP. Its
randomness may mean that paths could be overlapping. This
could lead to (sub-)flows being routed along the same path,
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diminishing the benefits of using multiple paths.

Packet spraying. Packet spraying is a technique that dis-
tributes packets across multiple available paths on a per-
packet manner. This is particularly useful for flows that do
not require strict packet ordering – such as UDP flows or net-
works with reordering-resilient network stack [24]. Previous
results show that packet spraying can greatly improve network
fairness and efficiency [21]. Unfortunately, the randomness
in ECMP routing also undermines the effectiveness of packet
spraying, as it prevents precise distribution of packets across
paths, leading to potential hotspots and imbalance.

Segment routing. Finally, segment routing is a network func-
tion that enables the sender (host machines) to specify all or
part of the forwarding path for packets. It is widely employed
in wide-area networks (WANs) to support traffic engineer-
ing [44]. In data center networks, applications can benefit
from segment routing such as diverting specific packets to
designated middleboxes. However, segment routing is a net-
work function that demands precise control, which is not
compatible with the randomness of ECMP.

In all of these cases, we need a solution that enables the
majority of the traffic to still use ECMP, while temporarily
allowing certain flows or applications to exert precise control
over ECMP. One solution is to implement these use cases in
programmable switches, so that certain flows are processed
differently when they traverse the network. However, this
requires a universal deployment of programmable switches
inside data center networks. Another solution is to use out-
of-band mechanisms, as proposed in RePaC [66], which pre-
computes the mappings between inputs and outputs of the
hash algorithm in ECMP and distributes these mappings to
host machines. This allows host machines to exercise precise
control of relative path (offset). However, this assumes uni-
form switch configurations within the data center network,
whereas operators often source equipment from multiple ven-
dors to avoid vendor monopoly and increase resilience against
single-product flaws.

2.3 Idea: Leverage ECMP Groups

To support PTC use cases on commodity switches, our key ob-
servation is that ECMP has a certain amount of flexibility that
we have not fully used. This is signaled by the fact that a sig-
nificant portion of the SRAM memory resources reserved for
ECMP routing remains underutilized. Indeed, the abundant
ECMP table capacity is primarily designed to support ISP use
cases, where asymmetric topologies and a large number of
destination sets are common. However, this is not the case
in DCNs which have symmetric topologies and thus require
fewer ECMP groups at normal times. Our measurement of the
commodity switches in a production DCN revealed that, while
hardware providers (e.g., Trident5 ASIC) allocate space for 4
pipelines (e.g., uplink or downlink), with 8K ECMP groups

N-3

0 1 ...... N-2 N-1Group 0

Group 1

Group 2

......

N-1 0 ...... N-3 N-2

N-2 N-1 ...... N-4

Group
N-1 1 2 ...... N-1 0

......

Forwarding Table
(ECMP)

5-Tuple Selector Other
Headers

Hashing &
Processing

Selector = 2

Selector
= 0

Result = N - 2

Figure 3: An example of PTC of path offset by P-ECMP where
the selector is 2 and the outcome of the ECMP processing is N −2.
By redirecting the ECMP group by 2, P-ECMP re-directs the
forwarding port from N −2 to N −4.

and 64K ECMP members per pipeline, current switches use
only up to 8 groups (0.1%) and 512 members (<1%) at most
(spine switches). ToR and leaf switches use only one group
(0.01%) and up to 64 members in uplinks (0.1%). Our idea
is to extend the basic ECMP mechanism both horizontally
and vertically leveraging ECMP groups, a common feature in
ECMP-capable switches.

In basic ECMP, the hash value of a flow tuple Hash( f ) is
used as the index into an array to determine the output port.
The ECMP group feature allows for multiple such arrays as
depicted in Figure 3. These multiple (M) ECMP groups trans-
form the forwarding table from a simple array (with only
group 0) into a matrix C. The selection of an ECMP group
can be driven by an additional field in the packet header, re-
ferred to as the selector s. As a result, the forwarding decision
is based on the tuple < s,Hash( f ) >, where s determines
the row, and the hash of the flow’s selected field Hash( f )
determines the column. That is, the final output port is given
by C[s,Hash( f )]. This extended flexibility in the forwarding
table enables us to tune the C matrix for precise control.

Horizontal: Let us first consider only one ECMP group,
with C being a one-dimensional array [0,1, . . . ,N −1]. This
already allows for extending the forwarding behavior by in-
serting, deleting, or replacing items in this array. For instance,
by adjusting the number of entries in the table according to
specific rules, we can implement weighted ECMP, where the
weight of each next hop reflects its proportion in the table. If
the array contains only a single entry, this effectively achieves
precise control, eliminating randomness so that packets are
always forwarded to the same next hop.

Vertical: Considering multiple ECMP groups provides fur-
ther flexibility, in two dimensions: (i) multiple ECMP poli-
cies can coexist simultaneously, allowing applications to se-
lect a policy on demand, and (ii) it introduces an additional
layer of determinism on top of the inherent randomness of
ECMP. Specifically, applications can embed a value in a cus-
tom header field to specify which row of the matrix to use.
The row selection is deterministic, while the column selection
within each row (i.e., the ECMP routing) remains random.
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2.4 P-ECMP contributions
The contributions we made in developing programmable
ECMP (P-ECMP) are as follows.

Programming model. Our first contribution is a systematic
study and exploration of the inherent flexibility in ECMP,
upon which we distill the abstraction of ECMP programmabil-
ity. Specifically, we categorize the programmability of ECMP
into three sets of intent: (i) PTC of path offset, (ii) PTC of the
exact next hops, and (iii) Weighted-Cost Multi-Path (WCMP).
Since our approach to WCMP aligns with previous work [29],
this paper focuses on the first two intents.

Compiler. We also develop a compiler that automates the pro-
cess of generating ECMP forwarding tables for all switches in
the network. The compiler takes the programmability intent,
along with the network topology and resource constraints,
as inputs. This streamlines the development and deployment
of ECMP programmability, making it intuitive and easy for
network operators to implement and manage.

Runtime updates. A challenge with ECMP programmability
lies in ensuring consistency during deployment. Specifically,
when deploying ECMP forwarding tables on commodity
switches in production DCNs, issues can arise. For exam-
ple, a host machine might have an outdated database and send
a packet with a flag corresponding to an invalid ECMP policy,
or in-flight packets might not be able to adjust their embedded
flags and thus hit an invalid policy at next switches. This could
lead to packet loss or out-of-order delivery. Given the constant
high volume of traffic, an inconsistent update could have a
significant impact. To address this, we propose a distributed
transaction scheme that ensures consistency during updates,
preventing packet loss or reordering issues.

Rich use cases. P-ECMP enables a range of PTC tasks, such
as the ones motivated before. We evaluate these use cases and
report our experience in testing the network failover use case
in a production data center at scale.

3 System Design

3.1 Where Can We Program ECMP?
To better understand the potential programmability residing in
commodity switches, let us first trace back to the architecture
of commodity switches and its forwarding process. In the
ECMP processing described above, three elements can be
modified: the input fields, the hashing algorithm, and the
mapping stage. Below, we explore whether modifying each
of these components can alter the output port and enable
programmability. Table 1 summarizes the analysis.

First, modifying the input fields in ECMP processing en-
ables the generation of a different hash output, which in turn
determines a different output port. This approach has been
employed in several studies, such as PLB [49] for improved

Table 1: Programmability potential of commodity switch at differ-
ent forwarding stages.

Stage PTC of
Offset

PTC of
Hop

Compati-
bility

Practi-
cality

Input Yes* Yes* Yes No
Hashing No No No No

Mapping Member Redirect No Yes No Yes
Group Redirect Yes Yes Yes Yes

load balancing, and PRR [56] and RePaC [66] for network
failover. These studies introduce an additional header field as
an input to ECMP, beyond the standard five-tuple flow defini-
tion. This allows for changing the forwarding output port by
adjusting the value of the extra header field without disrupting
ongoing flow sessions.

