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Abstract
In today’s Internet, websites widely rely on password authen-
tication for user logins. However, the intensive computation
required for password authentication exposes web servers to
Application-layer DoS (ADoS) attacks that exploit the login
interfaces. Existing solutions fail to simultaneously prevent
such ADoS attacks, preserve password secrecy, and maintain
good usability. In this paper, we present PreAcher, a system
architecture that incorporates third-party Content Delivery
Networks (CDNs) into the password authentication process
and offloads the authentication workload to CDNs without
divulging the passwords to them. At the core of PreAcher
is a novel three-party authentication protocol that combines
Oblivious Pseudorandom Function (OPRF) and Locality-
Sensitive Hashing (LSH). This protocol allows CDNs to pre-
authenticate users and thus filter out ADoS traffic without
compromising password security. Our evaluations demon-
strate that PreAcher significantly enhances the resilience of
web servers against both ADoS attacks and preserves pass-
word security while introducing acceptable overheads. No-
tably, PreAcher can be deployed immediately by websites
alone today, without modifications to client software or CDN
infrastructure. We release the source code1 of PreAcher to
facilitate its deployment and future research.

1 Introduction
Websites have been using web authentication to identify users
and protect user accounts for decades. Despite alternatives
exist [57, 74, 87], websites still heavily rely on password au-
thentication because of its high usability [28, 33]. According
to the estimate by prior studies [28, 101] in 2023, more than
one-third of websites contain password login interfaces. How-
ever, researchers have expressed the concerns about password
authentication’s security defects, and a long-standing one is
Application-layer Denial of Service (ADoS) attacks [2, 41].

ADoS refers to the attacks where attackers aim to deplete
a server’s resources by sending merely a small number of re-
∗Yunming Xiao is the corresponding author.
1https://github.com/SHiftLin/NSDI2025-PreAcher

quests. Differing from Distributed Denial of Service (DDoS)
attacks, the traffic volume in ADoS is much less than that in
DDoS, so it will not trigger the commonly used DDoS de-
fense [7, 15]. Password authentication is vulnerable to ADoS
attacks because it demands intensive computation. Presently,
a server stores a password’ hash value instead of the cleart-
ext in its database to prevent password cracking in case the
database is compromised [14, 31, 36]. Thus, the server com-
putes the hash value of a password and check it against the
record in its database. However, a server must use a slow hash
function, such as scrypt [81], PBKDF2 [77], or Argon2 [32],
for password hashing, in order to slow down brute force guess-
ing when an attacker captures the database. Therefore, this
practice makes password authentication compute-intensive.
In § 2.1, we present a proof of concept for such ADoS attacks
on the Internet, where merely 150 login requests per second
can deplete all four modern CPU cores [10] on a server.

In today’s Internet, ADoS can occur during credential stuff-
ing [18, 19] incidents. In such cases, attackers use automated
bots to repeatedly attempt login with various combinations of
usernames and passwords, aiming to impersonate legitimate
users. Akamai reports that it detects an average of 280 million
suspicious bot logins per day [18]. Such a large number of
illegal logins not only poses security concerns on the safety
of user accounts, but also imposes a prohibitively high work-
load on a web server , due to the slow hashing requirement of
password authentication.

Presently, there is no effective defense against the ADoS
attacks that exploit password authentication. Existing ap-
proaches fail to simultaneously achieve the goal of avoid-
ing server overload, preserving good usability, and providing
password secrecy. In practice, websites usually adopt rate
limit, CAPTCHA, and two-factor authentication (2FA) in lo-
gin interfaces [25]. However, attackers can bypass rate limits
by switching to different usernames and IP addresses and
thus keep sending login traffic. As for CAPTCHA and 2FA,
they are criticized for their usability by both users and re-
searchers [39, 47, 48, 55, 64, 99]. Although 2FA prevents user
account cracking, it does not reduce the workload of failed
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logins because the server needs to verify the password as the
first factor. Currently, some Content Delivery Network (CDN)
providers such as Akamai and Cloudflare have deployed bot
detection mechanisms to help websites filter out the login traf-
fic generated from bots [18,25]. However, these bot detection
mechanisms use machine learning and behavior analysis to
detect bot requests and cannot deterministically avoid false
positive or false negative results. Besides, websites have to
allow a CDN to inspect their traffic from users, leading to
password exposure to the CDN [35, 101].

In addition, a website may delegate password authentica-
tion to a third party by using the service of an authentication
provider like Auth0 [3] or using the Single Sign-On (SSO)
scheme such as OpenID [21] and OAuth [53]. Such delegated
authentication releases the burden of user verification on the
server. However, it is not suitable for security-sensitive web-
sites such as banks that cannot trust a third party for user
authentication. Additionally, delegated authentication intro-
duces a single point of failure where a vulnerability in a single
delegate affects millions of user accounts [89], as exemplified
by the recent Google OAuth incident [26].

Motivated by the concerns above, we propose a novel web
authentication architecture named PreAcher to securely of-
fload the password authentication to a third-party CDN with-
out divulging user passwords to the CDN. Our insight is that
traditional password authentication were designed between
two parties, i.e. a client and a server, before CDNs became
an essential component in the web ecosystem. Consequently,
they were not able to prevent ADoS attacks and password
leakage simultaneously. Differently, we design the PreAcher
architecture to incorporate a CDN into the password authenti-
cation process. At a high level, PreAcher deploys password-
agnostic “pre-authentication” on a CDN to intercept failed
login requests, relieving the server from unnecessary authen-
tication workload. Specifically, when a user sends a login
request to a website, the CDN first pre-filters the password
without knowing the exact user password. Only when the
password is highly likely to be correct, then will the CDN
forward the password to the origin server for final authentica-
tion. This design enables a CDN to filter out most of the login
requests with incorrect passwords, including those malicious
ones intended for ADoS/DDoS attacks and account cracking.

To meet our goal of preventing ADoS attacks while protect-
ing password secrecy, we face two main design challenges.
The first challenge arises from enabling a CDN to efficiently
pre-filter a password without exposing the actual password to
it. In this paper, we assume a CDN as a honest-but-curious
adversary where it will operate the functionalities and pro-
tocols faithfully but may have unintentional bugs exploited
by attackers to peek at or guess user passwords through the
messages in transmission [49, 75, 76]. To defend against such
an adversary, we combine Oblivious Pseudorandom Function
(OPRF) [37] and Locality-Sensitive Hashing (LSH) [58] to
design a novel three-party authentication protocol involving

a client, a CDN, and a server in PreAcher. This protocol not
only hides the password in the login requests but also pre-
vents a CDN from guessing the passwords, thereby efficiently
safeguarding and verifying user passwords.

The second challenge concerns compatibility issues. The
proposed pre-authentication protocol involves new operations
of the CDN, the client, and the web server, which inevitably
raises the concerns on compatibility. We elaborately design
PreAcher’s architecture to be compatible with the current
web ecosystem. Specifically, we implement PreAcher’s CDN
operations on the existing serverless computing services [61],
such as Akamai EdgeWorkers [1], AWS Lambda [9], and
Cloudflare Worker [8]. These services allow web developers
to run customized request processing functions on a CDN’s
edge servers. Besides, we implement all client operations as
a JavaScripts library, which are imported into the web pages
and seamlessly installed in the browser when a user visits
the website. Therefore, a website can immediately deploy
PreAcher unilaterally to safeguard its server.

To sum up, this paper makes the following contributions:
1. We design and implement the first secure and practical

three-party password authentication architecture that incor-
porates a client, a CDN, and a server, PreAcher. PreAcher
not only protects websites from ADoS/DDoS attacks ex-
ploiting the login interfaces but also prevents password
exposure to third-party CDNs.

2. PreAcher can be immediately deployed in the current web
ecosystem by a website unilaterally without any modifica-
tion of web clients, CDNs, or hardware.

3. We conduct comprehensive analysis and evaluations on
PreAcher, and the results show that it enhances the pass-
word security and servers’ resistance to ADoS attacks.
Besides, the security of the proposed authentication proto-
col in PreAcher is formally proved (Appendix § D). We
also show that it introduces acceptable overhead to the
throughput and latency of the login process.
Ethical concerns: This work does not raise any ethical

concerns. We use our own server as the victim in all experi-
ments, and the network traffic volume we send to the Internet
is small (< 10Mbps).

2 Background, Threat Model, and Goals
In this section, we first review the ADoS attacks exploiting
password login interfaces. We also present a proof-of-concept
experiment of initiating such ADoS attacks towards a web
server behind a commercial CDN’s protection service. Then
we introduce the service model of the CDN used in this paper
before we present our threat model and assumptions. Finally,
we propose the design goals of our solution.

