
2

Decoding the Kodi Ecosystem

YUNMING XIAO, Northwestern University

MATTEO VARVELLO, Nokia Bell Labs

MARC WARRIOR and ALEKSANDAR KUZMANOVIC, Northwestern University

Free and open-source media centers are experiencing a boom in popularity for the convenience they offer
users seeking to remotely consume digital content. Kodi is today’s most popular home media center, with
millions of users worldwide. Kodi’s popularity derives from its ability to centralize the sheer amount of media
content available on the Web, both free and copyrighted. Researchers have been hinting at potential security
concerns around Kodi, due to add-ons injecting unwanted content as well as user settings linked with security
holes. Motivated by these observations, this article conducts the first comprehensive analysis of the Kodi
ecosystem: 15,000 Kodi users from 104 countries, 11,000 unique add-ons, and data collected over 9 months.

Our work makes three important contributions. Our first contribution is that we build “crawling” software
(de-Kodi) which can automatically install a Kodi add-on, explore its menu, and locate (video) content. This
is challenging for two main reasons. First, Kodi largely relies on visual information and user input which
intrinsically complicates automation. Second, the potential sheer size of this ecosystem (i.e., the number of
available add-ons) requires a highly scalable crawling solution. Our second contribution is that we develop a
solution to discover Kodi add-ons. Our solution combines Web crawling of popular websites where Kodi add-
ons are published (LazyKodi and GitHub) and SafeKodi, a Kodi add-on we have developed which leverages
the help of Kodi users to learn which add-ons are used in the wild and, in return, offers information about
how safe these add-ons are, e.g., do they track user activity or contact sketchy URLs/IP addresses. Our third
contribution is a classifier to passively detect Kodi traffic and add-on usage in the wild.

Our analysis of the Kodi ecosystem reveals the following findings. We find that most installed add-ons are
unofficial but safe to use. Still, 78% of the users have installed at least one unsafe add-on, and even worse,
such add-ons are among the most popular. In response to the information offered by SafeKodi, one-third of
the users reacted by disabling some of their add-ons. However, the majority of users ignored our warnings
for several months attracted by the content such unsafe add-ons have to offer. Last but not least, we show
that Kodi’s auto-update, a feature active for 97.6% of SafeKodi users, makes Kodi users easily identifiable by
their ISPs. While passively identifying which Kodi add-on is in use is, as expected, much harder, we also find
that many unofficial add-ons do not use HTTPS yet, making their passive detection straightforward.1

CCS Concepts: • Networks → Network measurement; Network measurement; Network security; Net-

work privacy and anonymity; • Theory of computation→ Theory and algorithms for application

domains; • Mathematics of computing→Mathematical optimization; • Computing methodologies

1This article is a major extension of our previous article “De-Kodi: Understanding the Kodi Ecosystem” which was published
at the Web conference (WWW’20).

Authors’ addresses: Y. Xiao, M. Warrior, and A. Kuzmanovic, Northwestern University, Computer Science Department,
2233 Tech Drive, Seeley Mudd – 3rd Floor, Evanston, IL 60201; emails: {yunming.xiao, warrior}@u.northwestern.edu,
akuzma@northwestern.edu; M. Varvello, Nokia Bell Labs, 600 Mountain Ave, New Providence, NJ 07974; email:
matteo.varvello@nokia.com.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2023 Association for Computing Machinery.
1559-1131/2023/01-ART2 $15.00
https://doi.org/10.1145/3563700

ACM Transactions on the Web, Vol. 17, No. 1, Article 2. Publication date: January 2023.

https://orcid.org/0000-0002-4913-4881
https://orcid.org/0000-0001-8500-4630
https://orcid.org/0000-0003-3253-4552
https://orcid.org/0000-0003-2622-6019
mailto:permissions@acm.org
https://doi.org/10.1145/3563700
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3563700&domain=pdf&date_stamp=2023-02-01

2:2 Y. Xiao et al.

→ Modeling methodologies; Model verification and validation; • Software and its engineering →
Software libraries and repositories; • Information systems→ Traffic analysis; Crowdsourcing; Eval-

uation of retrieval results; • Social and professional topics → User characteristics; • Security and

privacy→Web application security;

Additional Key Words and Phrases: Kodi, crawling, crowdsourcing, measurement

ACM Reference format:

Yunming Xiao, Matteo Varvello, Marc Warrior, and Aleksandar Kuzmanovic. 2023. Decoding the Kodi Ecosys-
tem. ACM Trans. Web 17, 1, Article 2 (January 2023), 36 pages.
https://doi.org/10.1145/3563700

1 INTRODUCTION

Kodi is an open-source entertainment center that allows users to stream both local and remote
media content (videos, music, and pictures) on a range of consumer devices, from PCs and set-top
boxes to smartphones. Kodi has recently received lots of attention from both content providers,
network operators, and the media. This is due both to its growing popularity—according to
Sandvine [64], 9% of North American households host at least one Kodi box—as well as its increas-
ing notoriety as the perfect vehicle for illegal content distribution (mostly video) [6, 12]. Despite
ongoing warnings and negative press [7–9, 12, 13, 15], tens of millions of households around the
world have turned to Kodi as a means of consuming video, audio, and other forms of digital media.
The conveniences offered by the apparently free Kodi platform have come at some intangible cost
to the public; that cost has been, until now, difficult to measure. Researchers and content owners
are in the dark regarding the impact of Kodi’s ecosystem, and Kodi users are at risk of exploitation.

Around Kodi, a whole ecosystem has been built with several key players: add-ons (plugins),
(content) providers, and users. Kodi users install add-ons via Kodi’s official repository (a collection
of approved add-ons) or via third-party repositories and sources retrieved on the Web—mostly
specialized forums, blogposts, and social media. Installed add-ons provide extra functionalities,
such as easy access to remote video libraries from which their desired content can be streamed. This
large ecosystem, consisting of millions of users and countless user-developed add-ons, presents a
uniquely wide, cross-sectional view of the modern video streaming and various methods of media
distribution and consumption.

We aim at studying and quantifying the nature of Kodi’s ecosystem at large through crawling
and analyzing Kodi’s add-ons, through which media streaming is facilitated. Although the Kodi
platform is designed to be convenient for the typical end user, crawling Kodi’s add-on ecosystem
proves extremely challenging for two key reasons. First, Kodi largely relies on visual information
and user input which intrinsically complicates automation. Second, the potential sheer size of this
ecosystem requires a highly scalable crawling solution. We tackle the first issue of automation
complicated by visual inputs by extending Kodi’s APIs to allow more informed crawling opera-
tions, e.g., by interacting with visual elements while tracking the execution path. We tackle the
second issue of scalability by leveraging Docker [25] to scale our software while isolating crawler
instances from potential malware and/or crashes.

While finishing the crawling software that is capable of automating the tests of Kodi add-ons
at a large scale, we come to find that discovering and locating Kodi add-ons is even harder, as
there exists no global list of Kodi add-ons. We combine two approaches to tackle this challenge.
First, we build a scraper that can collect potential Kodi add-ons from the Web (Github, Reddit, and
so on) and quickly reduce them to a unique set of actual add-ons. Second, we build SafeKodi, a
Kodi add-on we have developed that leverages the help of Kodi users to learn which add-ons are
used in the wild and, in return, offers information about how safe these add-ons are. In particular,

ACM Transactions on the Web, Vol. 17, No. 1, Article 2. Publication date: January 2023.

https://doi.org/10.1145/3563700

Decoding the Kodi Ecosystem 2:3

SafeKodi informs the user of suspicious add-ons in their machines, further enhanced with a quick
link to disable such add-ons. Participating users agree to anonymously share with our servers the
list of add-ons installed on their machine, so as to (1) extend our knowledge of which Kodi add-
ons currently exist, and (2) shed light on the prevalence of various add-ons. SafeKodi users can
also opt-in further by sharing more information about their device settings, such as Kodi version,
screen resolution, and so on. The above results in a full-fledged crawling system, De-Kodi, capable
of “decoding” the Kodi ecosystem.