However, if the hashing algorithm used by the switches is
unknown, this modification may result in random outcomes,
thereby limiting programmability. When the hashing algo-
rithm is known in advance, such as what was assumed in
RePaC [66], it is possible to deterministically adjust the value
of the extra header field to achieve the desired output port.
Specifically, let f represent the selected flow fields for hashing,
and Hash( f ) denote the hashing result. RePaC deterministi-
cally alters the output port by modifying the input fields with a
difference ∆ ∈ {0x0...01,0x0...10, . . . ,0x1...00}, i.e., the out-
put becomes Hash( f +∆). Leveraging the linearity of hash-
ing algorithms, we have Hash( f +∆) = Hash( f )+Hash(∆).
This gives that Hash(∆) can be used to control the output port
offset. However, programmability can still be constrained by
the significant heterogeneity of switches. For example, in het-
erogeneous environments where ToR, leaf, and spine switches
employ different hashing algorithms [61], finding a suitable
value for the additional header field may become infeasible
due to the diversity of hashing functions across switches.
For further details, please refer to Appendix A. In summary,
RePaC only enables PTC of offsets in limited scenarios. Thus,
it is not feasible for production deployment.

A second approach involves changing the hashing algo-
rithm to generate different outputs for different input packets.
However, this requires specialized switch chips capable of se-
lecting the hashing algorithm based on a specific header field
value in incoming packets. In our data center, only a small
fraction of switches support such modifications, making this
approach impractical. Additionally, changing the hashing al-
gorithm does not necessarily guarantee that a different output
port will be selected, as different algorithms may still pro-
duce the same output port for certain inputs (see Appendix B).
Even when successful, this method demands extensive com-
putation of all possible input-to-output mappings to achieve
the desired network functions by selecting appropriate selec-
tors. Moreover, the range of possible functions is constrained
by the limited number of available hash functions.

The final approach involves modifying the mapping stage,
which can be done in two ways: (i) redirecting the packet
to a different member within the same ECMP group or (ii)
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redirecting it to a different ECMP group while keeping the
member fixed. However, the first approach faces compatibility
issues. Many switches do not support performing arbitrary
mathematical operations on the post-processing results; the
only feasible modification is to replace the post-processed
result with a predefined value (such as selector s). This limi-
tation reduces programmability, allowing only PTC of hops
but preventing the use of the hashing process to support PTC
of offset. As a result, we discard this approach.

On the other hand, the second approach of redirecting the
packet to a different ECMP group is more feasible and aligns
well with our goals. Therefore, we choose this method as the
foundation for P-ECMP.

3.2 Programming Model and Use Cases
Let l = [p0, p1, · · · , pN−1] represent an ECMP group, where
each pi (i ∈ [0,N−1]) corresponds to an output port, and N is
the total number of available ports. For each ECMP group, the
port selection for a flow f is determined by a hashing function,
Hash( f ). P-ECMP generalizes this by using multiple (M)
ECMP groups instead of just one, transforming the forwarding
table into an ECMP matrix, referred to as the control matrix C,
whose dimension is M×N. We assume that users can select a
specific ECMP group by embedding a selector s in the packet
header, i.e., ls. If the selector value exceeds the total number
of ECMP groups (s > M), it will be taken modulo M, i.e., s
mod M. As a result, the port selection for flow f becomes an
item selection in the matrix, C[s mod M,Hash( f )].

Next, we demonstrate how PTC can be implemented. We
categorize two types of PTCs, each associated with a different
control matrix C. For simplicity, we will describe each type
individually before addressing how to support them concur-
rently in § 3.3.

Precise traffic control of path offsets. A useful form of PTC
involves adding an offset to the existing randomness intro-
duced by ECMP. Specifically, let us assume a default selector
s0 and a custom selector s. The desired property is that the
output port selection shifts by a constant offset corresponding
to the difference between s0 and s for a given flow. Formally,
this means F [s,Hash( f )]−F [s0,Hash( f )] = G(s)−G(s0),
where G is a linear function. Taken G(x) = x, we have
F [s,Hash( f )]−F [s0,Hash( f )] = s− s0. In this way, the ran-
domness of ECMP is maintained, i.e., with Hash( f ) used
for column selection, while PTC of path offset is achieved
through the selector s− s0.

The control matrix that satisfies this property can be con-
structed by recursively copying the last available ECMP
group and shifting each subsequent group by one position,
either to the right or left. For example, if the first ECMP
group is l0 = [p0, p1, . . . , pN−1], the next group would be
l1 = [pN−1, p0, . . . , pN−2]. This process continues until all
N ECMP groups are generated, with the final group being
lN−1 = [p1, p2, . . . , pN−1, p0], as illustrated in Figure 3.

The PTC of offset supports various use cases:
• Network failover. Google has proposed randomly re-

routing flows upon detecting a network failure signal, such
as an RTO [56], by adding a random value in the IPv6
header to alter the ECMP hash outcome. However, this
approach is prone to re-pathing failures caused by hash
collisions, where the re-pathed flow may still be mapped
to the same failed path.

In contrast, the ability to perform packet forwarding with
precise offset control enables deterministic re-pathing, en-
suring successful failover. For example, assume the default
selector is s0 = 0. When a flow needs to be re-pathed, it
can select any s that is not equal to the default selector and
does not result in the same path, i.e., s− s0 ̸≡ 0 mod M.

In practice, the value of M (the number of ECMP groups)
may not be knowledgeable to applications, and there could
be multiple values of M corresponding to different layers of
switches in the network. A robust solution is to adopt a suf-
ficiently large prime number for M, which works across any
network topology. In most modern data centers, a prime
number greater than 16 is typically adequate.

Another concern is that re-pathed flows should ideally re-
main load-balanced. We provide a detailed discussion on
selector selection to realize this in Appendix C.

• Load imbalance. Similar to network failover, Google pro-
posed PLB [49], which randomly re-path flows to avoid
congestion points. In contrast, PTC of offsets allows appli-
cations to re-path flows with a specific offset that ensures
they will not be mapped to the original path, guaranteeing
successful flow re-pathing. The selector value used is the
same as in the network failover scenarios.

• Multipath protocols. PTC of offset can also enhance multi-
path protocols by ensuring that no sub-flows are mapped
to the same path, thereby improving resilience against net-
work failures or congestion.

Unlike flow re-pathing, multipath protocols using P-ECMP
should assign increasing integers starting from 0 as the
selector s2. For instance, if an MPTCP flow creates 4 sub-
flows, the selectors s should be 0,1,2,3, respectively. When
all network tiers have at least 4 equal-cost paths, each sub-
flow will be mapped to a distinct path with no overlap.
However, if a network tier has fewer than 4 available paths,
two sub-flows may overlap at one hop, reducing MPTCP’s
effectiveness. This limitation is not due to P-ECMP but is
an inherent consequence of the pigeonhole principle. Deter-
mining the optimal number of sub-flows requires analysis
of the network topology and workloads, which is beyond
the scope of this study.

2A native implementation of MPTCP uses random port numbers for its
sub-flows, which makes assigning increasing integers starting from 0 as
the selector s ineffective. Instead, we have implemented a custom MPTCP
protocol where sub-flows are distinguished based on the selector s.
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Figure 4: Forwarding table generation process for precise control of offset.

Precise traffic control of exact next hops. P-ECMP can
achieve greater precision by removing the hashing process.
This can be done by either setting all output ports in an ECMP
group to the same port or reducing the number of output ports
to just one (i.e., making ls = [ps]), allowing the output port to
be determined entirely by the selector s. At different network
tiers, commodity switches can use different packet headers
or different bits of the same header field as the selector. As
a result, multiple selectors can be configured by the sender,
enabling precise control over the entire network path.