2.1 ADoS Attacks on the Password Login
Password logins are one of the most popular features on web-
sites. To securely verify user passwords, web servers must
compute the hash values of passwords [28], as they store only
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the salted hash values [14], rather than the plaintext, due to
the risk of data breach [24]. Furthermore, the hash function
used in password verification must be slow hashing, such as
scrypt [81], PBKDF2 [77] and Argon2 [32], so that an attacker
who captures a password database still needs a long time to
brute-forcedly crack the passwords [14, 31, 36]. Therefore,
password hashing is deliberately designed to require inten-
sive computation. As the modern processors become more
powerful, password hashing also evolves to remain work-
load intensive on those processors. For example, PBKDF2’s
iteration number is recommended to increase from 1000 in
2000 [77] to 10000 in 2017 [51]. Additionally, new algorithms
like Argon2 [32] are computationally intensive on both mod-
ern CPUs and GPUs. However, such intensive computation
also affects the server’s throughput in verifying user login
requests, leading to not only possible server overload during
concurrent user logins but also the vulnerability of ADoS
attacks [2, 22, 23].

Different from DDoS attacks where attackers generate vol-
umetric network traffic to the victim server, ADoS usually
needs much less traffic to crash the server because of the asym-
metric computation between a client and the server, such as
the login request processing as mentioned above. An attacker
can send a few login requests to consume up all the server’s
computing resources and block valid users from login.

Proof of concept. We present an experiment to show the
feasibility of ADoS attacks on a server behind a commercial
CDN through the login interface. We set up a Virtual Machine
(VM) of with 4 vCPUs (Intel Xeon E-2288G [10]) and 16 GiB
memory on Azure as the web server. We also employ one of
the largest commercial CDNs and pay for its DDoS protection,
bot detection, and Web Application Firewall (WAF). The
CDN applies a rate limit of around 10 req/sec per IP address
on the requests. We use a desktop computer in our university
as the client. The server hosts a typical password login page,
and every login request is enforced to traverse through the
CDN to reach the server. Our goal is to use the client as an
attacker to deplete the server’s CPUs by login requests.

We implement two password hashing algorithms on the
server: PBKDF2 [77] and Argon2 [32]. The former is a tra-
ditional algorithm standardized in 2000, while the latter is
the state-of-the-art one proposed in 2016. We configure the
iteration number of PBKDF2 as 10000, which is the default
value of OpenSSL [13] and is recommended by NIST [51].
As for Argon2, we use the recommended parameters by
OWASP [14]: 19 MiB of memory, 2 iterations, and 1 de-
gree of parallelism. In both cases of server implementation,
the client uses Puppeteer [16] to control Chrome to send 150
login requests per second as the attack traffic to the server.
This attack lasts for one hour and the requests contain ran-
domly generated login credentials. The client also adopts the
distributed proxies of Bright Data [5] to send requests with
different source IP addresses.

In both cases of PBKDF2 and Argon2, we observe that the

CDN does not intercept any request, and the server’s CPU
utilization stays around 100% during the one-hour attack.
Besides, the server cannot respond to any other user requests.
Therefore, we successfully bypass the commercial CDN’s
protection and launch ADoS attacks on the victim server.

2.2 CDN Service Model
PreAcher leverages third-party CDNs, such as Akamai and
Cloudflare, for pre-authentication due to their extensive net-
works of distributed edge servers around the world. These
edge servers provide sufficient computing and network re-
sources to defend against DoS attacks. However, researchers
have raised security concerns about CDNs: to enable a third-
party CDN to serve the HTTPS connections from clients, web-
sites have to share their TLS private keys to the CDN [35,68].
This practice allows a third-party CDN to access the pri-
vate data transferred in HTTPS connections between users
and websites [54, 69], such as user passwords [101]. In ad-
dition, researchers also showed that attackers can exploit a
CDN’s configuration error to fetch the transferred private
data [49, 75, 76]. Therefore, in PreAcher’s design, we aim for
not only defending against ADoS attacks but also preventing
the password exposure to CDNs.

In this paper, we refer to the web server hosted by a website
and hidden behind a CDN as the “origin server” or simply
“server”. We use the term “user” to denote a website’s user
rather than a CDN’s user. A user accesses a website through
a web “client” such as a browser. We describe an attacker as
being “inside” a CDN when it exploits a vulnerability within
the CDN to gain internal privileges, or when it is a rogue
insider of the CDN provider. For simplicity, we sometimes
use “CDN” to refer to an attacker inside a CDN. Additionally,
an attacker “outside” of a CDN refers to any malicious entity
except for the CDN itself.

2.3 Threat Model and Trust Assumptions
Attackers inside CDNs. Prior studies [54, 69, 101] describe
two threat models of a CDN as below:
1. Passive attacker: A CDN will honestly provide the func-

tionalities it promises, but its components such as the log
and the storage may contain unintentional bugs like con-
figuration errors. An attacker can exploit these bugs to
access to the data, but cannot modify a CDN’s behavior.
The attacker can eavesdrop on the messages transferred
by a CDN but cannot tamper with, duplicate, or fabricate
any message. For example, the attacker can observe the
passwords or attempt to infer the passwords from the trans-
ferred messages. This model is also called a “honest-but-
curious” model.

2. Active attacker: A CDN’s component such as the control
plane contains severe vulnerabilities that an attacker can
exploit to not only eavesdrop on transferred messages but
also tamper with, duplicate, and fabricate the messages.
An active attacker is more powerful than a passive attacker.
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In PreAcher, we assume a passive attacker inside a CDN
due to the following reasons. 1) Researchers have shown that
passive attackers could exist in commercial CDNs, such as
web cache deception attacks [49, 75, 76], where attackers de-
ceive CDNs to accidentally cache some users’ private data
and grant public access to the data. 2) Prior studies have pro-
posed methods to ensure the integrity of CDN-hosted content
based on a secure DNS channel [46, 69], which prevents a
CDN from tampering with the message without being de-
tected. PreAcher can adopt these methods to further defend
against an active attacker. We leave the defense against active
attackers for future work.

We note that a CDN will not launch DDoS/ADoS attacks
on the hosted websites in our study, as the CDN is assumed
to be a passive attacker.

Attackers outside CDNs. An attacker outside a CDN can
actively manipulate the messages it interacts with. For exam-
ple, it may gain access to a client’s Wi-Fi router and alter,
duplicate, or forge the transferred messages. We also con-
sider it has the capability to launch ADoS or DDoS attacks.
This may involve sending send a large number of login re-
quests with various combinations of usernames and guessed
passwords to the login interface of a website.

Origin servers. Since the origin server is the source of
all web content, we trust the server for all users’ sensitive
data. We do not consider data breaches or web providers’
misoperations on the server in this paper.

ADoS-resist registration. We assume the server’s regis-
tration interface is resistant to ADoS. This assumption is
achievable in reality. Firstly, since the registration is a one-
time cost, a website can adopt complex CAPTCHA on the
registration page without affecting the user experience of fu-
ture visits. Besides, for those web services that are highly
security conscious, the web provider can require a user to
register an account offline. For example, a user may need to
visit a local branch to open a bank account.

Trusted Computing Base. We trust the implementation
of existing cryptographic libraries in the programming lan-
guages. We also trust the implementation of the hardware,
browsers, and operating systems used by the client and server.

2.4 Design Goals
In this paper, we aim to design and implement a password
pre-authentication system on CDNs with the following goals:
1. Security: Our system focuses on securing password au-

thentication. It should prevent the ADoS attacks exploiting
the login interface, while avoiding password exposure to
CDNs or other attackers. Besides, the system should retain
the CDN’s security benefits such as DDoS protection and
WAF. However, we do not aim to prevent ADoS attacks us-
ing other channels beyond password authentication, nor do
we protect other sensitive data or private communications
handled by the current CDNs beyond passwords.

2. Compatibility: Our system should be compatible with the

CDN

Origin Server

Edge Server

a2. Full Auth

Attacker

Client

Valid Traffic
ADoS Traffic

c1. Fetch Login Page

c2. Pre-Auth
c3. Full Auth

a1. Pre-Auth

Figure 1: PreAcher architecture. The width of arrows shows the
traffic volume.

current web ecosystem. Its deployment should not involve
multiple stakeholders on the Internet. Our design achieves
this by enabling websites to deploy the system unilaterally.
The system does not require any modification on current
browsers, CDN infrastructure, or operating systems. It only
requires updating the website’s login page and processing.

3. Efficiency: Our system should not introduce much over-
head to the login procedure from the perspectives of
throughput and latency.
Achieving these three goals simultaneously is non-trivial.

We utilize both techniques of authentication protocols and the
features of current web development practice and thus finally
design and implement PreAcher shown in this paper.

3 Design Rationales
In this section, we first illustrate an overview of PreAcher.
Then we discuss the design rationales of PreAcher.

3.1 Overview
The core of PreAcher is an authentication protocol involving
three parties: the client, CDN, and the server. It includes a
pre-authentication stage on the CDN and a full authentication
stage on the server, which we will elaborate in § 4.

Figure 1 shows an overview of PreAcher. All components
of PreAcher run on the application layer of the Internet for
compatibility. When a user visits a website and intends to
login, the web client (browser) fetches the HTML files of the
website’s login page from the CDN (c1). Since we assume a
passive attacker in the CDN (§ 2.3), the CDN cannot modify
the login page and thus cannot conduct phishing on user
passwords. After the user types in her username and password
on the web page, the client communicates with CDN to pre-
authenticate the user (c2), which may include multiple round
trips. Only if the client passes the pre-authentication, the CDN
will forward the client’s request to the origin server for full
authentication (c3). If the server also successfully verifies the
user’s identity, it will return an indication of success to the
CDN and the CDN finally notifies the user of a successful
login. Otherwise, the client is rejected to login.