We start by validating both the performance and the accuracy of De-Kodi. We show that De-
Kodi scales linearly with the available underlying hardware resources (three machines located
at a North American campus network, in our setup), and that tens of thousands of add-ons can
be crawled per day. Further, we show that De-Kodi can effectively explore working add-ons, and
quickly discard erroneous, obsolete (50% of add-ons in the ecosystem are more than two years old),
or otherwise dysfunctional add-ons which fail to install.

Next, we perform and analyze the Kodi ecosystem solely from the eyes of our Web crawl. De-
Kodi successfully tested 5,265 out of 9,146 unique Kodi add-ons (83% more than what is contained
in the official Kodi repository) which we discovered via LazyKodi, a well-known and actively main-
tained Kodi add-on aggregator, as well as Reddit [37] and GitHub [30], which are known for at-
tracting both Kodi users and developers. We then complement the above results with the new set
of add-ons discovered via SafeKodi. We launched SafeKodi on February 24, 2020. Coined as Kodi’s
first “antivirus” by several news outlets [1, 5], SafeKodi has been installed 15,768 times across 104
countries worldwide. Coupling add-ons crowdsourced by SafeKodi with Web crawls, we discov-
ered and tested 11,112 unique add-ons over 7 months.

Finally, we leverage this wealth of information collected to answer the following question: is
it possible to detect Kodi traffic in the wild? This question is important for Kodi users who aim at
protecting their privacy, but also for law enforcement and content providers who very much aim
at deploying solutions to mitigate Kodi traffic [23, 36]. We build a classifier based on the traffic
characteristics of Kodi itself and actively test 10 out of its most popular add-ons.

In the following, we summarize our main findings from the analysis of the Kodi data we have
collected.

The Kodi ecosystem largely relies on “free” hosting platforms, and lots of content is
“stale”—Only 10% of 11,112 unique add-ons we have discovered belong to the Kodi’s official repos-
itory; the remainder 90% are not approved by Kodi and mostly hosted on Github and LazyKodi. In
addition, we find that 50% of the add-ons were last updated more than two years ago, indicating
the staleness of these add-ons.

Most Kodi add-ons are safe, but most users are exposed to at least one unsafe add-on—Out
of 2.3 million add-ons reported by SafeKodi users, 10,705 were unique, and only 255 are tagged
unsafe, which means that these add-ons tried, for example, to contact at least one malicious IP
address as indicated by Figure 10(b). However, around 80% of SafeKodi users run at least one
unsafe add-on on their devices.

Kodi is not only about illegal content—YouTube is the most popular add-on installed by
SafeKodi users, followed by Exodus and SportsDevil. YouTube is clearly an official and safe Kodi add-
on, while both Exodus and SportsDevil are banned by Kodi (copyright violation) and are marked as
“ipban” by SafeKodi, due to the fact that they communicate with at least one malicious IP address.

SafeKodi allows Kodi users to make informative decisions on which add-ons to keep or
remove—Over one-third of SafeKodi users disabled at least one add-on using our quick disable
function. Add-ons tagged as unsafe are the most commonly disabled, but 468 users also disabled

ACM Transactions on the Web, Vol. 17, No. 1, Article 2. Publication date: January 2023.

2:4 Y. Xiao et al.

perfectly safe add-ons, which they considered as unwanted. Still, the average SafeKodi user runs
3 unsafe add-ons even after being informed of their danger. This suggests that the content served,
likely and mostly illegal, is enough of an incentive for Kodi users to take the risk.

Kodi traffic is far from private and easy to identify—Kodi itself still heavily relies on HTTP,
coupled with a specific User-Agent reporting on the Kodi version run. Due to the auto-update
feature—used by 97.6% of SafeKodi users—an ISP can easily detect the presence of Kodi users in its
network. The detection of the specific add-on run by a user is, as expected, harder. However, unof-
ficial add-ons are less careful with respect to their user privacy, i.e., utilize HTTPS less frequently
and resort to Kodi’s default User-Agent. This combined with a more unique (and sketchy) set of
URLs/IP addresses they contact, makes them overall easier to identify than official add-ons.

1.1 Ethical Consideration

Since SafeKodi involves human subjects, we followed the best community practices when con-
ducting our work. Accordingly, SafeKodi does not collect any information while running in the
background, and it prompts a window (see Figure 4) during installation to (1) disclose the minimum
data collected, (2) ask for the user permission to collect extra data.

SafeKodi’s data collection is anonymous. We combine the SHA256 hash value of the concate-
nate of the user ID and the users’ MAC addresses as user identifiers. The concatenated string has
variable length and thus it cannot be indexed. With respect to a user’s IP address, we use the GeoIP
package [29] to obtain coarse-grained geo-location information and then discard it. Given these
measures, we cannot identify the individuals from the collected data. While checking the IRB at
our institution, it was determined that our work is not considered human research because we
used non-identifiable private information about living individuals, and the data collected does not
contain any accompanying information by which we could identify such individuals.

2 RELATED WORK

One of the main contributions of this article is De-Kodi, a tool facilitating in-depth and transpar-
ent studies of the Kodi ecosystem. To the best of our knowledge, no previous research article has
investigated this ecosystem yet. Conversely, researchers have directed their attention toward un-
derstanding the potential security and privacy threats of the Kodi application [61] as it allows
arbitrary code from unknown sources to be executed. The authors show, for instance, how add-
ons and video subtitles can be used as backdoors to gain control on the client device. In this work,
we investigate the network traffic generated by a plethora of Kodi’s add-ons and comment on the
presence of suspicious activity (Section 6.3.1). Last, we also move to build a traffic classifier to
study the privacy issues of the use of Kodi.

More related work can be found in the area of copyrighted video distribution, a well-explored
topic over the last 10 years. Since our work also comments on the legality of content distributed
over Kodi, we here summarize the main research articles in this area.

Back in 2007–2011, platforms like YouTube and Vimeo were mostly used for redistributing illegal
content [44, 47]. Even when legal, the majority of the uploaded content was copied rather than user-
generated [46]. Video platforms implemented several technical solutions to prevent copyrighted
materials, which in turn triggered ingenious evasion techniques such as reversing of the video
(particular used in sports), covering of TV logos, and so on.

To avoid dealing with copyright detections, “uploaders” directed their attention to cyberlockers,
or services offering remote file storages, sometimes even for free [57]. In [54], the authors scraped
popular cyberlockers, e.g., MegaUpload and RapidShare, and showed that 26–79% of the content
infringed copyright. More recently, Ibosiola et al. [49] study streaming cyberlockers, or illegal

ACM Transactions on the Web, Vol. 17, No. 1, Article 2. Publication date: January 2023.

Decoding the Kodi Ecosystem 2:5

websites that distribute pirated content (mostly video). The article looks at both cyberlockers and
the content they serve. Overall, it finds a centralized ecosystem composed of a few countries and
cyberlockers. Although cyberlockers as a subject are orthogonal to our study, it is worth mention-
ing that Kodi add-ons may utilize cyberlockers as sources of content.

An interesting new angle was explored in [48]. In this article, the authors investigate a very
intuitive question: why are illegal streaming services free? They focus on illegal sports streaming
and show a huge extent of user tracking—much more than what was done in legitimate streaming
services. We also investigate the Kodi ecosystem for signs of tracking in Section 6.3.1.

More work on the traffic classification is related to our Kodi traffic classifier. Traffic classifica-
tion is a popular networking problem, with many products built upon, e.g., firewalls and traffic
engineering. The starting approach was to map applications to transport ports. This approach is
nowadays ineffective as applications use either dynamic ports [51, 65] or rely on HTTP (port 80
and 443). Before the widespread of encryption (HTTPS), deep packet inspection was commonly
used for traffic classification [45, 52, 59, 65]. To deal with encryption, recent work proposes to clas-
sify applications by transport layer characteristics [51], e.g., packet sizes and inter-arrival times,
which are fed to machine learning methods [53, 55, 60, 67]. Furthermore, domain names extracted
from DNS traffic or the Server Name Indication (SNI) in TLS can still help in traffic classifi-
cation [58, 68]. Our method to identify the Kodi traffic involves payload inspection and domain
classification, when available.