This also supports various use cases:
• Failure localization. Existing network failure localization

tools, such as Pingmesh [28], need to generate an exces-
sive number of probe packets to cover all paths due to the
inherent randomness in ECMP routing. To overcome this
limitation, systems like NetBouncer [54] employ IP-in-IP
encapsulation to systematically probe all possible paths,
providing more accurate and fine-grained failure localiza-
tion at the cost of incurring additional overhead due to
the encapsulation technique. In contrast, P-ECMP offers
an optimized alternative for network failure localization,
allowing for precise control over all paths without the over-
head associated with IP-in-IP encapsulation.

• Packet spraying. Previous approaches to packet spraying
have typically followed a random manner [21], relying on
ECMP routing. In contrast, P-ECMP enables deterministic
packet spraying, enhancing efficiency and fairness beyond
what can be achieved through random packet distribution.

• Segment routing. Commodity switches used in today’s data
centers do not genuinely support segment routing natively,
which contributes to its limited adoption. As a workaround,
segment routing is often achieved using techniques like
IP-in-IP encapsulation [47], though this comes with the
tradeoff of increased header size.

By leveraging the ability to specify the exact output ports
with P-ECMP, segment routing can be implemented with-
out the need for IP-in-IP encapsulation. In this approach,
the selector s serves as an indicator of the intended path,
and together with coordinated forwarding tables across
different network tiers realizes the segment routing.

3.3 Compilation Support
To deploy the aforementioned PTC, operators must offload
the control matrix as forwarding tables into every switch in

the data center network. Manually performing this task would
be highly labor-intensive and prone to errors. Instead, we
propose automating this process using a compiler. At a high
level, the compiler takes as input the type of PTC (as described
in § 3.2), the network topology, and the SRAM constraints of
the heterogeneous switches. The output of the compiler is the
forwarding tables for all switches in the network.

Figure 4 shows the network’s adjacency matrix for a topol-
ogy with switches organized into three tiers: top-of-rack
(ToR), leaf, and spine. While P-ECMP can adapt to any topol-
ogy, here we assume a fat-tree topology with partial connec-
tivity for simplicity. The adjacency matrix is sparse due to
the absence of interconnectivity within the same tier (e.g., be-
tween ToR switches). We omit sections of the matrix where all
values are zero and focus on the portion where ToR switches
connect to leaf switches. By scanning each row, we can iden-
tify the ECMP base group, representing the available next
hops for each ToR switch. In Figure 4, the first ToR switch
connects to all leaf switches except the second, resulting in
an ECMP base group of [1,3,4] for its uplinks. Similarly,
scanning each column reveals the ECMP base group for the
leaf switches’ downlinks. Note that these numbers represent
the global switch IDs across the entire data center. During for-
warding table deployment, translating the global switch IDs
to the corresponding output ports on each switch is needed.

After determining the ECMP base group for each switch,
the next step is to incorporate additional inputs, such as the
desired PTC type and the SRAM constraints of each switch,
to generate the forwarding table. The process for generating
the forwarding table for each PTC type is straightforward, as
outlined in § 3.2. The control matrices for different PTC types
can be concatenated, with the matrix for precise control of
offset appended after the base ECMP group being preferred.
This is because the default ECMP group is also part of the
control matrix for precise control of offset. We discuss the
design of the selector bits in Appendix E.

Note that the PTC of offsets does not necessarily require
knowledge of the network topology, whereas the PTC of hops
does. When both types of PTC are supported concurrently,
servers need to be aware of the network topology and the
mappings between selectors and specific PTC policies.

3.4 Update Mechanism
The dynamic nature of data center networks, such as topology
changes, requires updates to the forwarding tables in switches.
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However, these updates can lead to inconsistencies between
the PTC policies in the switches and the host machines, poten-
tially causing packet drops or unintended forwarding behavior
for a short period. Given the high bandwidth in data centers –
often in the tens or hundreds of Gbps – even brief periods of
inconsistency, or no delay but with packets already in transit,
can significantly impact data. For instance, at 100 Gbps, a 10
ms disruption may affect 125 MB of data per link. The impact
will be significantly larger considering the entire data center
network.

To mitigate this issue, we propose a transactional runtime
update mechanism that ensures global consistency inspired
by previous work [45, 60, 64]. Specifically, we treat the for-
warding tables as versioned entities, where each version cor-
responds to a specific range of selectors. When an update is
imposed at runtime, instead of modifying the current version
of the forwarding table during an update, a new version is
created. This ensures that the existing forwarding table re-
mains unchanged during runtime. Once the new version of
the forwarding table is ready, servers update their selectors to
align with the new version, guaranteeing a smooth runtime
update without forwarding glitches.

In practice, we divide the SRAM space at switches into two
symmetric halves, with each half occupying equal space. One
half stores the current version of the forwarding table, while
the other holds the new version during updates. For instance, if
the SRAM can accommodate up to M ECMP groups, ECMP
groups 0 to ⌊M−1

2 ⌋ would represent the current version, while
groups ⌊M−1

2 ⌋+1 to M−1 would represent the new version.
When the new table is in place, servers update their selectors
by adding ⌊M

2 ⌋ to adapt to the new version. Once all servers
have transitioned, the new version becomes the active one,
freeing the 0 to ⌊M−1

2 ⌋ range for the next update cycle.
It is important to note that updates to PTC policies are

only necessary for addressing stationary topology changes,
such as network expansion, reconstruction, or long-lasting
failures and maintenance. These updates are not required
for transient failures, such as temporary congestion or brief
hardware/software glitches, which are short-lived and self-
resolving. As a result, compiling a new version of ECMP
groups is not a time-critical task. Nevertheless, our system is
capable of compiling the new configurations and offloading
them to all switches in the production network within a few
milliseconds.

4 Implementation

Switch. We have implemented the aforementioned function-
alities across all switches used in our production data centers,
primarily including various series of Trident and Tomahawk.
Our implementation is built on SONiC [9], where we ensure
each operation at a switch – such as adding, replacing, or
deleting ECMP groups and their members – is atomic by us-

ToR

Leaf

Spine

Pod

Traditional Dual-Homed

Figure 5: Comparison of traditional and dual-homed data center
network architectures.

ing locks. Additionally, when making network-wide changes,
we utilize the transactional runtime update mechanism (§ 3.4)
to maintain consistency across the entire network.

Host machine. When a host machine needs to invoke the
various network functions supported by P-ECMP, such as
re-pathing flows after detecting a failure, it populates the
selector s in the packet header with the appropriate value
corresponding to the desired network function.

Several prior works have explored different methods for
encoding the selector s within the packet header. For exam-
ple, FlowBlender [34] uses the VLAN tag, while PLB [49]
and PRR [56] leverage the IPv6 Flow Label. Both of these
fields are compatible with P-ECMP. However, in our imple-
mentation within the production network (§ 5.3), we avoid
both options because (i) VLAN tags has been used for other
purposes in our production network, and (ii) IPv6 Flow La-
bels are not useful for IPv4 traffic, which is still prevalent
on the Internet and in our data centers. Instead, we select the
Differentiated Services Code Point (DSCP) in the IP header
to encode the selector s value. This is reasonable as DSCP
is intended to be used for classifying and managing network
traffic, and providing quality of service (QoS) in modern IP
networks [27]. it also avoids conflicts with other packet or
flow-related operations in our data center. Note that DSCP,
VLAN, and Flow Label are not the only viable options – data
center operators should select the appropriate header field for
carrying the selector s based on their specific environment
and requirements.