When an attacker attempts to compromise some accounts,
it can instrument programs to directly send usernames and
passwords to the CDN and start the pre-authentication (a1),
without loading the HTML files into a browser. In most cases,
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the pre-authentication will fail, and the CDN immediately
rejects the requests without forwarding them to the server.
Therefore, if the attacker sends login requests to initiate ADoS
on the server, the CDN will filter out most of them to pro-
tect the server. Since the CDN conducts a pre-authentication
which does not ensure 100% correctness of the credentials,
some attack requests may still be forwarded to the server for
full authentication (a2). However, the server will reject this
portion of requests. Besides, we elaborately design the authen-
tication protocol to ensure that the amount of these requests
is small enough and will not lead to ADoS on the server.

3.2 HTTPS Compatibility
PreAcher is compatible with the current web ecosystem, and
thus all communications among the client, the CDN, and
the origin server use HTTPS connections, including the re-
quests/responses of page loading, pre-authentication, full au-
thentication, etc.. We keep current TLS private key-sharing
practice between CDNs and websites, so the CDN can still
access to the HTTPS payloads. In contrast, an attacker outside
of a CDN cannot break HTTPS and view the content, since it
does not have the TLS private key.

3.3 Private Communication After Login
PreAcher does not aim to protect general private communica-
tion between the client and the server. Instead, PreAcher fo-
cuses on preventing the password exposure and ADoS/DDoS
attacks caused by current password authentication. A website
can adopt the existing proposals, InviCloak [69], to build a
secure channel between the client and server with the exis-
tence of a CDN and thus transfer the private data securely
through the channel. Besides, after a success login, websites
usually grant the client authentication cookies to avoid logins
for future visits. PreAcher does not provide the protection of
these cookies either, but websites can also use InviCloak to
protect the authentication cookies.

3.4 Password vs Additional Key
Some design ideas may require a client to hold an additional
key—such as a private key—after the registration. We de-
cided not to adopt these designs because they conflict with
current user behaviors: users are required to remember or
save additional materials beyond the passwords. Although
a web client can help a user to store the additional key, a
user may change her web client. Thus, PreAcher adopts a de-
sign compatible with the current user behavior of memorizing
the username and password only, which is arguably the most
universal authentication method.

3.5 Preventing Offline Dictionary Attack
In an offline dictionary attack [29, 34, 82], an attacker ob-
tains a dictionary of user passwords, enumerates all password
candidates in the dictionary, and verifies the guessed pass-
word offline (locally) without communications with the server.

Such an attack requires the attacker to find an approach to
determine the correctness of the guessed password locally.
For example, an attacker may obtain the hash value and the
salt of the actual password so that it can compare the hash
value of the guessed password with the actual hash value to
know the correctness. Therefore, the attacker can enumerate
all passwords in the dictionary locally until it finds the correct
one, and it will not be detected by the server.

The defense against such an attack becomes particularly
challenging when we consider a passive attacker inside a
CDN in PreAcher’s design. Generally, if a CDN can fully
authenticate users to filter out all invalid requests, then the
CDN can launch offline dictionary attacks. This is because
the passive attacker can observe all transmitted messages and
all computational states of the CDN during a legitimate user
login. With this information, for each password the attacker
guesses, it can simulate the authentication protocol between
the client and the CDN to determine the password’s correct-
ness. Note that such an attack remains within the bounds of
passive attacker behaviors since the simulation relies solely
on observed data and is conducted offline.

Furthermore, if we prevent the CDN from obtaining any
information about password correctness to thwart such offline
dictionary attacks, the CDN will be unable to filter out the
failed login requests for the server.

We addresses such a challenge based on two observations:
1. Although offline dictionary attacks are hazardous, online

password-guessing attacks are considered much less risky
since they are detectable and can be easily rate-limited by
the origin server.

2. Currently, the state-of-art dictionary generation algorithms
generate the passwords based on a user’s historical pass-
words [80,102] or a user’s personal information [91]. Thus,
the password candidates in a dictionary should be similar
to each other to some extent [56].
Therefore, in PreAcher, instead of granting a CDN the ca-

pability of determining the password correctness, we propose
to only enable the CDN to determine the similarity between
the provided password and the actual password. The CDN
can still help the server filter out massive failed login requests
with erroneous passwords that are not similar to the actual
password, and it forwards the login requests with probably
correct passwords to the server for further authentication.

Such a design prevents offline dictionary attacks initiated
by a CDN because a CDN cannot verify similar passwords
offline. By PreAcher’s design, for those similar passwords
in the dictionary, CDN cannot determine which one is the
correct one, and it has to query the server to verify every sim-
ilar password. Therefore, CDN can only guess the password
online with the server.

The design still prevents ADoS attacks. For attackers out-
side the CDN, if it randomly generates the passwords, the por-
tion of passwords that can pass the CDN’s pre-authentication
will be very small (see § 5). Moreover, as we analyze in
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§ 6, it is difficult for attackers outside the CDN to identify
the passwords that can reach the origin server and trigger an
ADoS attack. Furthermore, even if they gain access to such
passwords, since the password authentication is enforced to
be online and shares a pattern of similarity, the attack is de-
tectable by the server.

We describe the algorithm to enable a CDN to determine
the similarity of passwords in § 5, which is based on Locality-
Sensitive Hashing (LSH).

4 Authentication Protocol
As previously discussed, our protocol consists of two stages:
the pre-authentication on the CDN and the full authentication
on the server. Although the idea of this two-stage protocol
is simple, instantiating such a protocol is non-trivial. In this
section, we first present the protocol used in PreAcher, and
then we discuss an intuitive but less efficient design.

4.1 PreAcher Protocol
The core idea of our protocol is to combine Oblivious Pseudo-
random Function (OPRF) [37] and Locality-Sensitive Hash-
ing (LSH) [58] to enable pre-authentication at a CDN while
limiting its knowledge of password correctness.

OPRF is a protocol that allows two parties (Alice and
Bob) to obliviously evaluate a PRF function F(K;X), where
Alice inputs K and learns nothing, and Bob inputs X and
learns F(K;X) without knowing K. In this paper, we use
the 2HashDH OPRF proposed in prior work [59]. OPRF is
also used by existing Password Authenticated Key Exchange
(PAKE) protocols like OPAQUE [60]. Our protocol is inspired
by OPAQUE but is different from its design in two aspects:
1. OPAQUE is designed for two-party authentication between

the client and server. We extend OPAQUE to three parties.
2. By adding the CDN into the protocol, OPRF itself can-

not solve the offline dictionary attacks by the CDN. Our
protocol incorporates LSH to defend against the attacks.
Furthermore, the security of this proposed new protocol

is also formally proved. We describe the workflow of the
protocol in this section, and present the proof in Appendix D.

We first describe the notations used in the protocol below
before we elaborate on the protocol details.
• The client obtains the username u and the password p from

a user’s input. The server generates a new key pair ⟨pks,sks⟩
during the deployment of the system. Note that this key pair
is different from the TLS key pair.

• For clarity, the symbols with a subscript “u” are related to a
specific user u, and the symbols with a superscript “ ′ ” are
related to pre-authentication, e.g. a user’s key pair used for
pre-authentication ⟨pk′u,sk′u⟩.

• The protocol builds upon a Diffie-Hellman cyclic group
G = ⟨g⟩, where g is the generator, and n is the bit length of
the group.

• H1 is a cryptographic hash function, while H2 is password
hashing. LSH denotes a locality-sensitive hashing.

Client(u, p,pks) CDN

p′← LSH(p)

r←$ {0,1}n

α
′← H1(p′)gr

m1 : u,α′

ku,pk
′
u,e
′
u← Get′(u)

vu← gku

β
′← α

′ku

C←$ {0,1}n

m2 : vu,β
′,e′u,C

d′← H2(p′,vu,β
′v−r

u )

sk′u←Dec(d′,e′u)

Figure 2: First round of PreAcher login.

• The protocol uses a CPA-secure symmetric encryption
scheme (K g,Enc,Dec) and a CCA-secure asymmetric en-
cryption scheme (Kg,Enc,Dec).

• We use a standard digital signature scheme
(KGen,Sign,Vf) with existentially unforgeability un-
der chosen-message attack (EU-CMA).

• Save(u, ·) (resp. Save′(u, ·)) denotes saving the input into
a user-associated record stored by the origin server (resp.
CDN), while Get(u) and Get′(u) denote the retrieval of the
corresponding records associated with a user u.

The protocol is divided into two phases: registration and lo-
gin. During the registration, we assume trust on first use so the
client can communicate directly to the server. The server first
generates a random number ku. Then the client and the server
will use OPRF to compute a symmetric key d′ through the
password and ku. The client generates a key pair ⟨pk′u,sk′u⟩,
and encrypts the sk′u into an envelope e′u with the key d′. The
server sends ku,pk

′
u,e
′
u to the CDN after the registration, and

the CDN will use them to help the server pre-authenticate
users and filter out invalid login requests. The client also reg-
isters the user with the server by traditional password hashing
(without exposing the password to the CDN), which will be
used for full authentication on the server during login. Given
space constraints, we leave more details of registration in Ap-
pendix A. For the rest of this section, we focus on the login
protocol.