3 BACKGROUND

This section summarizes Kodi’s main components and usage model, to provide the reader with the
context driving the design of De-Kodi. Following this, we discuss the key challenges in crawling
Kodi.

3.1 Terminology

Add-on—An add-on is a set of files—code, content, metadata, and so on.—which together work to
extend the functionality of some Kodi features, ranging from media access (such as YouTube and
Netflix) to Kodi GUI skins and code libraries. An add-on’s properties, including the set of Kodi fea-
tures extended, are described by the add-on’s respective and mandatory addon.xml file. In addition
to this, many add-ons contain special, Kodi supported Python code to be triggered deliberately or
automatically by events in Kodi, such as Kodi starting or the user clicking a menu button belong-
ing to the add-on in question. For convenient distribution, an add-on is usually packaged in a zip
file; at installation, the zipped add-on is extracted into Kodi’s local add-ons directory.

Many Kodi add-ons are not made by official Kodi affiliates, but by third-party developers lever-
aging the convenience of the Kodi platform. It has been well established that a number of these
third-party add-ons engage in piracy. Kodi’s official wiki site bans the promotion of a set of add-ons,
primarily consisting of add-ons dealing with pirated content [70].

It is worth noting that, as per Kodi’s disclaimer,2 Kodi does not provide content. Rather, Kodi
is software that facilitates media content consumption, in the same way, a browser allows for
browsing the Web. Third-party developers can build Kodi’s add-ons which can be used to stream
both legal (e.g., YouTube and Vimeo) and illegal/pirated (e.g., SportsDevil and Neptune) content.3

Repository—A repository is a special type of add-on that points to a collection of add-ons such
that they can be conveniently installed. Official Kodi is distributed with a single preinstalled

2https://kodi.tv/about.
3http://www.wirelesshack.org/top-best-working-kodi-video-add-ons.html.

ACM Transactions on the Web, Vol. 17, No. 1, Article 2. Publication date: January 2023.

https://kodi.tv/about
http://www.wirelesshack.org/top-best-working-kodi-video-add-ons.html

2:6 Y. Xiao et al.

Fig. 1. Diagram exemplifying the relationship between source paths, repositories add-ons (labeled as “repo.
add-ons”), and non-repository add-ons (labeled as “add-ons”).

repository called “kodi.tv”, which only contains add-ons endorsed by the Kodi team. Anyone can
create their own repository to feature the add-ons of their choice. Some repositories host their
content remotely, e.g., on Github or a personal server, as a means to share curated add-on lists
while actively maintaining and updating their contents.

Sources—Sources are simply paths—local or remote—that point to files to be used by Kodi. While
some sources directly provide consumable media (music, video, and so on), many sources act as
a means to facilitate add-on distribution. Some remotely accessible sources directly host add-ons;
others serve as hubs, providing a “one-stop shop” by elaborately pointing to the contents of a
collection of other sources via HTTP redirection techniques. Figure 1 summarizes the relationship
between add-ons, repositories, and sources.

Add-on manager—The add-on manager is an internal Kodi tool, which allows users to install
add-ons and repositories. Kodi’s add-on manager officially provides two approaches to installing
add-ons: via repositories (a type of add-on pointing to other add-ons to be conveniently installed)
and via sources (direct paths—local or via HTTP—to add-on zip files).

Kodi API—Kodi offers a built-in, JSON-RPC API for generalized operations, such as navigating a
menu or exposing the contents of Kodi’s built-in databases. In parallel to this, Kodi also exposes
many controls exclusive to add-ons (for example, through built-in, Kodi-specific Python modules
that make various Kodi features accessible to add-on developers). The savvy user may be able to
create an add-on to, essentially, extend the set of Kodi operations at their disposal beyond the
set provided by the outward-facing API. With De-Kodi’s API add-on, discussed in Section 4.1, we
leverage both of these API hooks to maximize De-Kodi’s ability to control Kodi.

3.2 Challenges

Visual dependent interaction: Although Kodi’s API allows some automation, Kodi largely re-
lies on visual information and user input to operate. This complicates crawling operations since:
(1) some visual data is inaccessible to the software—menu text and on screen notifications are of-
ten not exposed through any built-in Kodi API hooks—and (2) even when this data is accessible,
it can be hard for automated software to understand and react accordingly. For clarity, consider
the following example. Suppose an add-on currently being crawled raises a pop-up dialog in re-
sponse to the first time it is launched. This pop-up may appear at some random or inconvenient
time; perhaps while the crawler is in the midst of navigating a menu. While, to a human, this

ACM Transactions on the Web, Vol. 17, No. 1, Article 2. Publication date: January 2023.

Decoding the Kodi Ecosystem 2:7

Fig. 2. System overview.

is trivial—simply respond accordingly to the text in the dialog—this would be devastating to the
naïve crawler, as the focus is silently and unexpectedly shifted into an unknown state.

Lenient Add-on Implementation Requirements: Kodi does offer some guidelines for add-on
structure, implementation, and metadata, but adherence to many of these guidelines is arbitrary
and generally unenforced. This renders automated attempts to install, navigate, or analyze add-ons
to be nontrivial.

Malicious add-ons: Previous work has established the (realized) potential for Kodi add-ons to
carry dangerous malware. Kodi add-ons are generally unrestricted from accessing content located
“outside” of Kodi’s explicit jurisdiction (i.e., scripts are not isolated from arbitrary local or remote
files). It follows that we need to ensure any potential threats are sufficiently isolated to protect
both our lab resources as well as the correctness of our crawl from harm.

Decentralized nature: Although there are many community maintained repositories, there is
no single “app-store-like” database from which one can reliably obtain a comprehensive list of
all Kodi add-ons. Therefore, crawling the Kodi ecosystem implies first discovering it. Further, the
size of Kodi’s ecosystem is unknown, and any attempt to explore it must take into account the
potentially large size of the space.

4 SYSTEM OVERVIEW

This section presents the system we have developed to explore the Kodi ecosystem. As shown
in Figure 2, our system consists of three modules: De-Kodi, SafeKodi, and a Kodi traffic classifier.
These modules help each other in exploring the Kodi ecosystem at 360 degrees, i.e., from discover-
ing new add-ons to inform Kodi users about potential privacy and security threats of the add-ons
they have installed. We start by describing De-Kodi which consists of a source finder, to discover
a large corpus of add-ons in the Web, and a crawler which tests each add-on for their functional-
ities as well as potential privacy and security threats. Next, we present SafeKodi, a Kodi add-on
we have developed to inform users of potential threats of the add-ons they have installed while
crowdsourcing information about add-on popularity. Lastly, we present an algorithm to passively
identify and classify Kodi traffic.

ACM Transactions on the Web, Vol. 17, No. 1, Article 2. Publication date: January 2023.

2:8 Y. Xiao et al.

Fig. 3. A visual overview of the De-Kodi system. Figure 3(a) shows the structure of an individual crawler. The
crawlers in 3(b) are instances of the crawler shown in 3(a), but in the case of 3(b), we use one instance of
mitmproxy per machine to capture traffic from all crawlers.

4.1 Crawler

The crawler is the core component of De-Kodi. At a high level, its goal is to take an add-on as an
input and crawl it, i.e., install it on a Kodi instance and navigate through its functionalities while
recording things like its structure, network traffic, and so on.

Figure 3(a) shows a high-level overview of De-Kodi’s crawler. A key observation is that the
crawler relies on Docker’s technology. The reasons behind this choice are twofold. First, it is a
convenient tool to isolate Kodi instances without allowing debris, e.g., code/libraries from previous
add-on installations or potential malware. Second, it allows De-Kodi to inherit Docker’s scalability
property.