There are various approaches for modifying the DSCP
value. For instance, one can modify the DSCP at the kernel
level using eBPF [3] or by introducing a loadable kernel
module [4]. Alternatively, one can modify the DSCP at the
application level by calling SetSocketOpt [8], a function
provided by the Unix socket interface, to set the desired value.
We adopt the last approach in our implementation.

Note that the focus of this paper is on exploring the pro-
grammability of ECMP forwarding on commodity switches,
rather than addressing when and how specific network func-
tions should and can be applied, such as how to detect silent
packet drops or congestion. For these aspects, we simply
rely on state-of-the-art approaches. For instance, in network
failover using deterministic re-pathing, we follow PRR [56] by
using TCP RTOs as indicators of silent packet drops. For load
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balancing, we adopt PLB’s approach [49], using a fixed num-
ber of packets with ECN marks to detect network congestion.
Additionally, our implementation supports application-level
signals that can be customized based on user requirements.

Multi-homed server. As a leading cloud provider, we have
built and been managing multiple large data centers. Neverthe-
less, we adopted a different approach when constructing them.
One critical revision is that we adopt a dual-homed server
bonding architecture where each server connects to two ToR
switches. As illustrated in the green section of Figure 5, the
numbers of ToR, leaf, and spine switches are hence doubled
compared to the standard fat-tree topology. The dual-homed
server bonding provides several benefits, including improved
network resiliency and reduced downtime. It has also been
adopted by other providers recently [48].

Given our dual-homed setup, it is essential for host ma-
chines to support similar functionalities provided by P-ECMP-
enabled switches across different network interface cards
(NICs) as well. A common and convenient practice is to
bond multiple NICs to a single logically bonded interface,
which allows flows to be distributed across different NICs
and paths [5]. However, bonding often relies on hashing algo-
rithms, which introduce randomness as ECMP.

Instead, we adopt a design approach similar to our switch-
based solution. Specifically, we add the selector value to the
output of the hashing algorithm and perform modulo calcu-
lations afterwards. This ensures deterministic path selection
and avoids any randomness or the need to modify the hash-
ing algorithm itself. Our approach can be implemented by a
hot patch to the NIC bonding driver, making the support for
multi-homed networks easy and light.

5 Evaluation

We begin by evaluating the compilation and update mecha-
nism of P-ECMP (§ 5.1). Next, we demonstrate the effective-
ness of utilizing P-ECMP to address various critical network
corner cases (§ 5.2). Most experiments in § 5.1 and § 5.2 are
done using the NS3 simulator [6]. Finally, we share our expe-
rience deploying network failover enabled by P-ECMP’s PTC
of path offset capability in our production network (§ 5.3).

5.1 P-ECMP Compilation and Update

We first present the resource requirements for deploying P-
ECMP after compilation. We evaluate multiple topologies, as
listed in Table 2, including whether dual-homed architecture is
adopted, the number of leaf and spine switches (determined by
the product of the number of spines per plane and the number
of planes, where the number of planes equals the number of
leaf switches per pod), and the resulting maximum number of
paths between two servers. Among them, the largest topology
#12 is the same as our production network.

Table 2: Topologies for evaluation. OSR stands for oversubscrip-
tion ratio.

Topo Dual-
Homed

# Leaf
Per Pod

# Spine OSR Max # Paths
Between Servers

#1 N 4 N/A N/A 4
#2 Y 4 N/A N/A 8
#3 N 8 N/A N/A 8
#4 Y 8 N/A N/A 16
#5 N 8 8×8 8:1 64
#6 N 8 16×8 4:1 128
#7 N 8 32×8 2:1 256
#8 N 8 64×8 1:1 512
#9 Y 8 8×8 8:1 128

#10 Y 8 16×8 4:1 256
#11 Y 8 32×8 2:1 512
#12 Y 8 64×8 1:1 1,024

Figure 6(a) shows the number of ECMP groups required for
P-ECMP across different switches under various topologies,
with both PTCs enabled. At the ToR uplink, between 4 and
16 ECMP groups are needed. For leaf switches (uplink), the
SRAM resources range from 4 to 128 ECMP groups, except
in cases where spine switches are not available, requiring 0
groups. For both ToR and leaf switches, the available SRAM
resources are more than sufficient to accommodate P-ECMP.
At spine switches, the SRAM resources required range from
4 to 16 ECMP groups per pod. However, it is important to
note that this number must be multiplied by (x − 1) for a
network with x pods. Given that the Trident 5 ASIC provides
8K ECMP groups and accounting for our transactional update
mechanism – which halves the available ECMP space – P-
ECMP can support networks with up to 512 pods based on
ECMP considerations. Nevertheless, the actual number is
capped at 128 due to the spine switch’s 128-port limit. In
other words, P-ECMP’s consumption of SRAM is not the
bottleneck. Notably, when using either the PTC of offset or
hop, the number of required ECMP groups is halved (see
Figure 11 in Appendix D).

We move on to the bit length of selector s. As shown in Fig-
ure 6(b), when only the PTC of offset is required, the selector
ranges from 2 to 6 bits, making a 6-bit DSCP sufficient. If the
PTC of path is needed, whether combined with the offset PTC
or not, the selector will require more bits. For single-homed
topologies (up to topology #8), fewer than 20 bits are needed,
making the 20-bit IPv6 FlowLabel a suitable option for car-
rying the selector. For larger and dual-homed topologies, up
to 24 bits may be required, necessitating the use of multiple
header fields or other headers not covered in § 4. Neverthe-
less, compared to SRv6 or IP-in-IP (which incurs even higher
overhead than SRv6 but is not depicted in Figure 6(b) for
clarity), P-ECMP reduces the header overhead by 3x to 6x.

Next, we evaluate our transactional runtime update mecha-
nism. At each switch, updating ECMP groups typically takes
less than 2ms. While updating a single switch is atomic, updat-
ing all switches without our transactional update mechanism
(§ 3.4) can result in packet reordering due to inconsistencies
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Figure 6: Evaluation of P-ECMP compilation and update mechanism.

across switches and in-flight packets using outdated P-ECMP
selectors. We generate a Hadoop workload [10, 51] on topol-
ogy #4 to assess the packet reordering degree at the receiver,
defined as the number of packets arriving earlier or later than
their expected sequence position. As illustrated in Figure 6(c),
without our transactional update mechanism, the reordering
degree can reach up to 83, with a 99th percentile of 19. De-
pending on the receiver’s tolerance for packet reordering, such
high levels of reordering may lead to performance degrada-
tion, or even packet loss in severe cases.

5.2 Network Functions
Next, we evaluate the support of various network functions
by P-ECMP. We use topology #12 for all experiments below.

Network failover. We begin by evaluating the failure recov-
ery of P-ECMP with a single flow. Specifically, we initiate
a flow at full rate and introduce a network failure later. We
follow PRR [56] to use TCP RTO as the indicator for network
failures. We also change the RTO calculation following PRR
to better adapt to data center networking scenarios, where
RTO ≈ RTT + 5ms and has a cap of 1 second. It is notewor-
thy that the indicator for network failure and the trigger for
flow re-path operation is up to user customization, which can
react faster or slower than in our experiment.

Figure 7(a) compares the performance of P-ECMP to PRR
as a representative of random re-pathing. The failure occurs at
10ms. After that, the host takes roughly 6ms to detect the fail-
ure and trigger flow re-path. If the first re-path fails, the flow
will pause and wait for another RTO, which grows exponen-
tially, before attempting another re-path. In this experiment,
P-ECMP succeeds in the first re-path attempt, resulting in
full flow recovery at 106ms. However, PRR or other random
re-pathing may require two (PRR-2T), three (PRR-3T), four
(PRR-4T), or more attempts, resulting in flow recovery at
118ms, 142ms, 190ms, or even later.