Initialization. A user inputs u and p to the client. The
client obtains pks, and the server holds the corresponding sks.
The server can delivered pks to the client with integrity by
embedding it in the HTML of the login page as discussed
in § 3.1. Besides, the CDN already received corresponding
ku,pk

′
u,e
′
u for registered users from the server.

Generating the secret key from the password. Similar
to the registration, the client obtains the secret key d′ through
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Client(u, p,pks) CDN Server(sks)

S← Sign(sk′u,C)

m←$ {0,1}n

M← Enc(pks, p,m)

m3 : u,S,M

Vf(pk′u,S,C)
?
= OK

m4 : u,M

saltu,hu← Get(u)

p,m←Dec(sks,M)

H2(p,saltu)
?
= hu

OK m6 : OK m5 : OK

Figure 3: Second round of PreAcher login.

the combination of OPRF and LSH, but it communicates with
the CDN instead of the server as shown in Figure 2.

Specifically, the client uses LSH to map the password p to a
pseudo-password p′. Then it generates a random nonce r and
computes α′. After receiving u and α′ from the client (m1),
the CDN retrieves ku, pk′u, and e′u from the storage according
to u. Then it computes vu and β′, and returns them to the
client with e′u and a challenge C (m2). The client computes d′

through the same function in the registration.
Retrieving the private key from the envelope. With d′,

the client can decrypt e′u to obtain the private key sk′u which
is generated in the registration. This completed the first round
of PreAcher login.

Pre-authentication and full authentication. In the sec-
ond round, the client computes the credentials for pre-
authentication and full authentication, respectively. Then it
sends them to the CDN and the server together to save the
RTTs of the protocol. The procedure is shown in Figure 3.

For pre-authentication, the client signs C with sk′u and send
the signature S to the CDN (m3). Meanwhile, for full authenti-
cation, it encrypts p and a nonce m with pks and sends the en-
crypted message M to the CDN without concerns of exposing
p (m3). Since the CDN stores pk′u, it can verify the signature S.
The pre-authentication succeeds if and only if the verification
succeeds. If the pre-authentication fails, the CDN stops the
protocol and sends an error message to the client, which is not
shown in the diagram. When the pre-authentication succeeds,
the CDN sends u,M to the origin server for full authentication
(m4). Note the CDN cannot decrypt M to know p since it does
not know sks.

When the server receives requests for full authentication, it
retrieves saltu and hu from records and decrypts M to authen-
ticate the password p by comparing the calculated hash value
with hu. The authentication result is returned to the CDN (m5)

and then to the client (m6).
Summary. The protocol uses two different asymmetric

key pairs for pre-authentication and full authentication, re-
spectively. For pre-authentication, the client’s private key is
enclosed in an envelope stored on the CDN with a symmetric
encryption key. The encryption key is computed by OPRF
from the password in the login. We combine LSH with the
OPRF to limit the CDN’s capability of guessing passwords.
We will discuss how LSH achieves this in § 4.2.

As shown in the protocol, the pre-authentication uses the
signature to verify the user, while the full authentication uses
the traditional password hashing where the server sees the
password and checks against the stored hash value. We ex-
pose the password to the server because we trust the server
in our threat model (§ 2.3). Besides, we keep such a tradi-
tional method in the server to be compatible with the popu-
lar authentication implementation in practice. In addition, if
we use signature verification and hide passwords from the
server, one more RTT will be added to the protocol since a
challenge number should be delivered to the client after the
pre-authentication. Nevertheless, web operators can easily
modify this full authentication approach if they consider the
traditional method does not fit their demands.

4.2 Intuitive but Less Efficient Design
In the early stage of our study, we adopted straightforward
hashing methods for pre-authentication. Overall, the client
hashes p′ to obtain H1(p′). The CDN computes password
hashing of H1(p′), i.e. H2(H1(p′)), and checks it against with
the one in the storage. We call such a double-hash protocol as
“DuoHash”. We illustrate the detail protocol of DuoHash in
Appendix C.

However, we found that DuoHash is less efficient in prac-
tice, since the protocol runs a slow password hashing on the
CDN for pre-authentication. Besides, this slow hashing can-
not be replaced by a usual hash function like SHA-256, be-
cause such a replacement accelerates the brute-force guessing
of p′ when an attacker captures the CDN’s storage [14,31,36].
For example, using OpenSSL implementation on our testbed,
SHA-256 is over 50,000 times faster than PBKDF2. With p′,
the attacker can simply construct the login requests that pass
pre-authentication and thus launch ADoS attacks on the server.
Therefore, password hashing is necessary in the double-hash
design, leading to a significant performance downgrade of the
CDN’s edge servers. As a defense of ADoS and DDoS for
the origin server, the CDN’s operations should be as efficient
as possible, so we opt for the OPRF design in this paper. Web
developers could adopt DuoHash if they find it suitable for
their applicatons, as outlined in our comparison of DuoHash
and PreAcher in § 8.

5 Locality-Sensitive Hashing
As presented in § 4.1, we use LSH to map the password p to a
pseudo-password p′, and use p′ in the pre-authentication. The
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rationale behind this design is to reduce the CDN’s ability to
determine password correctness, thereby preventing offline
dictionary attacks from the CDN as discussed in 3.5.

The LSH is designed to map a set of similar passwords
to the same p′ value, and thus, a portion of erroneous pass-
words can also pass the pre-authentication. Specifically, an
attacker inside the CDN may launch offline dictionary attacks
by generating a dictionary of password guesses and testing
them locally to see which ones pass the pre-authentication.
However, by using LSH, the best this attacker can do is to find
that a portion (determined by LSH) of passwords are hashed
to the correct p′, and they are all possibly the actual password.
Thus the attacker has to enumerate this portion of passwords
and send online requests to the server for full authentication,
but the server will reject this login request unless the correct
password is guessed. Leveraging LSH, the CDN only knows
that a provided password may be similar to the correct one
locally. This achieves our purpose of enforcing the CDN to
conduct online queries to know the correctness.

For the passwords in a dictionary, we expect to see many
of them mapped to the p′ of the actual password, so that CDN
gains little information through enumerating the passwords in
the dictionary. However, to defend against ADoS attacks, we
expect to reduce the probability of the passwords in the attack
traffic mapped to the actual p′ so that the CDN can filter out
most failed logins. These two requirements align well with
the design of LSH, and we can tune the parameters of LSH to
balance the CDN’s ability of inference and authentication.

In PreAcher, we use weighted K-mer MinHash [72] as the
algorithm of LSH. A string s of length N is first converted
to lowercase and then split into N−K +1 substrings called
“K-mers” by a sliding window of length K. These K-mers
form a sequence S, following the order of their positions in s.
Formally, let s[i : j] denotes the substring of s from index i to
index j. We have

S = (s[1 : K],s[2 : K +1] ... s[N−K +1 : N]) (1)

Then we use weighted MinHash [96] to generate the hash
value from S as follows. Since a K-mer (denoted as m) may
appear multiple times in S, we use m(w) to denote w-th appear-
ance of m in S. We use w as the weight in weighted MinHash.
Then we adopt HMAC [63] with SHA-256 to hash the K-mers
in S. Thus, we have a set T consisting of the hashed K-mers.

T = {HMAC(u,w ∥ m) | m(w) ∈ S} (2)

In Formula 2, we use ∥ to denote concatenation. Finally,
we take the minimum element in T as the hash value of LSH.

We emphasize that our LSH design is preimage-resistant.
Specifically, an attacker only knows that there exists a cluster
of similar p to be mapped onto the same p′, but it is difficult
to determine the exact p that corresponds to a specific p′. This
property originates from our two designs:
1. We use HMAC with SHA-256 to construct the LSH as

shown above. As SHA-256 is preimage-resistant, the LSH
is also preimage-resistant.

2. We include the username u in HMAC’s input. Thus, the
mappings from the p to p′ vary across different users,
further enhancing the resistance to preimage attacks.

We then analyze the collision probability of this LSH. Let
c be the alphabet size of a password. Since the K-mer has
a length of K and the hash value is generated from K-mers,
the size of the hash value space is cK . Therefore, in the case
of ADoS/DDoS initiated by an attacker outside of a CDN, it
generates passwords randomly. Then the probability of the
collision between a generated password and the actual pass-
word is Pcol =

1
cK . This is the fraction of the attack requests

that pass the pre-authentication by the CDN. For example,
let K = 4 and c = 66, where c includes 26 case-insensitive
letters, 10 digits, and 30 special characters allowed by Linux
passwords, then Pcol is less than 10−7. It means that PreAcher
can filter out almost all DoS traffic.

To identify the correct password, an attack inside the CDN
could offline determine the password candidates that are
mapped to the actual p′ and then send these candidates to
the server for online verification. In this case, the server will
see multiple failed login requests of an account from the CDN.
For an account, the server should consider it is under attacks
if more than Q times of failed logins happen on the server.
The server could temporarily freeze the user account and ask
the CDN to inspect the possible insider attackers. However,
these frequent failed logins may also come from a valid user’s
erroneous input. Thus, the server can tune Q to adjust the
sensitivity to the attacks. We run an empirical experiment
simulating this scenario to show the defense effectiveness of
LSH as below.