Observe, in the aforementioned figure, that portions of De-Kodi’s crawler run directly on the
host machine, borrowing Docker terminology, while others operate from inside a Docker con-
tainer [25] (on the figure’s right-hand side). In the following, we explain each sub-component of
De-Kodi’s crawler in detail distinguishing between its host and container component.

4.1.1 Host. We here describe the crawler’s components which run directly on the machine
without any OS virtualization (via Docker).

Crawl Manager—This a Python script whose goal is to “manage” a crawl. At a high level, this im-
plies (1) launching a Docker container equipped with Kodi and additional software; (2) launching
Kodi and necessary support software, such as TSTAT, (3) managing high-level crawl operations,
such as add-on installations, and (4) collecting both state data and experiment results from the
crawl.

Mitmproxy. Much of Kodi’s traffic is encrypted, so we use the Mitmproxy [35] (a “man in the
middle” proxy server) to expose the contents of such traffic. We run the Mitmproxy at the host,
instead of one instance per Docker container, since it minimizes the waste of resources (CPU and
memory) and, by definition, the host has full visibility into the traffic originated by each container.
Note that this requires installing Mitmproxy’s root/CA Certificate in our containers to ensure
proper functioning of Kodi. While this approach does not work in presence of pinned certificates,
we found no evidence of this technology currently being used in the Kodi ecosystem.

4.1.2 Container. The crawler’s container runs a Docker image derived from an Ubuntu 16.04
image, primed with (1) Kodi (vrs 18.0), (2) De-Kodi’s software that runs inside the container (see
the right-hand side of Figure 3(a)), and (3) the zip file of at least one Kodi add-on to be tested. Kodi

ACM Transactions on the Web, Vol. 17, No. 1, Article 2. Publication date: January 2023.

Decoding the Kodi Ecosystem 2:9

runs inside the container headlessly via a virtual screen (Xvfb [19]). In the following, we describe
in detail De-Kodi’s software that runs inside the container.

Add-on—Although Kodi provides several API hooks, many “advanced” operations (e.g., adding
a new data source and navigating and interpreting complex menus) require a human user, ac-
tively looking at the screen for visual feedback as they make decisions. De-Kodi’s add-on is a
service—meaning it starts automatically when Kodi is launched—that extends Kodi’s API to be
more automation friendly. The add-on runs an RPC server that receives crawling instructions, e.g.,
navigate to this menu, from its crawl manager.

We determined, through manual experimentation, how the add-on can strategically react to
the diverse scenarios that vary unpredictably with each add-on (see Section 3.2), often acting with
drastically incomplete information at its disposal. Accordingly, the API add-on is tasked to monitor
Kodi’s state and notice when it deviates from its expected path, e.g., clicking a menu entry should
open either a new menu or some playable items like a video. In a case such deviation is detected,
the API add-on attempts an intelligent “guess” at how to return to the expected path, e.g., close a
dialog by accepting a potential warning. This is often a guess as many dialogs contain text that is
only visually accessible—for our crawler, lacking eyes, such context is out of reach.

Helper Scripts. We refer to Python scripts, bash scripts, and other Docker environment altering
files we have placed within the Docker image, but outside of Kodi, as “helper scripts”. Helper scripts
serve to enhance De-Kodi’s visibility into Kodi’s interactions with its environment. The specific
purposes of each helper script vary greatly, ranging from restarting Kodi upon getting stuck to
retrieving the URLs of playable add-on content.

TSTAT [18]—TSTAT is a tool providing detailed, per-flow, statistical analysis of TCP traffic. We
chose to use TSTAT to gain high level insights into the nature of traffic generated by Kodi
add-ons. De-Kodi’s copy of TSTAT is configured to log all DNS queries/answers, and HTTP
requests/responses (this often includes a domain name and file name if unencrypted), and gen-
eral connection statistics for all observed TCP and UDP traffic.

4.2 Source Finder

The underlying assumption for De-Kodi’s crawler is that add-ons are available to be tested. This
is true for Kodi’s official repository, whose add-ons can easily be installed from any Kodi instance.
This assumption does not hold for the larger set of unofficial Kodi add-ons which are scattered
around the Web. This motivates our need to build a source finder tool.

Due to the lack of a centralized Kodi add-ons aggregator, avid Kodi users are forced to socialize
to exchange add-ons and sources. We have identified three main places to search for Kodi add-
ons on the Web: (1) LazyKodi, a well-known and actively maintained Kodi add-on source which
aggregates collections of add-on repositories and add-ons into a convenient, single location [34],
(2) Reddit, a large online social platform with many publicly accessible communities [37], and
(3) GitHub, a large online software development platform often used for hosting, maintaining,
and distributing open-source code [30]. For the remainder of this article, we refer to these three
entities as our “search seeds” or “seeds”. In Section 6.3.2, we leverage the apparent distribution of
popularity across add-ons to assess the effectiveness of our seeds in terms of coverage.

As LazyKodi is itself designed to be a Kodi source, pointing directly to remotely stored add-
on zip files, De-Kodi’s source finder browses LazyKodi using a special crawler instance, acting as
its crawl manager and guiding the crawl across a source menu (corresponding to LazyKodi) as
opposed to an add-on menu. Note that it is also possible to crawl LazyKodi using an ordinary web
crawler, given that a Kodi User-Agent is used.

ACM Transactions on the Web, Vol. 17, No. 1, Article 2. Publication date: January 2023.

2:10 Y. Xiao et al.

For our other seeds, we built a simple Web crawler which looks for Kodi-related terms (e.g., Kodi,
XBMC, and so on) on both GitHub and Reddit. These links are expected to point either directly
to Kodi add-ons or collections of add-ons (such collections are often utilized to remotely store the
add-ons pointed to by Kodi repository add-ons). The source finder attempts to filter GitHub and
Reddit results to exclude false positive links—specifically, URLs that point to non-Kodi content.

It is also worth noting that discovering redundant copies of an add-on is common and difficult to
avoid: popular add-ons may appear in many repositories. On top of this, outmoded and defunct add-
on versions can persist online, often remaining retrievable despite the release of newer versions.
We mitigate the impact of this redundancy by (1) identifying “already crawled” add-ons by their
add-on ID and (2) always opting to re-crawl an already crawled add-on if a newer version is found.

4.3 Crawling Workflow

In this subsection, we document the relationships between the aforementioned components of
De-Kodi and describe De-Kodi’s overarching control flow and structure, which is depicted in
Figure 3(b). First, we start a global controller which utilizes previously obtained outputs of a source
finder to actively discover add-ons. Next, we start some number of local controllers which run sev-
eral instances of the crawler. The global controller serves as a centralized point of contact for all
local controllers, which periodically query the global controller for overall crawl state informa-
tion (for example, “Does this add-on need to be crawled, or has it already been crawled?”) and
to provide the global controller with updates concerning an ongoing or recently completed crawl
(for example, “this add-on was successfully installed, but no playable content was identified”). The
following procedure then occurs repeatedly:

(1) A local controller queries the global controller which replies with a link, or a URL obtained by
the source finder via a seed. The local controller then downloads the resources pointed to by the
provided link and formally verifies that they contain either an add-on or a collection of add-ons.
Specifically, the local controller looks for addon.xml files and inspects them to ensure that they
are formatted correctly. From a properly formatted addon.xml file, a local controller extracts, at a
minimum, the add-on id, the list of Kodi features extended by the add-on (which we refer to as the
add-on “type”—note it is possible for an add-on to have multiple types), and the add-on’s version
number. Often additional details are provided, which the local controller will also capture when
present. The local controller treats failure to capture any of the required pieces of information
about an add-on from its required addon.xml file as an indication that the downloaded material
is not an add-on. If no add-ons are verified from the current link, the local controller repeats this
step.