We repeat the experiments for 10,000 times. Figure 7(b)
presents the CDF of the failover duration for P-ECMP and
PRR under different failure scenarios: at the ToR switch (PRR-
ToR), at the leaf switch (PRR-Leaf), or at the spine switch
(PRR-Spine). The results demonstrate the long-tail distribu-
tion of flow recovery duration by PRR (note that X-axis is in
log scale). Failures at the ToR switch have the most signifi-
cant impact on flows, requiring a median recovery duration of

42ms and 95th percentile recovery duration of notably over
4.5s. Failures at the leaf switch have an intermediate impact,
with a median recovery duration of 7ms and a 95th percentile
recovery duration of 91ms. Note that in practice, failures in-
deed mostly occur at ToR or leaf layers. Finally, failures at
the spine switch have the smallest impact, with only a slight
chance (∼3%) of failure during the first re-path attempt. In
contrast, P-ECMP always succeeds in re-pathing the flow in
the first attempt regardless of the failure location, and hence
realizing a stable flow recovery duration of 6ms.

We further present a case study of link failure between
a ToR and a leaf switch. Prior to the failure, we initiated
data flows of varying sizes mimicking web search work-
loads [10, 15] from each host machine to randomly selected
destination machines. Figure 7(c) illustrates the packet loss
rates over time, starting from the onset of the failure. Both
PRR and P-ECMP rapidly decrease loss rates, with PRR re-
ducing the loss from over 0.2% to 0% within 85ms. Notably,
P-ECMP surpasses PRR in reducing loss rates, achieving fail-
ure mitigation within 65ms – a 24% improvement over PRR.
Although our current data limitations prevent a similar emula-
tion to more outage events presented in PRR report [56], we
expect that P-ECMP will consistently outperform PRR across
various scenarios, owing to its PTC capability.

Load imbalance. Next, we evaluate P-ECMP’s performance
against load imbalance. For each host machine, a destination is
randomly chosen, and we generate flows with sizes following
web search and Hadoop workload [10, 14, 15, 51]. We com-
pare P-ECMP to PLB [49], a leading load balancing scheme
leveraging random flow re-pathing. We incorporate PTC of
offset by P-ECMP into the re-pathing phase of PLB [49], and
employ the same parameters as PLB.

Table 3 presents the total number of flow re-paths and nor-
malized flow completion time (FCT) results. Our analysis
shows that P-ECMP requires fewer re-paths in half of the
cases, while in the other half, it incurs a marginally higher
number of re-paths (1% to 3%) compared to PLB. This does
not indicate that P-ECMP fails to re-path flows on the first at-
tempt; rather, the timing of successful re-paths (e.g., P-ECMP
succeeding in the first attempt while PLB requires multiple
attempts) can alter the workload distribution across remain-
ing paths and influence the overall network dynamics. What
is more important is that P-ECMP achieves significant im-
provements across various metrics, including p50 FCT, p99
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Figure 7: Use case evaluation of P-ECMP.

Table 3: Normalized flow completion time with load balancers. LF stands for last flow (i.e., 100th percentile).

Trace LB Scheme 30% Load 50% Load 80% Load
p50 p99 LF #RePath p50 p99 LF #RePath p50 p99 LF #RePath

Web Search PLB 1 21.5 33.0 1x 1 22.5 214.3 1x 1 54.9 366.7 1x
P-ECMP 0.90 8.1 13.6 0.96x 0.91 23.1 182.4 0.93x 0.92 45.0 189.0 1.01x

Hadoop PLB 1 147.2 334.0 1x 1 212.4 4,700.0 1x 1 41.9 1,278.3 1x
P-ECMP 0.92 135.0 296.7 1.02x 1.01 188.3 2,246.3 0.97x 1.01 40.7 769.1 1.03x

FCT, and last flow (LF) completion time, in most scenarios.
Notably, under high network load, P-ECMP nearly halves the
last flow completion time, highlighting its effectiveness in
addressing the randomness and delays associated with PLB.

Multi-path protocol. We then evaluate P-ECMP’s enhance-
ment to the robustness of multi-path protocols. We have imple-
mented a custom MPTCP based on P-ECMP, where subflows
are distinguished using the P-ECMP selector. We generate
100K MPTCP flows between two servers, with each MPTCP
flow consisting of four subflows, resulting in a total of 400K
subflows. A subflow fails if either direction (uplink or down-
link) is affected by a switch failure, but an MPTCP flow fails
only when all its subflows are lost. Our results show that spine
failure barely affects the results. When a leaf switch fails, less
than 400 MPTCP flows fail because all their sub-flows are
mapped to the same failed leaf switch out of four available
leaf switches. When a ToR switch fails, more than half of the
MPTCP flows fail because there are only two equal-cost ToR
switches. These results match the theoretical expectation3

and demonstrate the vulnerabilities of multi-path protocols to
network failures, especially at the ToR level. In contrast, when
P-ECMP is enabled, all MPTCP flows survive regardless of
where the failure occurred, demonstrating the effectiveness of
P-ECMP in enhancing the robustness of multi-path protocols.

Failure localization. Figure 8(a) illustrates the number of
probes required to cover all available paths between a pair
of host machines across various topologies. Previous ECMP-
based mechanisms (such as Pingmesh [28]) unfortunately
require 2x to 5x more probes compared to P-ECMP which
enables the PTC of next hops. There are also proposals to
use techniques like IP-in-IP to achieve similar functionality.

3Assume there are N switches at the network layer where failure occurs.
That leaves N −1 healthy hops. As mentioned in § 2.1, the probability that a

subflow avoids the failure is (N−1)2

N2 , so its failure rate is 1− (N−1)2

N2 = 2N−1
N2 .

Assume there are K subflows. Given that an MPTCP flow fails only if all

subflows fail, the survival rate of an MPTCP flow is 1− (2N−1)K

N2K .
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Figure 8: More use case evaluation of P-ECMP.

However, these approaches incur significantly higher packet
header overhead compared to P-ECMP (see Figure 6(b)).
Packet spraying. We evaluate packet spraying using a 30%
Hadoop workload, monitoring ToR switch output queue
lengths. Figure 8(b) reveals that random spraying causes un-
even packet distribution at a microscopic level, with 99th
percentile queue lengths ranging from 31KB to 70KB, likely
degrading performance in low-latency environments. This
imbalance worsens at the 100th percentile. In contrast, P-
ECMP’s PTC capability ensures a more balanced queue
length distribution across ports, with most queues measur-
ing 11KB at the 99th percentile and a maximum of only
15KB. This demonstrates superior load balancing. Further re-
sults confirm that P-ECMP consistently outperforms random
spraying in terms of FCT, as detailed in Appendix D.
Segment routing. Finally, we address segment routing. Pre-
vious approaches to implementing segment routing on com-
modity switches typically rely on IP-in-IP or SRv6 protocols,
both of which introduce significantly higher (3x-6x) header
overhead compared to P-ECMP, as shown in Figure 6(b).

5.3 In Production
Over the past year, we have incrementally deployed P-
ECMP’s PTC with offset across multiple data centers. The
rollout was seamless, with P-ECMP coexisting with existing
workloads without disrupting or interfering with live traffic.

Application Recovery. We focus on Cloud Block Storage
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Table 4: CBS application performance with P-ECMP (numbers before slashes) and without P-ECMP (numbers after slashes) under different
network failures and configurations. #MDS refers to the number of Metadata Service daemons.