We collect 5000 distinct users and their passwords from
4iQ dataset [38]. For each user, we collect two passwords, one
is regarded as a historical password leaked to a CDN, the other
one is regarded as the actual password of the user’s account on
a website served by the CDN. Suppose the website adopts the
CDN for pre-authentication, and the CDN aims at cracking
those 5000 user accounts in this website through the collected
historical passwords. Suppose the CDN adopts a state-of-
the-art dictionary generation algorithm, pass2path [80] for
password guessing. For each account, it uses this algorithm to
generate a dictionary of 10,000 passwords from the historical
password. The CDN can locally filter the password candidates
that pass pre-authentication and send them to the server for
full authentication. When the pre-authentication does not
adopt LSH or the website opts for full authentication on the
CDN, as long as the dictionary contains the correct password,
the CDN will find it locally and crack the account successfully.
However, with LSH, only if less than Q password candidates
are left after the offline filtering can the CDN ensure itself
cracks the account through less than Q online queries without
being detected by the server. We compute the success rate
of such undetected cracking on 5000 accounts for different
values of Q and K in our LSH.

Figure 4 shows the success rate of cracking. Firstly, the
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Figure 4: The CDN’s success rate of cracking accounts varying
with K and Q in LSH. When LSH is not used (the black line),
the success rate does not depend on K or Q.

black line is about 8.42%, indicating a relatively high chance
that the CDN can find out an account’s password offline when
LSH is not adopted. However, the success rate is dramati-
cally reduced with LSH applied. It is less than 1% When
K ≤ 4 and Q ≤ 100. The success rate also rises as K and Q
increases, because larger K leads to fewer password collisions
with p′ in LSH, and larger Q allows more trials from the CDN.
Nevertheless, a small K also reduces the effectiveness of the
ADoS/DDoS defense of the CDN, and a small Q also down-
grades the tolerance of the typos from valid users. Therefore,
a server adopting PreAcher should select K and Q properly to
defend against both DoS attacks and password cracking and
reduce the false alarms. According to Figure 4, we set K as 4
and Q as 20 by default in PreAcher, since the cracking rate is
less than 0.20% and almost all DoS traffic cannot pass the pre-
authentication (Pcol < 10−7). Websites deploying PreAcher
can adjust K and Q based on their demands.

We note that the 0.20% cracking rate is not introduced by
PreAcher but results from users frequently reusing similar
passwords across websites. A website without PreAcher faces
the same cracking rate when an attacker outside of the CDN
conducts online password guessing. Additionally, without
PreAcher, the CDN sees the passwords directly. With OPRF
but not LSH in PreAcher, the CDN can guess passwords
offline with a success rate of 8.42% (Figure 4). Our LSH
design contributes to the reduction from 8.42% to 0.20%.

6 Security Analysis
In this section, we analyze the security properties of PreAcher
and explain how our design defends against attacks. We have
formal security proof for our protocol, and we provide a proof
sketch in Appendix D.

Registration security: As discussed in our threat
model 2.3, we consider registration is ADoS-resist. Besides,
the server still hides behind the CDN for registration, and the
CDN can provide the DDoS defense. Moreover, the password
is not exposed to the CDN during the registration according
to the protocol shown in Appendix A.

User impersonation: If an attacker tries to impersonate a
user without knowing the correct password, it will be rejected
by either the CDN or the server. However, there exist cases

in which the attacker provides a wrong password but obtains
the correct p′ because LSH maps the wrong and correct pass-
words to the same p′. In such cases, the attacker can pass
the CDN’s pre-authentication because he can compute the
correct d′ to decrypt e′u. However, he is guaranteed to fail the
authentication on the server since the wrong password cannot
pass the password check against the stored hash.

Password invisibility to the CDN: With our protocol, the
CDN cannot observe user passwords, as the passwords are
neither transferred in plaintext nor decryptable by the CDN
during the communication. During the login, the oblivious
nature of OPRF allows the client to retrieve the stored pri-
vate key sk′u. Then the client and the CDN use ⟨sk′u, pk′u⟩ for
pre-authentication. Moreover, the client encrypts the pass-
word with pks during full authentication. As a result, both
authentication stages ensure the secrecy of the password. We
provide two examples of attack attempts in Appendix B to
demonstrate how this protocol can defend against a passive
attacker inside the CDN.

ADoS/DDoS attacks: PreAcher prevents ADoS/DDoS
attacks by filtering out most failed login requests by pre-
authentication on the CDN. When an attacker generates brute-
force login requests to overload the server, the server is never
involved in the pre-authentication while the CDN will inter-
cept the requests accurately.

An attacker may try to find passwords that pass pre-
authentication but fail the full authentication to repeatedly in-
volve the server and drain its resources. However, the attacker
cannot identify such passwords in PreAcher. Both authentica-
tion stages return the same failure message. When a wrong
password is guessed, the attacker cannot tell if the failure is
due to pre-authentication or full authentication. Therefore,
attackers outside the CDN cannot find passwords accepted by
pre-authentication to launch ADoS attacks. While the CDN
knows the pre-authentication result, as assumed in § 2.3, a
CDN would be improbably involved in ADoS/DDoS attacks.

An attacker may also register an account and use the ac-
count’s credentials to launch ADoS. The origin server can
defend against such attacks by monitoring the login behavior
of users. If a user repeatedly logs into her account in a very
short time, the website can block the account.

Dictionary attacks: The key idea of PreAcher’s defense
against dictionary attacks is to force attackers to guess pass-
words online, and the server enforces a rate limit on the failed
login attempts to detect such attacks.

For an attacker outside of the CDN, since it does not know
ku, it can only conduct online guessing for each of its pass-
word guesses. The only information the attacker gains is (1)
the OPRF output which is indistinguishable from random bits
to the attacker due to the pseudorandomness of OPRF and
(2) envelops e′u which the attacker cannot learn anything from
due to the semantic security.

PreAcher also prevents offline dictionary attacks from a
passive CDN attacker. As discussed in § 3.5, we have to
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allow a CDN to guess p′ offline to enable it to conduct pre-
authentication. However, even with the knowledge of p′, the
CDN cannot guess p easily online due to our LSH design.
As shown in § 5, our design of LSH reduces the cracking
rate from 8.42% to less than 0.20%, even when a CDN uses
a user’s historical password and a state-of-the-art password
generation algorithm to make 20 guesses for a single account.

Credential stuffing: Credential stuffing is a type of dictio-
nary attacks where the attacker collects the existing dataset
(dictionary) to guess the password. Since PreAcher defends
against dictionary attacks, it also mitigates credential stuff-
ing. In addition, PreAcher provides the benefit of reducing
the origin server’s workload in credential stuffing since most
incorrect credentials are filtered out by the CDN.

Replay attacks: For the attacker outside of the CDN, it
cannot replay any message of a valid user, as all communi-
cations in PreAcher are inside HTTPS. Moreover, the CDN
cannot replay messages either, since it is assumed as a passive
attacker (§ 2.3). Furthermore, the server can also record the
recent messages of M (Figure 3) to prevent the CDN from
replaying them, which is adopted by prior work [69].

Side-channel attacks: An attacker outside of the CDN
may attempt to identify the passwords passing the pre-
authentication by a side channel so that it can launch ADoS
attacks with these passwords.

For example, an attacker may exploit response times by
sending login requests with different passwords, as failed pre-
authentication attempts are rejected by the CDN and replied
faster than the successful ones. However, PreAcher can miti-
gate such a timing side channel by delaying failed responses,
masking the pre-authentication results. Such a delay should
approximate to the latency between the CDN’s edge server
and the origin server. Moreover, valid users remain unaffected,
since this delay is not applied to successful logins.

In additional, an attacker could send many login requests
with a specific password and infer the the server’s workload
through the website’s page load time. A significant increase
in the page load time indicates this password pass the the
pre-authentication. PreAcher can generally prevent this side-
channel attack as well as others aiming at differentiating pre-
authentication results because
1. The values of p′ used for pre-authentication spread in a

large space (> 107, see § 5), requiring many trials to guess
a correct p′. Moreover, each trial takes considerable cost
as it involves one or more online requests.

2. The LSH mappings are different across users, and the
server freezes an account after Q failed full authentication
attempts. Thus, an attacker is limited to Q requests per
p′ inferred through the side channel, and it must repeat
the trails of guessing p′ across numerous users to gather
enough p′ to carry out a meaningful ADoS attack.
Finally, researchers have discovered other side channels

that may compromise user data, such as through CPU
cache [107], keystroke video [104], improper app isola-

tion [105]. These attacks pose threats not only to PreAcher
but also to many other systems. Addressing these attacks is
beyond the scope of this paper and requires broader efforts
extending beyond websites and CDNs.

7 Implementation
We provide a prototype implementation of PreAcher to facili-
tate the deployment and future research.

We implement the client operations in the protocol as a
JavaScript library so that web developers can easily apply
PreAcher by importing the library into their login web pages.
The implementation does not require any modification or
extension of existing browsers. Therefore, the websites can
be seamlessly upgraded without cooperation from users.