(2) If add-ons were found in the previous step, the local controller communicates the set of iden-
tified add-ons and their respective data to the global controller. From this set, the global controller
removes add-ons that have been already successfully crawled. The resulting subset of add-ons is
then returned to the local controller which packages them in zip archives. Next, it creates a Docker
image which contains, in addition to default De-Kodi’s container code, the zip files of the add-ons
to be crawled next. If no add-ons were returned, the local controller returns to the first step.

(3) If add-ons to crawl were obtained in the previous step, the local controller launches up to n
crawlers, where n is the maximum number of crawlers the local controller has been configured to
allow in a crawl session. Each crawler is assigned exactly one add-on from the set to be crawled.
As detailed in Section 4.1, the crawler then launches a Docker container using the recently created
Docker image, attempts to install the add-on under test, and finally attempts to find playable media
(if appropriate for the add-on’s determined type). We test discovered media URLs for reachability,
geolocalize their respective IP addresses, and attempt to obtain corresponding video information

ACM Transactions on the Web, Vol. 17, No. 1, Article 2. Publication date: January 2023.

Decoding the Kodi Ecosystem 2:11

Fig. 4. SafeKodi system overview.

using ffprobe [11]. Throughout the crawl, the local controller communicates its progress to the
global controller, e.g., whether an add-on installed successfully or not.

(4) When a crawler completes the crawl of its assigned add-on (either from running out of menu
items to browse or by reaching a pre-configured timeout capping the amount of time spent on each
add-on), the local controller closes all of that crawler’s active materials (e.g., the Kodi instance, the
Docker session, temporary state information). When the number of active crawlers drops below
n, the local controller launches new crawlers if there are remaining add-ons in the current add-on
set to be crawled.

In some cases, an installed add-on may itself be a repository, pointing to many other potentially
new add-ons to test. In such a scenario, the crawler communicates newly discovered add-ons to
its local controller. The local controller then, before closing the crawler, creates a new container
image so that the newly discovered add-ons can be crawled. After obtaining permission from the
global controller, the local controller then appends these add-ons (or some subset of these add-ons,
depending on the global controller’s response) to its current set to be crawled.

(5) Once the remaining number of add-ons to be crawled in its current set drops to zero, the
local controller repeats the cycle, querying the global controller again to obtain a new link.

We have open-sourced De-Kodi [4] hoping it can be helpful to the community as a starting point
for other studies of Kodi, e.g., focusing on different content apart from video.

4.4 SafeKodi

Figure 4 shows a visual representation of SafeKodi’s key components: Kodi add-on, backend server,
and on-demand crawler. The workflow is as follows. De-Kodi runs at our premises to monitor
the Kodi ecosystem, e.g., with a weekly frequency. The data collected is stored in a PostgresSQL
database and contains, among other information, the labeling of each discovered add-on, e.g., safe
or potentially malicious. This data is made available to Kodi users via restful APIs implemented
in the SafeKodi add-on. In turn, the add-on exposes to our backend servers the list of the user’s
installed add-ons to be crawled on demand, if not yet available in our database. In the following,
we detail the design of each SafeKodi’s component.

4.4.1 On-demand Crawler. We extend the system to enable on-demand crawling in two steps.
First, we add a database where to store crawl data in a scalable manner. That is, we reduce the
raw crawl data from hundreds of GBytes (pcap traces and container state) to a handful of GBytes
per crawl. This allows us to run De-Kodi continuously with realistic data storage settings. Second,
and more importantly, we introduce on-demand crawling. This feature allows a user to request
an add-on to be crawled by keyword, a feature required to enable SafeKodi’s workflow described

ACM Transactions on the Web, Vol. 17, No. 1, Article 2. Publication date: January 2023.

2:12 Y. Xiao et al.

above. Under the hood, the source finder will search Github using the provided keyword paired
with “Kodi” and “add-on”. Next, we inspect the top search results verifying potential Kodi add-
ons, i.e., they contain a properly formatted addon.xml file required by Kodi. In case a valid match
was found, the new add-on is recorded and its testing initiated. Note that while the search can be
extended to other websites easily, we only use Github as the add-on repository since our results
show it to be the most reliable source (see Section 6.2).

4.4.2 Add-on. The SafeKodi add-on provides a user-friendly interface to inform Kodi users
about potential security issues of their installed add-ons. As shown in the left of Figure 4, SafeKodi
shows a list of installed add-ons labeled as safe (green tick), tracking (yellow exclamation point),
malicious (red cross), and unavailable (gray question mark). Each add-on in the list can be selected
to offer further information on the function claimed by an add-on coupled with an explanation on
the labeling provided by SafeKodi. For example, if an add-on is marked unsafe the actual motiva-
tion behind such labeling is provided. Last but not least, SafeKodi also offers a shortcut to disable
a selected add-on.

The SafeKodi add-on can be downloaded from our website [38] and installed as any other Kodi
add-on. Our code is open-source and we welcome an investigation to verify our privacy claims.
When the installation completes, the add-on informs the user about the undergoing research
project with a clarification of what information will be collected. At a minimum, the add-on will
share with SafeKodi’s backend server the list of Kodi add-ons installed along with the user’s IP
address—which is inherently available to us when the add-on contacts our backend server. The in-
stallation will further ask the Kodi user if (s)he is willing to share extra information from the Kodi
settings, e.g., Kodi version, screen resolution, bandwidth limit, and some security-related settings.

Under the hood, SafeKodi add-on leverages Kodi’s JSON RPC calls [33]. When launched, the list
of installed add-ons is retrieved using Addons.GetAddons RPC. If the user previously agreed on shar-
ing extra data with SafeKodi, local Kodi settings are also retrieved using Settings.SetSettingValue
RPC. This data is then sent to our backend server via an HTTPS POST message. In response, the
add-on will receive the information needed to populate SafeKodi’s GUI as per the above descrip-
tion. The SafeKodi add-on only reports data to our backend server when manually launched by the
user. However, a background service checks every 12 hrs whether a database update is available,
and if so it informs the user via a popup message. If a user requests to disable an add-on, this is
achieved via the Addons.SetAddonEnabled RPC call.

4.4.3 Backend Server. SafeKodi backend server currently runs on an AWS EC2 instance [21],
which has demonstrated to be enough to handle our user-base (over 15,000 users, as we will dis-
cuss in the upcoming section). Software-wise, it consists of a PostgreSQL database and a Web
application written in Python. The database has two tables: one for storing information on the
add-ons crawled by De-Kodi, and one for storing the data (add-ons lists and potentially some Kodi
settings) collected by the SafeKodi add-on.

The Python-based Web application exposes and manages a set of restful APIs implemented using
Cherrypy.4 This task translates into: (1) handling GET requests for add-on information updates,
and POST requests for add-on lists sharing, (2) anonymizing the requests received by the SafeKodi
add-on, (3) database management, i.e., querying for add-on tags and storing the data POSTed by
SafeKodi users, (4) on-demand crawling management, i.e., sharing with De-Kodi any add-on which
was not found in the database, and adding any newly crawled add-on into the database.

4https://cherrypy.org/.

ACM Transactions on the Web, Vol. 17, No. 1, Article 2. Publication date: January 2023.

https://cherrypy.org/

Decoding the Kodi Ecosystem 2:13

4.5 KODI TRAFFIC IDENTIFICATION

Whether Kodi traffic can be detected or not is an important research question with many practi-
cal implications. From an institutional perspective, network administrators can use such findings
to detect and potentially block Kodi traffic. From an ISP perspective, content providers and law
enforcement are pressured to deploy solutions to mitigate Kodi traffic [22, 24, 41, 43], as recently
observed in the UK [23, 36]. Last but not least, Kodi users should be aware of potential privacy
risks.

Motivated by the above, we leverage De-Kodi’s data to build a Kodi detection algorithm as-
suming transparent traffic interception, i.e., without the assumption of breaking TLS (encrypted)
communication. We first discuss several observations about Kodi traffic, that we then generalize
to conceive an algorithm for Kodi detection. Finally, we evaluate the accuracy of our algorithm in
detecting usage of Kodi along with the top 10 most popular add-ons, assuming transparent traffic
interception at both LAN and WAN level.