Failure Type #MDS IO Jitters IO Hang
Occurrence (%) Min (s) Med (s) Max (s) Occurrence (%) Min (s) Med (s) Max (s)

Leaf Switch Unidirectional
Black Hole

0 100 / 100 1 / 5 7 / 7 9 / 9 56 / 72 1 / 1 2 / 3 3 / 6
28 100 / 100 6 / 7 7 / 8 8 / 11 60 / 68 1 / 1 2 / 3 4 / 3
36 100 / 100 6 / 9 7 / 11 11 / 12 68 / 70 1 / 1 1 / 4 4 / 6

Leaf Switch
Bidirectional Black Hole

28 100 / 100 3 / 3 4 / 4 6 / 10 52 / 56 1 / 1 3 / 2 3 / 4
36 100 / 100 3 / 3 3 / 4 6 / 8 44 / 54 1 / 1 2 / 2 4 / 4

ToR Switch Unidirectional Black Hole 28 100 / 100 7 / 7 10 / 15 15 / 25 90 / 98 1 / 1 5 / 8 12 / 18

10(m) 10(m+ 2) 10(m+ 4)

Service Downtime (Normalized)
0.0

0.5

1.0

CD
F 

(0
-1
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Figure 9: The distribution of service downtime by network failures
in our production networks, before and after deploying P-ECMP.

(CBS) to illustrate the effectiveness of P-ECMP. CBS is a
high-performance application that transmits large chunks of
data across data center storage nodes. CBS may spawn mul-
tiple flows at the same time, and the completion of a CBS
IO task usually incorporates a series of transport-layer flows.
When a network failure occurs, CBS may encounter IO jit-
ters or IO hang, i.e., all the ongoing flows are lost, multiple
times through its lifetime as the new flows spawned may be
unfortunately mapped to the path with failure.

Before P-ECMP is introduced, the network failure recovery
for CBS relies on FullPingmesh, a custom service similar to
Pingmesh [28], and a custom socket-level failure detection
and reconnection mechanism. FullPingmesh is able to detect
and locate network failures within 20s. In addition, our custom
socket-level failure detection for CBS can detect potential
network failures by sending heartbeat packets and monitoring
the socket buffer. When CBS considers that a network failure
occurs and starts flow re-pathing by creating new TCP flows
with different port numbers. According to our production log,
the failure detection takes on average 1s.

Table 4 presents the CBS application performance with and
without P-ECMP under different network failures and config-
urations, i.e., different numbers of Metadata Server (MDS)
daemons [1], where more MDS daemons generally help to
serve larger workloads [2]. For each configuration and failure
type, we repeat the experiments for 50 times. The results show
that P-ECMP improves the application performance in most
scenarios. Specifically, P-ECMP reduces the IO jitters mini-
mum, median, and maximum durations by up to 80%, 36%,
and 40%, respectively. P-ECMP also reduces the occurrence
of IO hang by up to 16%, and the recovery duration for IO
hang as well. The results demonstrate the effectiveness of
P-ECMP in enhancing service availability.

Overall Impact. Our data centers have implemented and
integrated multiple standalone solutions to detect and localize

network failures, including active and passive probing, as
well as data plane telemetry. Figure 9 shows the distribution
of service downtime caused by network failures in our data
centers. Many network failures can be mitigated within one
minute. However, some failures such as hardware failures,
take orders of magnitude more – e.g., tens of minutes or
even hours – to recover, which falls short of our needs. For
example, the switches may encounter optical module failures.
This requires the on-site operator to manually inspect and
replace the optical module. This may take hours or even days
depending on the availability and schedules of the on-site
operators. In the worst case, the monthly occurrence of such
failures could surpass ten times per pod, lasting for more than
20% of the total operational time.

After deploying P-ECMP in our data centers, the overall
downtime due to network failures significantly decreased, as
shown in Figure 9. Most downtimes were reduced to within
one minute, and tail downtimes were also significantly im-
proved. It is noteworthy that the figure still shows some long
downtimes after P-ECMP is deployed. This is because these
failures are multi-point or global network failures, e.g., cam-
pus electricity outages, and are out of the capacity of P-ECMP
or any flow re-pathing signals. Overall, P-ECMP is effective
in production and meets our expectations.

6 Discussion

Dual-homed server bonding architecture. We adopted a
dual-homed server bonding architecture as in § 4. It is note-
worthy that this is not a strict requirement for P-ECMP, as P-
ECMP can work with any topology. Instead, the dual-homed
server architecture guarantees that a failure-free path is always
available in case of any single-point failures in the network,
and thus allows obtaining full benefits from P-ECMP. Indeed,
when there is only one ToR connected to the host machines,
P-ECMP cannot help in the presence of a ToR failure.

PTC policy with asymmetric topologies. When only the
PTC of path offset is enabled, P-ECMP functions effectively
in any topology, as long as there is more than one equal-cost
output port available at each switch (otherwise P-ECMP is
not useful). Appendix C details how to select the appropriate
selector value for arbitrary topologies. However, enabling
PTC of next hops introduces additional complexity. So far, our
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discussion is restricted to tree-like topologies. P-ECMP can
handle tree-like topologies with varying numbers of switches
in different tiers. However, for non-tree-like topologies, such
as mesh networks, hypercube topologies, or random graphs,
where the concept of “network tiers” may not be as clear, the
PTC policy requires more careful design. We leave further
exploration of these scenarios to future work.

Interaction between P-ECMP and switch’s local failover.
For network failover issues, we note that commodity switches
are often equipped with built-in local failover mechanisms,
such as rapid link failure detection and fast reroute (FRR)
protocols [17]. These mechanisms enable switches to quickly
reroute traffic to alternative paths when a link or port failure
is detected, often within milliseconds. As a result, not all fail-
ures require intervention from P-ECMP, which operates as an
application-layer failover mechanism. However, certain types
of errors fall outside the capabilities of commodity switches’
local failover (though programmable switches can resolve
some of these issues [23,55]). Examples include silent packet
drops and gray failures [31, 32], which are difficult to detect
and mitigate using traditional failover mechanisms. Further-
more, P-ECMP addresses a broader range of scenarios beyond
failover, such as congestion avoidance and load balancing. By
operating at the application layer, P-ECMP complements the
switch’s local failover and provides a more comprehensive
solution for ensuring network reliability and performance.

7 Related Work

ECMP and host-based path control. To defend against the
randomness of ECMP and enable host-based path control,
previous studies have mainly focused on removing ECMP,
typically by redesigning or using different routing proto-
cols [30, 33, 54]. For instance, XPath [30] identifies all end-
to-end paths, compresses them, and pre-installs them into the
IP TCAM tables of commodity switches. However, this ap-
proach requires a large number of forwarding table entries,
which becomes impractical at the scale of data centers. More
recently, programmable switches provides another solution
for explicit host control. Nevertheless, their deployment in
production networks remains limited so far.

Other studies attempt to work within the constraints of
ECMP. For example, Volur [65] uses a centralized controller
to collect routing information from switches, predict network
behaviors, and send these predictions to servers. However,
this approach faces two major issues: limited scalability and
inaccurate predictions. RePaC [66] leverages the linearity
of hashing functions to achieve relative path control. Unfor-
tunately, this method assumes uniform switch deployment,
making it impractical in production environments with diverse
switches and hashing functions.

Our approach, P-ECMP, aligns more closely with the sec-
ond group of studies. However, we leverage a different feature

– additional ECMP groups – to extend ECMP’s capabilities,
allowing for precise traffic control. P-ECMP requires accept-
able resources at switches and adapts to heterogeneous switch
environments. Notably, P-ECMP has been successfully de-
ployed in production.

Data center network failure. Existing proposals for net-
work failure detection are mostly based on active or pas-
sive probing [11, 19, 20, 28, 42, 63], or data plane telemetry
monitoring and analysis [18, 22, 25, 38, 41, 46, 52, 68, 69].
After detecting and locating the network failures, data cen-
ter operators then need to mitigate the failures. Various au-
tomated failover solutions have been proposed based on
SDN [36, 37, 43, 53, 58, 59, 67].