We implement the server in C++ with Sogou Workflow
framework [17], which is an efficient C++ server engine used
in the industry to serve billions of requests per day. Web
developers can adapt our server implementation into their
web servers, or they can simply run our implementation as a
separate process and redirect the received login requests to
the process by setting up a reverse proxy [62, 83].

As for CDN operations, we implement them as a JavaScript
code snippet running on a CDN’s serverless computing ser-
vice. Currently, CDN providers offer serverless computing to
allow websites to run customized code at their edge server
to process requests, such as Akamai EdgeWorkers [1], AWS
Lambda [9], and Cloudflare Workers [8]. Therefore, our im-
plementation runs seamlessly without requiring changes to
the CDN infrastructure, despite introducing new operations on
CDN edge servers. Web developers can deploy our JavaScript
code snippet directly to the CDN to enable pre-authentication,
as all the mentioned CDNs support JavaScript.

For cryptography operations, we adopt the existing libraries
Web Crypto API [94] and libsodium [11] in JavaScript imple-
mentation and OpenSSL [12] in C++ implementation.

Overall, we elaborately design and implement PreAcher so
that it is compatible with the current web ecosystem and can
be immediately deployed by websites. Furthermore, PreAcher
supports incremental deployment across websites since each
website can unilaterally manage its deployment progress.

8 Evaluation
In this section, we evaluate PreAcher’s efficacy in defending
against ADoS attacks and the overhead introduced to through-
put and latency on both the testbed and the Internet.

8.1 Experiment Setup
We set up a testbed on Azure using three VMs as a client, a
CDN, and an origin server. Each VM has 4 vCPUs and 8 GiB
of RAM and runs Ubuntu. As for Internet experiments, we
deploy PreAcher on a commercial CDN, i.e. Cloudflare [6]
and evaluate it using Azure VMs as the client and the server.

Besides PreAcher, we implement three strawman methods
for comparison. The first one models the current password au-
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thentication practice in a CDN-enabled website. The CDN’s
edge servers forward login requests to the origin server for
authentication. Although this method directly exposes pass-
words to the CDN, it is simple and widespread [101]. We call
this method as “Baseline” in this section. Another method is
“DuaHash” discussed in § 4.2. Theoretically, DuaHash also
prevents password exposure and ADoS attacks. Finally, we
implement a method based on Intel SGX [40]. Specifically,
we adopt Occlum [85] to run a traditional password hashing
to authenticate users in SGX. We call this method as “SGX-
CDN’, which theoretically prevents password exposure and
ADoS attacks but requires hardware support.

PBKDF2 is used for password hashing as shown in § 2.1.

8.2 ADoS Defense

Method Testbed Internet
w/o ADoS w/ ADoS w/o ADoS w/ ADoS

Baseline 100 0 99 0
PreAcher 100 97 100 100
DuoHash 91 0 98 97
SGX-CDN 90 1 N/A N/A

Table 1: The successful logins per second for four methods with
and without ADoS attackers. Since Cloudflare does not deploy
SGX, we cannot measure the SGX-CDN on Cloudflare.

We simulate ADoS attacks on the server and compare the
efficacy of four proposed methods on the testbed and the Inter-
net. We set up two processes on the client VM to act as valid
users and an attacker, respectively. The user process sends
login requests at the speed of 100 req/sec to simulate the case
where 100 valid users intend to login to the website per sec-
ond. All requests contain correct usernames and passwords.
As for the attacker process, it sends login requests at the speed
of 400 req/sec to simulate the case where an attacker initi-
ates ADoS traffic to crash the server. These requests contain
erroneous credentials since the attacker does not know the
correct one. We run the experiments in two settings on both
the testbed and the Internet. In the first setting, only the user
process sends requests, representing a normal network condi-
tion without attacks (w/o ADoS). The second setting contains
both the user process and the attacker process, representing a
network condition under the ADoS attacks (w/ ADoS).

Table 1 shows the throughput (the number of successful lo-
gins per second) of each method. On the testbed without attack
traffic, the server can respond to the user process timely with
any of the methods deployed. However, during ADoS attacks,
only PreAcher can maintain high throughput, i.e. 97 req/s,
while the other methods fail to serve nearly all valid requests.
For the baseline, it does not conduct the pre-authentication
on the CDN and all attack requests will be forwarded to the
server for processing. As for DuoHash and SGX-CDN, the
pre-authentication overloads the CDN VM due to the inten-
sive computation for password hashing, and thus the CDN
cannot forward the valid requests to the server.
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Figure 5: Throughput of pre-authentication (PreAuth) and the
whole system (Pre&FullAuth) for four methods. “N/A” indi-
cates the absence of corresponding operations. Numbers above
bars represent the values of throughput and CPU utilization.
Some CPU utilizations are missing because Cloudflare does not
provide the information.

For the experiments on the Internet, the methods also serve
user requests normally when there are no attacks. The through-
put of DuoHash is improved because Cloudflare has plenti-
ful CPU resources for password hashing. Due to the same
reason, DuoHash can serve valid users with 97 req/s even
under attacks. PreAcher also prevents ADoS attacks when it
is deployed on Cloudflare, and it consumes less CPU than
PreAcher as we will presented in § 8.4.

8.3 Throughput
We separate the experiments in this section into two groups:
one measures the throughput of failed logins rejected by the
CDN, and the other one measures the throughput of successful
logins accepted by the server. The former represents the pre-
authentication’s throughput on the CDN, and we indicate this
group as “PreAuth”. The latter represents the whole system’s
throughput including both authentications on the CDN and
the server, indicated by Pre&FullAuth. Specifically, we use
wrk [20] at the client to send login requests to the CDN by 64
parallel connections (wrk -c64).

Figure 5a and Figure 5b show the throughput of the two
groups for the four methods on the testbed and the Internet,
respectively. Firstly, the baseline does not use the CDN for pre-
authentication, and SGX-CDN does not run authentication on
the server (it totally relies on the CDN for authentication), so
we put “N/A” in the corresponding positions of bars. Figure 5a
shows that PreAcher achieves a much higher throughput (948
req/s) than DuoHash (99 req/s) and SGX-CDN (91 req/s) in
the PreAuth group. Moreover, it takes PreAcher only 23% of
CPU to handle these requests, while DuoHash and SGX-CDN
use up all CPU resources (100%). These results demonstrate
the high efficiency of PreAcher’s pre-authentication, which
explains the effectiveness of its ADoS protection in § 8.2. The
pre-authentication throughput of DuoHash and SGX-CDN
is due to the slow password hashing, and SGX-CDN also
introduces the overhead of SGX. As for the Pre&FullAuth
group, all methods’ throughput is around 100, because they
all use password hashing on the server.

For the Internet experiments shown in Figure 5b,
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Figure 6: Median CPU time of pre-authentication (PreAuth)
and full authentication (FullAuth) for four methods. “N/A”
indicates the absence of corresponding operations. We omit
FullAuth results on the Internet since they match those on
the testbed due to the identical operations and server machine.
The numbers above bars indicate the time values.

PreAcher’s PreAuth throughput reduces. We find that this
reduction originates from the 2-RTT design of PreAcher and
wrk. Specifically, the 2-RTT design increases the latency, and
in wrk, each connection waits for a request to complete before
sending the next one. As a result, a higher latency leads to a
lower throughput when all 64 connections are saturated. In
contrast, DuoHash’s PreAuth throughput improves because
the computation is no longer a bottleneck on Cloudflare.

8.4 CPU Time
We measure the CPU Time of the pre-authentication and full
authentication operations. Figure 6 shows the median CPU
time measured on the testbed and the Internet.

In Figure 6a, both DuoHash and SGX-CDN take much over
100×more CPU time than PreAcher for pre-authentication on
the CDN VM, because they both use password hashing while
PreAcher does not. Such a difference in CPU times explains
the results of ADoS defense and throughput on the testbed
in § 8.2 and § 8.3. As for full authentication on the server
VM, PreAcher and DuoHash are comparable with the baseline
since they all use the same password hashing algorithm.

For the Internet experiments, full authentication results
should remain consistent with Figure 6a as we run identi-
cal operations on the same server. Therefore, we focus on
pre-authentication’s CPU time, which is provided by Cloud-
flare’s statistics. As shown in Figure 6b, PreAcher’s CPU
time enormously increases to 8.3 ms, compared to 0.16 ms on
the testbed. This increment arises from the implementation
difference: PreAcher adopts C++ for pre-authentication on
the testbed but use JavaScript on Cloudflare, as C++ is not
supported in its serverless computing. The performance gap
reflects the efficiency difference between these two languages.

However, DuoHash’s CPU time does not increase on Cloud-
flare even though it also uses JavaScript. The reason stems
from the cryptographic library. For DuoHash, we implement
password hashing with Web Crypto API [94], which actu-
ally executes native code with little performance downgrade.
Since this API does not support the primitive elliptic curve
operations required by PreAcher, we adopt a pure JavaScript
library libsodium [11] for it, downgrading the performance.
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Figure 7: The latency of a successful login for the clients in six
regions around the world.

Nevertheless, DuoHash still consumes 3× the CPU time of
PreAcher on Cloudflare due to password hashing, which will
be charged more to websites. Overall, DuoHash is a simple
solution, but PreAcher achieves better CPU efficiency. We
leave the choice between them for web developers.