Methodology—Kodi itself is a home media center, which does not carry much traffic. Most of
Kodi’s traffic is instead generated by add-ons to retrieve media content available on the Web. We
are able to generalize a method to identify the traffic generated from Kodi and its add-ons based
on the following observations:

(1) When Kodi boots, it registers two services, “xbmc-jsonrpc” and “xbmc-events,” through
broadcasting multicast DNS (mDNS) messages within the LAN (home network, for instance).
Kodi keeps these two services alive by regularly broadcasting these messages. This traffic is
likely what is broadly defined as “heartbeat traffic” in the Sandvine report [6].

(2) We find 12 URLs and their corresponding IP addresses that are very much Kodi specific. For
example, mirror.kodi.tv is the website that provides access to all official Kodi add-ons. If
auto update—a Kodi feature to check if a new version of an add-on is available—is enabled,
Kodi will access this URL every time it is booted. According to Section 6.5, 97.6% of SafeKodi
users have auto update enabled on their Kodi.

(3) Legacy Kodi uses a custom User-Agent in the HTTP header which contains the keyword
“Kodi” along with a version number. Despite today’s traffic is mostly encrypted [32], thus
hiding such information to a third-party observer, we find that many add-ons (33 out of
the top 40, see Table 1) still rely on HTTP for a portion of their traffic, e.g., to retrieve the
icon to display on Kodi’s main menu, as well as for some content streaming, or for remote
control. While most of these add-ons (29 out of 33, see Appendix A) modify the User-Agent to
disguise themselves as regular Web browsers, Table 1 shows that nearly half of the add-ons–
mostly unofficial add-ons– also fallback to Kodi’s default User-Agent when using some Kodi
APIs. For example, Exodus Redux uses a custom HTTP header when accessing the content
lists. However, when user selects a movie to watch, it fetches the image of the movie with
Kodi default User-Agent in the HTTP header.

(4) Our crawls continuously maintain up-to-date lists of URLs/IP addresses that each Kodi add-
on access. We refer to these as candidate URLs/IP addresses, each of which can reversely
map to one or more add-ons. We match collected traffic against such a list to identify which
add-ons might be in use.

We leverage these observations to build the Kodi detection algorithm described in Algorithm 1.
We make the algorithm generic such that it can be run both from within a LAN, e.g., at a home
router, or a WAN, e.g., at one of the many middleboxes deployed by ISPs [50, 66]. The detection
algorithm iterates through PCAP traces—network and application traffic (when available, i.e., no
HTTPS)—looking for matches against the above observations. The output of the algorithm are

ACM Transactions on the Web, Vol. 17, No. 1, Article 2. Publication date: January 2023.

2:14 Y. Xiao et al.

Table 1. HTTP Usage in the Top 20 Official and
Unofficial Media add-ons

Official Add-ons Unofficial Add-ons

Add-ons are labeled as follows: (1) solely rely on HTTPS
(), (2) some HTTP requests are found but all with
custom User-Agent (), (3) some HTTP requests are
found which expose Kodi usage in the User-Agent field

(). Full details can be found in Appendix A.

ALGORITHM 1: Kodi Traffic Identification
Input : Captured Packet Set P ; Kodi Sessions Sk = {};

Maps from URL/IP address to potential add-on (s) M ;
Set of URLs/IP addresses that only serve Kodi content Uk ;
Candidate Windows T .

1 for p ∈ P do

2 addonList ← {} // potentially belongs to which add-ons

3 isKodi ← False

4 if (p contains mDNS) && (mDNS contains ‘xbmc’) then

5 isKodi ← True

6 addonList .add(“kodi”)

7 end

8 if (p contains HTTP) && (HTTP Head contains ‘kodi’) then

9 isKodi ← True

10 end

11 if p.dst ∈ Uk then

12 isKodi ← True

13 end

14 if p.dst ∈ M .keys then

15 addonList .add (M[p.dst]) // Which add-ons access this destination

16 end

17 for s ∈ Sk do

18 if (p.src = s .src) && (p happens within s ±T) && (s .addons ∩ addonList � ∅) then

19 p matches s

20 s .addons← s .addons ∩ addonList

21 break

22 end

23 end

24 if (p is not matched) && (isKodi = True) then

25 s ← New Session(p.src, p.timestamp, addonList)

26 Sk .add(s)

27 end

28 end

Output : Kodi Sessions Sk .

ACM Transactions on the Web, Vol. 17, No. 1, Article 2. Publication date: January 2023.

Decoding the Kodi Ecosystem 2:15

Kodi sessions, defined as the set of packets generated by a Kodi action such as simply booting Kodi
or running an add-on.

Lines 4 (L4) to L15 in Algorithm 1 have two main roles: (1) identify if a packet isKodi, and
(2) potentially return a list of matching add-ons (L15). To do so, each if statement implements one
of the above four observations we derived from Kodi traffic. L4 looks for Kodi-specific mDNS traffic,
while L8 verifies if the “User-Agent” contains the distinctive keyword “Kodi”. L11 matches Kodi-
specific URLs/IP addresses, while L14 matches add-on-specific URLs/IP addresses. All matches on
URLs are realized as (1) full URL match in case of HTTP, (2) SNI match (domain name) in case of
HTTPS, (3) domain name match in case of unencrypted DNS. When none of these are available,
e.g., the user uses HTTPS with encrypted SNI, we resort to IP addresses. The IP addresses in our
dataset were collected by De-Kodi running at our campus over a period of 12 months (from the
first Web crawl in October 2019 to the end of the data collection with SafeKodi in September 2020).
This does not guarantee that these IP addresses are used by an add-on when running from another
network location, or even at the same location after a long period of time. This is because of the
dynamicity of IP addresses (much higher than URLs) due to load balancing and geolocation, e.g.,
as used by Content Delivery Networks (CDNs).

L17 iterates through all Kodi sessions detected so far, and L18 decides if the current packet
matches an existing Kodi session using three conditions: (1) it originates from the same IP address
as any previous Kodi session, (2) it happens within a detection window defined as the time from the
last packet received in a session plus T = 60 seconds, and (3) the intersection between previously
matched add-ons for this session and new add-ons matched by this packet (L15) is not empty.
Note that if there are no common add-ons, then most likely this packet was originated either from
other software on the same machine or from other machines under the same IP address (e.g., when
collecting traffic in a WAN).

A matching packet is assigned to the corresponding Kodi session (L19), and the set of match-
ing add-ons for a session is restricted to its intersection with newly matched add-ons (L20). The
rationale of this restriction is to, as the pcap traces progresses, improve the add-on detection. For
example, SportsDevil first contacts www.filmon.com, which maps to 10 add-ons including Sports-
Devil, FileOn, and FTV. Then, it contacts m.liveonlinetv.org, which maps to two add-ons: Sports-
Devil and All In One Video. The intersection of these two sets result in one add-on: SportsDevil. An
unmatched Kodi-related packet (L24) triggers the creation of a new session (L25, L26) contain-
ing the source IP address (p.src), a timestamp (p.timestamp), and the set of matched add-ons
(addonList).

Limitations. Within a LAN, multiple concurrent Kodi users are differentiated via their source IP
address (p.src). The same does not hold from a WAN where the source IP address gets aggregated
at the home router level. This does not impact the traffic detection question, but rather the ability to
distinguish how many Kodi users are within a household. This is a generic problem of transparent
traffic analysis which is not specific to Kodi.

For add-on traffic destination matching (L11 and L14), in absence of HTTP we rely on SNI
match—in case of HTTPs—and domain name match—in case of DNS. The SNI field is currently
in the clear even with TLS 1.3 [62] but it will eventually disappear when the proposal to encrypt
all TLS extensions will be adopted [63]. Similarly, DNS traffic is shifting more and more to DNS-
over-HTTPS [42, 56] which implies such a field will eventually disappear as well.