Nevertheless, the first-detection-then-mitigation fashion of
failover is inherently slow. To speed up this process, another
line of work proposes to mitigate the failures before accurately
locating them. For instance, NetPilot [57] proposes to rely
on the data center redundancy and blindly apply mitigation
methods. Fast failovers can also be done by the host machines
alone. For example, MPTCP [16] or MPRDMA [40] can be
employed to address the network failures in data centers [50]
by actively adjusting its sub-flows to circumvent network fail-
ures. In single flow scenarios, PRR circumvents the failure
by re-pathing the flow leveraging the ECMP capability of
data center networks [56]. Nevertheless, all the above solu-
tions are vulnerable to hashing collisions. P-ECMP enhances
fast failover, multipath protocols, and many other network
functions by enabling precise traffic control.

8 Conclusion

This paper introduces programmable ECMP (P-ECMP), a pro-
gramming model that achieves precise traffic control (PTC)
by reconfiguring ECMP groups on commodity switches. P-
ECMP enables PTC for both path offset and exact next hops,
extending its support to multiple use cases, from network
failover to segment routing, without disrupting the major-
ity of traffic flowing through standard ECMP forwarding.
Our evaluations demonstrate that P-ECMP requires minimal
resources at switches and outperforms several existing ap-
proaches across various use cases. P-ECMP has been de-
ployed in production for network failover, where it has proven
effective in significantly reducing failover duration.
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Figure 10: Required ∆’s length to cover 64 paths.
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A Evaluation of RePaC In Production

RePaC [66] introduces modifications to header fields by XOR-
ing a n-bit ∆. This generates a pathmap of 2n entries where
each possible ∆ corresponds to an offset Hash(∆). The output
offset is subject to the number of available next hops. Assume
the number of next hops is 2m, then Hash(∆) has a length
of m bits. Let O be the matrix of all the outputs with n-bit
∆ as input, where each Oi, j represents the value of jth in-
dex of Hash(∆i) for i ∈ [1,2n]. To control the offset across
all possible alternative paths, it requires rank(O) = m, mean-
ing the hash results of all n-bit ∆ must cover all 2m possible
paths. When there are multiple K layers of switches in the
network with 2m1 ,2m2 , . . . ,2mk switches per layer, then it re-
quires rank(O) = ∑

K
i=1 mi, ensuring coverage of all possible

path offsets across all switch layers.
We evaluated this requirement in a heterogeneous envi-

ronment using all commonly used hash algorithms in com-
modity switches, including 8 variants of CRC-8, 8 variants of
CRC-16, and 8 variants of CRC-32. We used topology #12,
which mirrors our production network, with the same type of
switches within each layer (e.g., ToR, leaf, or spine) but differ-
ent switches across layers. We tested all permutations of hash
algorithms across layers, totaling permutation(24,3)=12,144
settings, with different hashing algorithms assigned to differ-
ent network layers.

Figure 10 shows the CDF of the required ∆’s bit length n
to cover all available paths across three network layers. The
minimum bit length of ∆ is 10 (1 bit needed for 2 ToR switches
per server, 3 bits for 8 leaf switches per pod, and 6 bits for 64
spine switches). While 20 bits suffice in most settings, in 608
out of 12,144 (roughly 5%) switch permutations, no suitable
∆ exists to cover all paths (tested with up to 1024-bit inputs,
i.e., n = 1024). In other words, RePaC fails if the deployed
switches use hashing algorithms from these 608 settings. If
switches are purchased randomly, there is a 5% chance that
RePaC will not work. Moreover, if heterogeneity across pods
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Table 5: Hashing collision rate between different hashing algo-
rithms. Three numbers in each cell represent collision rates when
there are 2, 4, and 8 equal-cost next hops, respectively.

Collison Rate (%) Pearson CRC XOR Random

Random
50.00 /
25.00 /
12.50

49.99 /
25.00 /
12.49

50.01 /
24.98 /
12.50

-

XOR
50.00 /
25.00 /
12.50

50.00 /
25.00 /
12.50

-

CRC
50.01 /
24.97 /
12.50

-

Pearson -

Table 6: The obtained maximum path load using selected selector
set and the differences between it and the optimal (D.O.) or P-
ECMP-allowable optimal (D.D.O) loads for an arbitrary network
with a maximum of 4 equal-cost next hops.

n\p 5 7
Maximum Path Load (%)
Obtained D.O. D.D.O.

2 1 1 50 0 0
3 2 1 66.67 0 0
4 1 3 66.67 8.33 0

is considered, it will require longer ∆ and increase the number
of switch settings where no suitable inputs exist.

B Alternative of Changing Hashing Algorithm

We investigate the four most common hashing algorithms
used in ECMP [66]: random-based, XOR, CRC, and Pearson
hashing. The input to the hashing algorithms in ECMP is
usually the five-tuple <Src_IP, Dst_IP, Src_Port, Dst_Port,
Proto>, which includes 104 bits. However, given the huge
input space, i.e., 296 possibilities for 104-bit inputs, we only
select a random set of four-tuple inputs. We then feed them
into the hashing algorithms respectively, and check whether
the outputs would be the same. If two hashing algorithms pro-
duce identical outputs for the same input, switching between
them would not alter path selection, rendering it incapable of
achieving PTC of offset.

Table 5 illustrates the probabilities that two different hash-
ing algorithms produce the same outputs for a random set of
five-tuple inputs, i.e., the re-pathing failure rates. The results
show that the re-pathing failure rates are substantially high –
50%, 25%, and 12.5% when there are 2, 4, and 8 equal-cost
next hops, respectively. This means that the PTC of offset can-
not be guaranteed by swamping among any of these common
hashing algorithms.

C Load balance After Flow Re-Path

Here, we discuss how to maintain load balancing for flows af-
ter they are re-pathed for failover, leveraging P-ECMP’s PTC

Table 7: The obtained maximum path load using selected selector
set and the differences between it and the optimal (D.O.) or P-
ECMP-allowable optimal (D.D.O) loads for an arbitrary network
with a maximum of 8 equal-cost next hops.

n\p 11 13 17 19 23 29
Maximum Path Load (%)
Obtained D.O. D.D.O.

2 1 1 1 1 1 1 50 0 0
3 2 1 2 1 2 2 60 6.67 6.67
4 3 1 1 3 3 1 66.67 8.33 0
5 1 3 2 4 3 4 75 5 5
6 5 1 5 1 5 5 60 23.33 6.67
7 4 6 3 5 2 1 85.71 0 0
8 3 5 1 3 7 5 75 12.5 5

of offset capability. We assume that the PTC of next hops is
not simultaneously supported, and that servers have limited
knowledge of the network topology. Otherwise, servers could
simply select from the remaining available paths evenly, en-
suring that all re-pathed flows are distributed uniformly across
the paths.

First, if the bit efficiency of the selector s is crucial and the
network topology follows a symmetric Clos-like structure –
which is adopted by most data centers –, the servers should
select selector s from the set of positive odd numbers less than
the largest ECMP group size in the network. For instance, if
the spine tier has 8 switches, then the selector s should be
selected from the set {1,3,5,7} with equal probability. In this
case, selector s needs only three bits, providing good bit effi-
ciency. It also guarantees that the load will be balanced across
half of the remaining available switches in each network tier.
It is important to only select odd numbers because the other
network tiers may contain switches of even numbers, e.g.,
2 or 4, and selecting an even number could result in failed
re-pathing at some network tiers.

Second, if the network topology is asymmetric/less struc-
tured, the host should select selector s from at most N − 1
prime numbers greater than N, where N is the largest ECMP
group size in the network. For example, if N = 8, then the se-
lector s should be selected from the set {11,13,17,19,23,29}
with equal probability. In this case, selector s occupies 5 bits,
providing the capability to avoid any single-point failures and
good load-balancing performance on most network tiers with
a size equal to or less than N. We detail more analysis below.