8.5 Latency
We measure the end-to-end latency of a successful login for
each method. To show a realistic latency, we set up six geo-
graphically distributed VMs as clients in six Azure regions
covering all continents except Antarctica, including Virginia
(US), Züich (Switzerland), São Paulo (Brazil), Tokyo (Japan),
Sydney (Australia), and Johannesburg (South Africa). We set
up the origin server in Virginia (US). In each region, we send
100 valid login requests to Cloudflare edge servers. The edge
servers will run deployed pre-authentication and request the
origin server for full authentication. We define the latency
as the time from starting the request to receiving the login
success indication.

As shown in Figure 7, in all regions, PreAcher and Duo-
Hash has a higher latency than the baseline. The latency over-
head of PreAcher comes from its 2-RTT design in the protocol.
However, the additional RTT happens between the client and
the CDN, and thus it should not introduce much overhead
because the clients are usually close to a CDN’s edge server.
We spot that PreAcher introduces a high latency overhead
in Johannesburg, South Africa. This is because Cloudflare
redirects the client’s request to an edge server far from Johan-
nesburg, leading to about 140 ms inflation. Except for this
region, the overhead of PreAcher’s median latency ranges
from 42 ms to 72 ms in all other regions, compared to the
baseline. Besides, DuoHash introduces overheads ranging
from 34 ms to 75 ms to the median latency compared to the
baseline in all regions, which is close to PreAcher. The la-
tency overheads of PreAcher and DuoHash primarily stem
from their computation time and the access delay of Cloud-
flare’s storage. Since the login process is usually a one-time
cost for users during web browsing, we consider the overhead
of PreAcher and DuoHash to be acceptable.
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9 Discussion
ADoS attacks through other interfaces. Although PreAcher
avoids the ADoS attacks exploiting the login interface, other
interfaces of a website may still be vulnerable. If the exploited
interface requires authentication, the website can track and
block accounts that initiate attacks. If the interface is open
to public, the website can enforce authentication to remove
the attack surface. Websites can also adopt the general ADoS
defense proposed in prior studies [44, 67, 73, 90].

Password reuse and weak passwords. A user may reuse
exactly the same password across websites. PreAcher cannot
prevent account cracking caused by password reuse, which
is an inherent limitation of password authentication. To miti-
gate password reuse, websites can adopt existing password
reuse prevention [92] and detection [84] methods, which are
compatible with PreAcher.

Similarly, a user may use a common or weak password,
and an attacker inside a CDN could collect these passwords
and enumerate them offline to guess the user’s password.
Nevertheless, PreAcher still resists such attacks. Since those
common or weak passwords also share similarities, the LSH
in PreAcher will mitigate the attacks as discussed in § 5.
Additionally, a website can prevent users from using these
common or weak passwords during registration.

Alternative solution. An alternative solution to achieve
ADoS mitigation and password protection simultaneously is
to simply use Trusted Execution Environment (TEE), such as
Intel SGX [40]. We evaluate this solution in § 8. However, as
TEE requires both hardware and software upgrades and is not
enabled by CDNs yet, it is difficult to deploy such a solution.
In contrast, PreAcher does not require upgrading of CDNs
and can be deployed by websites unilaterally.

10 Related Work
DoS protection. In the past decades, researchers have ex-
plored plenty of DDoS defense mechanisms by using the net-
work capabilities [70,103,106], the cloud defense [50,71,108],
the routing polices [86], and the new Internet architecture [97].
In practice, websites widely adopt the DDoS protection of-
fered by a CDN provider or a cloud provider [4, 7, 15]. We do
not innovate DDoS protection in PreAcher, but we retain the
DDoS protection of CDNs in PreAcher.

Protecting ADoS is more difficult than DDoS because the
requests are application-specific and the request amount is
usually too small to be detected [2]. Prior studies have pro-
posed ADoS defense mechanisms. However, their solutions
focus on the ADoS caused by either regular expressions [66]
or specific programming languages [43, 73]. Researchers also
propose to detect and filter out ADoS traffic by profiling re-
quests’ resource usage and learning the pattern of attack traf-
fic [44,67,90], which are less effective to login requests due to
the consistent payload pattern of a username and a password.
In this paper, we show that ADoS attacks exploiting password
login are feasible, even for a server hidden behind a CDN

(§ 2.1), and our design of PreAcher mitigates such attacks.
User privacy leakage to CDNs and countermeasures. Re-

searchers have spotted the user privacy leakage to third-party
CDNs caused by TLS private key sharing for years [35, 68].
A line of research has proposed countermeasures, including
certificate delegation [68], Keyless SSL [88], TLS modifica-
tions [30,65,79], TEE-based CDNs [27,54,78,95], differential
privacy [100], homormophic encryption [98], and a new en-
cryption channel for web [69].

Although these proposals are useful for protecting users’
sensitive data against an attacker inside a CDN, none of them
mitigates ADoS attacks. PreAcher is related but has different
goals. It is not meant to protect all private communication
between the client and the server. Instead, it focuses on pre-
venting password leakage and addressing ADoS vulnerability
caused by current password authentication.

Password authentication. A series of literature has dis-
cussed the security of the password authentication, including
the password exposure on CDNs [101], password guessing
techniques [80, 102], password storage mechanisms [14, 31],
new efficient protocols of password authentication [45,52,60],
the password reuse practice [42, 93] and its defense [84, 92],
etc. PreAcher’s authentication protocol is inspired by the ad-
vance of Password Authenticated Key Exchange (PAKE) pro-
tocol [60], which enables authenticated key exchange between
a client and a server without cleartext password checking on
the server. However, existing PAKE protocols cannot be di-
rectly applied to our system, because the origin server must
engage directly with the user in each PAKE session which
makes DoS attack unavoidable. Thus, we design a novel three-
party authentication protocol in PreAcher to securely offload
password authentication to a CDN.

To sum up, PreAcher is the first solution that simultane-
ously prevents ADoS/DDoS attacks, preserves password se-
crecy, and provides good usability.

11 Conclusion
This paper introduces PreAcher, a comprehensive solution
designed to combat the ADoS/DDoS attacks exploiting pass-
word authentication and preserve password secrecy. PreAcher
incorporates a three-party authentication protocol that allows
CDNs to perform password pre-authentication without access-
ing the actual passwords. We extensively analyze PreAcher’s
security features and evaluate its performance. Websites can
deploy PreAcher independently and immediately, without re-
quiring any modifications to clients or CDNs.
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A PreAcher Registration Protocol

Client(u, p,pks) Server(sks)

p′← LSH(p)

r←$ {0,1}n

α
′← H1(p′)gr

m1 : u,α′

ku←$ {0,1}n

vu← gku

β
′← α

′ku

C1←$ {0,1}n

m2 : vu,β
′,C1

d′← H2(p′,vu,β
′v−r

u )

pk′u,sk
′
u←$ KGen(1n)

e′u← Enc(d′,sk′u)

Figure 8: First round of PreAcher registration.

In the registration, the client communicates to the server
through a CDN. The CDN simply forwards the messages and
is not involved in the protocol. As we discuss in § 2.3, the
registration can be considered as ADoS-resist in reality, but
the CDN can observe the message content. At the end of the
registration, the server will send some registration informa-
tion without exposing user passwords to the CDN so that the
CDN can use such information for pre-authentication. The
registration protocol works as follows:

Initialization. A user inputs the username u and password
p to the client. As discussed in 3.1, the client obtains the
server’s public key pks from the HTML of the login page, and
the server keeps the corresponding private key sks.

Generating a symmetric key from the password. The
client and server compute a symmetric key d′ together through
OPRF. This step combines the OPRF with LSH as shown in
Figure 8.

Specifically, the client uses LSH to map p to p′. Then it
generates a random nonce r and computes α′ used by OPRF.
The client sends u and α′ to the server for registration (m1).
The server generates a user-specific ku and computes vu, β′

from α′ and ku. The server also generates a one-time random
challenge C1 to verify the client’s identity in the next round of
communication. Then vu, β′, and C1 is returned to the client
(m2). Thus, the client computes a secret symmetric key d′

through H2 and d′ is hidden from the server. Note that it can
be proved that d′ is independent from the choice of r.
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Client(u, p,pks) Server(sks)

m←$ {0,1}n

M← Enc(pks, p,m)

C2←C1

m3 : u,pk′u,e
′
u,C2,M

C1
?
=C2

p,m←Dec(sks,M)

saltu←$ {0,1}n

hu← H2(p,saltu)

Save(u,saltu,hu)

Save′(u,ku,pk
′
u,e
′
u)

OK m4 : OK

Figure 9: Second round of PreAcher registration.

Enclosing a new private key with the symmetric key.
The client generates a new key pair ⟨sk′u,pk′u⟩ for the user.
Then sk′u is enclosed into an envelope e′u by encryption with
d′. This new key pair and e′u will be used for pre-authentication
by the CDN in the login.

Registing with the server for full authentication. Finally,
the client and the origin server register the user through the
traditional password hashing for compatibility with existing
authentication in websites. Note that since we trust the origin
server (§ 2.3), we can expose the password to the server.
Nevertheless, the password sent to the server is encrypted by
the server’s public key to avoid exposure to the CDN.