5 DE-KODI BENCHMARKING

De-Kodi aims at being sufficiently lightweight for use on commodity hardware and readily scalable
for arbitrarily large snapshots of the Kodi ecosystem. To this end, De-Kodi was designed to be easily

ACM Transactions on the Web, Vol. 17, No. 1, Article 2. Publication date: January 2023.

2:16 Y. Xiao et al.

Fig. 5. De-Kodi benchmarking; NDocker = [1 : 20]; Crawling-duration: 30 minutes.

parallelizable, both in terms of Docker instances and the number of machines where it can run.
We setup two machines5 at a university campus connected to the Internet via a shared Gigabit
connection (both in download and upload). Next, we instrument each machine to run De-Kodi
for 30 minutes while crawling the same set of add-ons. Note that in a real crawl, each machine
would focus on a different set of add-ons, but the goal here is to compare their performance while
operating on the same workload. We repeat each crawl 20 times while increasing the number of
Docker instances (NDocker) used per machine from 1 to 20. Kodi’s default add-on repo was used
for this benchmark.

Figure 5(a) shows the number of successfully crawled Kodi add-ons as a function of the number
of Docker instances used and the machine where the crawler ran. When NDocker ≤ 10, the number
of crawled add-ons grows linearly (between 10 and 100 add-ons) and no major difference is observ-
able across machines. When NDocker > 10, we start observing a sublinear growth in the number
of crawled add-ons and more “noise” in the results. This suggests that, eventually, the overhead of
running more Docker instances on a single machine does not pay off in a term of crawling “speed”.

To further understand the previous result, we investigate the CPU utilization during the above
benchmarking. Figure 5(b) shows the median CPU utilization as a function of the number of Docker
instances and machine used. Error-bars relate to 25th and 75th percentiles. Note that the CPU

5One machine mounts an Intel i5-4590 (3.30 GHz, quadcore, 4 threads); the other machine mounts an Intel Xeon E5-1620
(3.50 GHz, quadcore, 8 threads). Both machines are equipped with 8 GB of RAM.

ACM Transactions on the Web, Vol. 17, No. 1, Article 2. Publication date: January 2023.

Decoding the Kodi Ecosystem 2:17

utilization is indeed a distribution since we sample it every 5 seconds during the benchmarking.
The trend mimics the one observed above, i.e., linear increase followed by a saturation as we
approach exhaustion of available CPU. It can be observed how the distance between percentiles
becomes more tight as NDocker increases. This implies that the machines are under higher CPU
utilization for a longer time as the overall load increases (higher NDocker).

To understand the latter results, we benchmark low-level De-Kodi “primitives”, i.e., functions
like “install_addon” or “run_addon” which are composed together to enable crawling. Figure 5(c)
shows the average duration of key De-Kodi primitives as a function of NDocker . These results
refer to one of the machines, but they are representative of all machines. The figure shows
how most De-Kodi primitives are not impacted by NDocker , i.e., their durations are limited by
Kodi’s implementation-induced constraints rather than the machine resources. The primitive
“install_addon” is the only one impacted by the machine resources. This happens because this
primitive is more complex and requires network operations (to pull the add-on), and CPU usage
(to perform its installation). However, this operation only constitutes a small fraction of De-Kodi
operations which are instead dominated by atomic or constant time operations.

No significant difference was instead reported in term of memory consumption. Across the
machines, De-Kodi requires a minimum of 500 MB (NDocker = 1) and a maximum of 4 GB
(NDocker = 20). Based on these empirical results, we set for the crawler a conservative NDocker = 8
which should allow us to crawl up to 11,000 add-ons per day while not overloading the test ma-
chines. Note that, in practice, the rate at which distinct add-ons are covered will decline in response
to redundant discoveries (if an older add-on version is found first), crawl failures (discussed in
Section 6.2), and lowered performanced induced by poorly coded add-ons.

6 KODI ECOSYSTEM ANALYSIS

This Section performs an in-depth analysis of the Kodi ecosystem focusing on add-ons discov-
ered via a Web crawl, and crowdsourced via SafeKodi. First, we summarize the Web crawling and
SafeKodi user-base and their contribution in terms of discovered add-ons. Then, we focus on which
add-ons are popular, their potential danger, and whether Kodi users are concerned by their pres-
ence. Finally, we conclude with an overview of Kodi settings chosen by its users, and their potential
security implications.

6.1 Dataset Collection

We deploy De-Kodi across the three machines used for benchmarking, enabling up to eight concur-
rent Docker instances per machine, which offers high utilization of the available resources without
significant overload. The more powerful machine is instrumented to act both as a crawl manager
and a source finder (see Section 4). We then crawl Kodi over the course of 5 days in October 2019.

Table 2 gives the high-level overview of Kodi’s ecosystem from one Web crawl. The first col-
umn shows the total and unique number of discovered entities, e.g., add-ons and media pointing
URLs. The second column, when applicable, shows the subset of entities that properly installed on
the most recent version of Kodi running alongside De-Kodi. Remember that the source finder is
instrumented with the three source seeds introduced in Section 4.2: LaziKodi, Reddit, and GitHub.
Together, the search seeds yielded 1,769 links to potential Kodi add-on sources. In addition, we
seed De-Kodi with add-ons from Kodi’s official repository: kodi.tv. Using this repository and
the aforementioned sources, De-Kodi ultimately discovered 9,146 distinct add-ons, including 1,008
“kodi.tv” add-ons, as well as 172 “banned” add-ons, i.e., add-ons associated with illicit activity and
formally denounced by the XBMC Foundation [70]. The crawl discovered 5,435 “pluginsources”
add-ons, i.e., potential media yielding add-ons, of which only 423 yielded at least one pointer to
streamable content. This number is a potential lower bound since navigating Kodi add-ons is hard

ACM Transactions on the Web, Vol. 17, No. 1, Article 2. Publication date: January 2023.

2:18 Y. Xiao et al.

Table 2. Web Crawl Summary

Total Distinct Installed
Search seed links 1,769 -

Total add-ons 9,146 5,265
Media add-ons 5,435 3,191

Repository add-ons 1,212 779
kodi.tv add-ons 1,008 988

XBMC banned add-ons 172 109
SafeBrowsing flagged add-ons 4 4

Ad containing add-ons 11 11
IP banned add-ons 105 105

Add-ons with media URLs discovered 423 423
Media URLs 6,117 -

Media domains 885 -
Media second-level domains 517 -

ip hosting domains 116 -
Missing fields are “inapplicable”.

and time consuming. Nevertheless, the crawl yielded 6,117 URLs pointing to audio/video content,
spanning 885 fully qualified domain names and 517 unique second-level domains (SLDs). Out
of the 9,146 add-ons discovered, 5,265 add-ons were successfully installed and tested by De-Kodi.

Later, we have launched SafeKodi on February 24th, 2020. Until September 2020, SafeKodi has
attracted 15,768 unique users from 104 countries. These users have run SafeKodi at least once,
whereas 32% stick with SafeKodi and run it, on average, every 4 days. SafeKodi users report, on
average, about 147 installed add-ons each which sum up to a staggering 2,322,843 add-ons reported
over seven months. Overall, 10,705 crowdsourced add-ons are unique; the majority of these add-
ons (67.4%) were unknown to De-Kodi and triggered on-demand crawling. 55.6% of these unknown
add-ons were successfully crawled. When combined with our periodic crawling, this sums up to
11,112 working add-ons, 2x the number of add-ons that were discovered the Web crawl.

We acknowledge that our dataset encompasses a relatively small sample of the Kodi user-base
(15,000 out of millions of users worldwide); yet, it is the first and most comprehensive analysis so
far of the Kodi ecosystem from the users’ perspective.