We assume an arbitrary ECMP network where the largest
ECMP group size is N. If the ability to circumvent single-
point network failure is desired, then it means that there might
be network tiers with the ECMP group size n to range from
2 to N, i.e., n ∈ [2,N]. In such a network, our goal is to find
a set of selector S that satisfies two conditions: (i) the re-
pathing succeeds circumventing the network failure on the
old path, i.e., ∀s ∈ S, p mod n ̸= 0; and (ii) good load balance
is achieved after the flow re-pathing. Note that the minimum
ECMP group size is 2 because we assume a dual-homed
architecture (§ 4). If a traditional fat-tree topology is adopted,

104    22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association



1 2 3 4 5 6 7 8 9 10 11 12
Topology (#)

0
20
40
60
80

100

Nu
m

be
r o

f E
CM

P 
Gr

ou
ps

 (#
)

ToR Uplink
Leaf Uplink
Spine

(a) PTC of offset only.

1 2 3 4 5 6 7 8 9 10 11 12
Topology (#)

0
20
40
60
80

100

Nu
m

be
r o

f E
CM

P 
Gr

ou
ps

 (#
)

ToR Uplink
Leaf Uplink
Spine

(b) PTC of hop only.

Figure 11: Number of ECMP groups with either PTC type.

the minimum ECMP group size is 1 at the ToR switch tier,
meaning that flow re-pathability cannot ensure a successful
failover from a ToR switch failure or link failure between the
server and the ToR switch.

To quantify the second condition, let Dn = {s mod n,∀s ∈
S},∀n ∈ [2,N]. A perfect load balance after flow re-pathing
based on S means that ∀n ∈ [2,N],Dn needs to be perfectly
balanced, i.e., every possible element has the same frequency.
This might involve a large selector set S. In fact, the minimum
size of S to achieve perfect load balance is the least common
multiple of all prime numbers ranging from 2 to N. For exam-
ple, with N = 8, the minimum |S|= 2×3×5×7 = 210. To
achieve a perfect balance an ECMP group of size n requires
the number of selectors |S| to be the product of its group size
and any positive integer, i.e., kn where k ∈ Z+. If n is not a
prime number, then it is the product of several prime numbers
smaller than it. As long as |S| can achieve perfect balance for
its prime factors, |S| can achieve perfect balance for n.

To find the set S for perfect load balance, one should start
with the set of smallest prime numbers that are greater than
N, e.g., {11,13,17, . . .} if N = 8. This set should contain |S|
prime numbers. It follows that ∀n ∈ [2,N],Dn can be cal-
culated accordingly. If Dn is not balanced, then one should
adjust the prime numbers in the set. The above process should
be repeated until S is found. Some intuition might be helpful
to optimize the prime number adjusting, but we do not go into
details here as we do not deem the perfect load balance after
flow re-pathing to be necessary given its high cost.

Rather, it may be more practical to target a smaller selector
set to ensure satisfactory post-re-pathing load balance, rather
than striving for perfection. This trade-off allows for a "good
enough" load balance outcome while mitigating the high costs
associated with the above prime number searching.

To achieve this objective, we propose a straightforward
approach: simply select the subsequent N1−1 prime numbers
that are greater than N for the selector set, where N1 represents
the largest prime number less than or equal to N. For instance,
when N is 8, the highest prime number fitting this criterion is
N1 = 7. Consequently, we arrive at S= {11,13,17,19,23,29}
where |S|= 6.

Assuming that load balance is established prior to the occur-
rence of any failure — meaning that all paths have identical
loads — we define the degree of post-re-pathing load balance
by examining the maximum load on each path. Employing

the example provided, D4 = {3,1,1,3,3,1}. In the scenario
where one path becomes unavailable, its load is evenly dis-
tributed across two other paths. This results in the maximum
load on each path reaching 66.67%.

For a state of perfect load balance, implying that the load
on the failed path can be evenly redistributed across all other
paths, the maximum load on each path can be up to 75%. Con-
sequently, the disparity between our solution and the optimal
path load equates to 8.33%.

However, it is crucial to acknowledge that the value 2 can
never be attained via modulo 4 with any prime numbers. Con-
sequently, we introduce the concept of P-ECMP-allowable
degree of load balance by eliminating paths that cannot be
derived through the modulo operation involving prime num-
bers. Returning to the aforementioned case, two paths can be
re-pathed using P-ECMP. Hence, the difference between our
solution and the optimal P-ECMP-allowable path load is 0%.

Table 6 and 7 illustrate the post-re-pathing load balance
where N is 4 and 8, respectively. Overall, we find that the
above straightforward approach demonstrates a good enough
post-re-pathing load balance that meets our use case require-
ments adequately, with the disparity between the obtained and
the optimal P-ECMP-allowable maximum path load remain-
ing under 6.67%.

It is noteworthy that unlike RePaC which requires a central
server to calculate the comprehensive path map and subse-
quently distribute it across all data center servers, the algo-
rithm outlined above for ascertaining the optimal selector set
S can be executed on any local server. Furthermore, each lo-
cal server retains the freedom to determine its own desired
properties, such as pursuing a state of perfect load balance or
settling for a reasonably good load balance. More crucially,
RePaC struggles to address scenarios involving an asymmet-
ric network topology. In contrast, P-ECMP demonstrates the
capacity to handle arbitrary network topologies and offers
varying levels of load balance that can be fine-tuned against
the size of the selector set.

D Additional Evaluation of P-ECMP

Figure 11 presents the number of ECMP groups with either
PTC type.

Table 8 shows the normalized FCT with random packet
spray and with P-ECMP.

E Selector Length

We examine the length of the selector when supporting either
PTC type or both concurrently. For the sake of simplicity, we
assume a small topology with one ToR switch connected to
each server, four leaf switches, and two spine switches. Fig-
ure 12 shows the ECMP groups and members when different
PTCs are supported.
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Table 8: Normalized flow completion time with packet spray. LF stands for last flow (i.e., 100th percentile).

Trace LB Scheme 30% Load 50% Load 80% Load
p50 p99 LF p50 p99 LF p50 p99 LF

Web Search Random Packet Spray 1 11.4 45.7 1 57.8 412.8 1 54.8 1,155.4
P-ECMP 0.98 10.0 45.1 0.84 56.0 396.7 0.98 47.5 1,071.8

Hadoop Random Packet Spray 1 57.8 412.8 1 166.5 2,062.1 1 27.8 475.2
P-ECMP 0.84 56.0 396.7 0.81 151.2 2,049.0 0.99 27.1 340.5
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Figure 12: Forwarding table design.

When only the PTC of offset is required, the selector can
range from 0 to 3 (for more details, see Appendix C). This
value is effective across all network hops. For example, when
s= 1, the flow will be re-pathed through a different leaf, spine,
and another leaf switch in a different pod. As a result, the
selector length is 2 bits. Our transactional update mechanism
(§ 3.3) doubles the required space, increasing the selector

length to 3 bits.

When only the PTC of next hops is needed, the situ-
ation changes, as different selector values are required at
different switches. Without ECMP groups for PTC of off-
set, we find that 5, 3, and 5 selector values are required
at the ToR, leaf, and spine switches, respectively, to spec-
ify the exact next hops. Therefore, the selector length is
⌈log(5)⌉+ ⌈log(3)⌉+ ⌈log(5)⌉= 8 bits. Including the trans-
actional update, the selector length increases to 9 bits.

When both PTC types are supported, we again evaluate
each switch individually. This results in 8, 4, and 8 selector val-
ues needed at the ToR, leaf, and spine switches, respectively.
Thus, the selector length is ⌈log(8)⌉+⌈log(4)⌉+⌈log(8)⌉=
8 bits. Accounting for the transactional update, the selector
length remains 9 bits, the same as when only the PTC of next
hops is supported.
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