As shown in Figure 9, the client uses pks to encapsulate
p with a random nonce m. The client copies received C1 as
C2 and sends it back to the server with pk′u, e′u, and M (m3).
The server first needs to check C2 against C1 to identify the
client as the one who initiated the registration in the previous
round. The server obtains p by decrypting M with its own
sks. Then it computes the corresponding salted hash value
hu from p. The server saves saltu and hu in a user-specific
record for future full authentication. Besides, the server saves
ku,pk

′
u,eu,e′u and sends them to the CDN for the future pre-

authentication (Save′(u,ku,pk
′
u,e
′
u)). Then the server returns

the indication of a successful registration (m4) to the client.

B Attack Attempts and Defense
PreAcher can defend against a passive attacker inside the
CDN. To make this tangible, we provide two examples of
attack attempts to demonstrate the effectiveness of PreAcher’s
defense.

For instance, an attacker inside the CDN can observe M
in m4 (Figure 3) during a valid user login. The attacker may
attempt to guess the password offline by computing a M value
with each guessed password and validating it against the ob-
served M. PreAcher defends against this attack because M is
generated by the client using not only the password but also a

random nonce m, forcing the attacker to guess m from a vast
space in order to obtain a M value that matches the observed
one.

Moreover, an attacker may replay the collected M from a
valid login and send this M to the server for full authentica-
tion. However, the server can prevent such replay attacks by
recording the recently received M and thus reject duplicate
ones, which is already adopted by prior work [69].

C DuoHash Protocol

We use the same notations described in § 4.1. Figure 10a
illustrates the protocol of registration by following steps:

1. The user inputs the username u and password p. Then the
client encrypts the password with the server’s public key
pks and sends the username u and encrypted messages M
to the server.

2. The origin server decrypts M with its private key sks to
obtain the password. The server stores a salted hash value
hu for future authentication. Besides, the server calculates
another hash value h′u, which will be used by the CDN for
pre-authentication. To avoid offline dictionary attacks by
the CDN, the server first uses LSH to map the p to a value
p′. Finally, the server uses two layers of hashing H2 and
H1 to map p′ into h′u, and it is an indication of successful
registration to the client.

After the registration, the server sends h′u and salt ′u to the
CDN (not shown in the figure). The CDN stores h′u and salt ′u
for future pre-authentication in the login phase.

The protocol in Figure 10b shows the login phase by fol-
lowing steps:

1. Similar to the registration, the client has u and p and cre-
ates the encrypted password M with pks. In addition, the
client uses LSH to generate p′ and the corresponding first-
layer hash value h′1, which is sent to the CDN with u and
M.

2. The CDN retrieves salt ′u and h′u from the user-specific
record according to username u. It then conducts the au-
thentication by checking whether H2(h′,salt ′u) is equal to
h′u. If they are equal, the CDN considers the password
pre-authentication succeeds and then sends u and M to
the origin server for further authentication. If the pre-
authentication fails, the CDN directly returns an indication
of failed login to the client (not shown in the figure), and
thus filters out most failed login requests for the origin
server.

3. When the server receives an authentication request from
the CDN, it decrypts M with the private key to extract the
password p. The server authenticates the user by compar-
ing hu with the computed H2(p,saltu). The server returns
the final authentication results to the CDN.

4. The CDN directly forwards back the authentication result
to the client.
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Registration Login

Client(u, p,pks) Server(sks)

m←$ {0,1}n

M← Enc(pks, p,m)

m1 : u,M

p,m←Dec(sks,M)

saltu←$ {0,1}n

hu← H2(p,saltu)

p′← LSH(p)

salt ′u←$ {0,1}n

h′u← H2(H1(p′),salt ′u)

Save(u,saltu,hu)

Save(u,salt ′u,h
′
u)

OK m2 : OK

(a)

Client(u, p,pks) CDN Server(sks)

p′← LSH(p)

h′1← H1(p)

m←$ {0,1}n

M← Enc(pks, p,m)

m1 : u,h′1,M

h′u,salt ′u← Get′(u)

H2(h′1,salt ′u)
?
= h′u

m2 : u,M

saltu,hu← Get(u)

p,m←Dec(sks,M)

H2(p,saltu)
?
= hu

OK m6 : OK m5 : OK

(b)

Figure 10: DuoHash Protocol

D Security Proof Sketch
In this section, we present a proof sketch to show the security
of our protocol. The security requirements are discussed in
Section 6. For clarity, we show the complete flow of PreAcher
authentication protocol in Figure 11. We use the following
probability εoprf.random, εCPA, εCCA, εEU−CMA to denote adver-
sarial advantage of winning the pseudorandomness game of
OPRF, the CPA security game, CCA security game, unforge-
ability game of signature scheme, respectively, which are all
negligible in terms of security parameter n.

Theorem 1. PreAcher is secure against an external attacker,
assuming a secure OPRF, a CPA-secure encryption Enc, a
CCA-secure encryption Enc, and an EU-CMA-secure signa-
ture.

Proof. First, we consider a passive external attacker, and if
this attacker provides a wrong password and obtains a p′ to
authenticate with CDN, there can be two cases:

(1) p′ is incorrect. In this case, the attacker gets a random
d′∗ which is independent from the correct d′. The adversarial
advantage of distinguishing this d′∗ from d′ can be reduced
to the adversarial advantage of winning the pseudorandom-
ness game of OPRF2 and thus is bounded by εoprf.random. And
since the attacker doesn’t know the correct d′, the adversarial
advantage of distinguishing sk′u is bounded by the adversarial

2Our protocol implements a secure OPRF assuming H2 is a secure hash
function, as proved by OPAQUE [60]

advantage of winning the semantic security game of the en-
cryption scheme, i.e. εCPA. Without knowing the correct sk′u,
the probability of the attacker issuing/forging a valid signa-
ture can be reduced to the probability of the attacker winning
the unforgeability game of the signature scheme, which is
bounded by εEU−CMA.

(2) p′ is actually correct. This happens because the pass-
word guess is close to the correct one and thus gets mapped
into the correct p′ by LSH with probability εLSH. Since p′ is
correct, the attacker can successfully authenticate with CDN.
However, to authenticate with the origin server, the attacker
needs to construct a valid adversarial ciphertext M∗ from the
honest M. This case can be reduced to the CCA security game
and thus bounded by εCCA.

To summarize, the probability of an external adversary
breaking the security of PreAcher is negligible.

Theorem 2. PreAcher is secure against a passive CDN at-
tacker, assuming a secure OPRF, and a CCA-secure encryp-
tion Enc.

Proof. Second, we consider the case of a malicious CDN.
Here we no longer consider adversarial authentication to CDN
and mainly focus on authentication to the origin server.

Because this malicious CDN holds OPRF key ku, it can at-
tempt to launch an offline dictionary attack by running OPRF
locally multiple times and computing a dictionary D of d’s
corresponding to its password guesses, and try to decrypt

1418    22nd USENIX Symposium on Networked Systems Design and Implementation USENIX Association



Registration Login

Client(u, p,pks) Server(sks)

p′← LSH(p)

r←$ {0,1}n

α
′← H1(p′)gr

m1 : u,α′

ku←$ {0,1}n

vu← gku

β
′← α

′ku

C1←$ {0,1}n

m2 : vu,β
′,C1

d′← H2(p′,vu,β
′v−r

u )

pk′u,sk
′
u←$ KGen(1n)

e′u← Enc(d′,sk′u)

m←$ {0,1}n

M← Enc(pks, p,m)

C2←C1

m3 : u,pk′u,e
′
u,C2,M

C1
?
=C2

p,m←Dec(sks,M)

saltu←$ {0,1}n

hu← H2(p,saltu)

Save(u,saltu,hu)

Save′(u,ku,pk
′
u,e
′
u)

OK m4 : OK

(a)

Client(u, p,pks) CDN Server(sks)

p′← LSH(p)

r←$ {0,1}n

α
′← H1(p′)gr

m1 : u,α′

ku,pk
′
u,e
′
u← Get′(u)

vu← gku

β
′← α

′ku

C←$ {0,1}n

m2 : vu,β
′,e′u,C

d′← H2(p′,vu,β
′v−r

u )

sk′u←Dec(d′,e′u)

S← Sign(sk′u,C)

m←$ {0,1}n

M← Enc(pks, p,m)

m3 : u,S,M

Vf(pk′u,S,C)
?
= OK

m4 : u,M

saltu,hu← Get(u)

p,m←Dec(sks,M)

H2(p,saltu)
?
= hu

OK m6 : OK m5 : OK

(b)

Figure 11: PreAcher Protocol

eu with these d’s. However, by the decryption randomness
of Dec, any wrong decryption key can only decrypt eu to a
random bitstring, which in the attacker’s view is indistinguish-
able from the correct sk′u, and the attacker cannot tell from
this decryption result whether it uses the correct password or
not. The probability of successfully launching such an offline
dictionary attack is thus bounded by 1

|2n| ·
1
|D| .

To summarize, the probability of a passive CDN adversary
breaking the security of PreAcher is negligible.
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