Figure 6(a) shows SafeKodi’s user-base growth overall (black dashed line, labeled All) and in
the top five countries as determined via IP geo-location: United States (US), Spain (ES), Great
Britain (GB), Greece (GR), and Canada (CA). Note that we have excluded the 274 users which
reported to be accessing Kodi through a proxy.6 The figure shows that many of SafeKodi users
joined in the first half of March. We tracked this down to several media articles [1, 5] and YouTube
videos [2, 3] which covered SafeKodi as the first antivirus for Kodi. Despite the logarithm used
for the y-axis suggests a flat growth, during the coming months SafeKodi kept adding around
500 users per week, on average, irrespective of the country. The impact of media coverage is quite
noticeable for Spain, where the article published in [1] triggered a thousand new users in less than
a week, making it the second most popular country in SafeKodi’s user-base. Note that GeoIP [29]
only failed to geo-locate 1,240 IP addresses out of 15,768.

Next, we focus on the Kodi add-ons discovered by SafeKodi along with on-demand crawling
via De-Kodi. Figure 6 (blue curve) shows the evolution over time of the number of unique Kodi

6When a proxy is involved, Spain becomes the most popular country of access with 110 users, followed by Greece and US,
as shown in Table 3.

ACM Transactions on the Web, Vol. 17, No. 1, Article 2. Publication date: January 2023.

Decoding the Kodi Ecosystem 2:19

Table 3. Summary of SafeKodi’s Data Collection

Duration 7 months
Number of requests 27, 670

Number of unique users 15, 768
Returned user 4, 979

Returned avg interval 4 days and 7h
Users behind a proxy 274, 40% in Spain

Add-ons reported 2, 322, 843
Unique add-ons reported 10, 705

Failed add-ons 3, 940
Total add-ons 18, 933

Total installed add-ons 11, 112

Users opt in sharing the settings 6, 015
Users set bandwidth limit 108, 50% set <1 Mbps

Users enabled remote control 771
Users disabled auto update 146

Kodi versions [15.3, 21.1], 87% are 18.6 to 18.8
Screen resolution [360p, 4K], 60% are 1080p

Fig. 6. Characterization of Kodi add-ons.

add-ons that were correctly tested and tagged by De-Kodi. The curve starts from October 2019
when we ran the first Web crawl based on the seeds we have identified using De-Kodi and dis-
covered 5,265 add-ons. Next, the curve shows how many new add-ons were discovered as crowd-
sourced add-ons are offered by SafeKodi users. The red line shows the percentage of crowdsourced
add-ons which were unknown, i.e., not previously known at a point in time. The red curve starts
from March 2nd, i.e., one week after SafeKodi’s launch, at which point 21% of the add-ons dis-
covered were not previously crawled. Over time, this percentage dropped down to roughly 5% (as
of 09/29/2020), showing the effectiveness of Web crawl plus SafeKodi to offer a high coverage of
the Kodi ecosystem. Among the newly discovered add-ons, 161 were developed after the De-Kodi
crawl on October 2019.

ACM Transactions on the Web, Vol. 17, No. 1, Article 2. Publication date: January 2023.

2:20 Y. Xiao et al.

Fig. 7. UpSet plot of add-ons directly found across search seeds. Each bar’s respective seeds are marked with
a black dot.

6.2 Dataset Validation

De-Kodi has three main tasks: add-on discovery (along with SafeKodi), add-on installation, and
media finding. Below we benchmark, to the best of our abilities, each of the above tasks.

6.2.1 Add-on Discovery. Any attempt to crawl a large ecosystem such as Kodi leans heavily on
the assumption that one has a way of traversing the space to be crawled. In the case of Kodi, the
primary space to cover is Kodi’s large and decentralized library of add-ons, which is discovered
via a Web crawl (see Section 4.2). Lacking a ground truth view of the set of add-ons comprising
Kodi’s ecosystem, in the following we only comment on the amount of unique add-ons offered by
each seed: GitHub, Reddit, and Lazikodi.

Figure 7 quantifies the number of add-ons/repos discovered directly, i.e., the first layer from the
tree in Figure 1, via each search seed. We treat add-ons with matching add-on IDs as equivalent dis-
coveries. The figure shows that the code of 10,387 add-ons is found through GitHub, 593 through
Reddit, and 132 through LazyKodi. The code of 24 add-ons was found across all three seeds. The
apparent bias in add-on discovery toward the GitHub seed highlights the common practice of Kodi
users to leverage GitHub as a free hosting service for Kodi repositories. Meanwhile, Figure 7 also
draws attention to the dangers of relying on a single seed: only 321 of the 593 add-ons discovered
via Reddit were also found on GitHub, meaning 272 add-ons may have been missed without seed-
ing Reddit in parallel to GitHub. Despite its small size, Lazikodi still produces a handful of add-ons,
which are not found elsewhere. Because of the popularity of the three above services, we expect
potential additional search seeds to still provide some benefit but are extremely marginal. Never-
theless, De-Kodi’s design allows for an arbitrarily large set of search seeds to be utilized in future
deployments.

6.2.2 Add-on Installation. Tables 2 and 3 (right column) suggest a non-negligible amount of add-
ons are failing to install: of the 18,933 add-ons discovered and tested by De-Kodi, 7,821 add-ons’
crawls failed to make it beyond the installation step. The first intuition beyond such “failed-to-
install” add-ons is their staleness. As a byproduct of Kodi’s own long lifespan, many add-ons are
quite old and have multiple release versions from different points in time. Kodi itself is now on
version 18 as of the time of this writing. Therefore, it is very possible that old add-ons suffer from
compatibility issues with the latest version of Kodi. To see if any installation failures are attribut-
able to staleness, we obtain, for each add-on, the most recently modified date—either the explicit
“date modified” value returned in HTTP headers when downloading the add-on’s zip file, or, in
the case of github.com hosted add-ons, the date of the most recent commit to the git repository

ACM Transactions on the Web, Vol. 17, No. 1, Article 2. Publication date: January 2023.

Decoding the Kodi Ecosystem 2:21

Fig. 8. Percentage of failed add-ons as a function of their staleness (gray barplot) as well as the cumulative
percentage of failed add-ons over time (red curve).

from which the add-on was obtained. In this fashion, we were able to obtain modification dates
for 16,709 out of the total 18,933 add-ons we discovered.

Figure 8 shows the percentage of failed add-ons as a function of their staleness (gray barplot), as
well as the cumulative percentage of failed add-ons over time (red curve). If we focus on add-ons
last modified before 2014, the figure shows failure rates between 40 and 90%. This ratio drops to
20%, on average, when we focus to the last couple of years. This result confirms our intuition that
older add-ons are more prune to fail, likely due to incompatibility issues rather than limitations
of De-Kodi. The figure also shows (red curve) that these add-ons constitute about 50% of total
“failed-to-install” add-ons, i.e., about 3,900 add-ons which are more than two years old.

To further understand the root causes beyond installation failures, we compare each failed add-
on’s dependencies (obtained via the add-on’s addon.xml file) with the set of add-ons accessible to
the add-on’s Docker container at the time of installation. We identified 949 add-ons whose failed
installations are attributed directly to missing required dependencies. Next, we leverage the Tesser-
act OCR engine [17] to extract text from screenshots of Kodi taken by De-Kodi near the time of
each installation’s failure. Our OCR analysis revealed an extra 103 add-ons with additional depen-
dency related issues; specifically, Kodi entered a state asking the user for permission to download
additional add-ons in order to install the add-on or feature of interest. Although not shown due to
space limitations, 70% of these combined 1,052 add-ons date to no more than two years back. This
further strengthens our above incompatibility claim: very stale add-ons are so disconnected with
current Kodi APIs that they even fail using the platform to correctly report errors.

Across these 1,052 add-ons, the unique set of missing dependencies was only 334, and only 35 of
said dependencies remained undiscovered by De-Kodi by the end of our crawl. It is thus possible
to improve De-Kodi by retroactively addressing missing dependencies upon discovery. This has
the potential to increase the scope of De-Kodi’s overall coverage, e.g., when failing to respond to a
dialog asking permission to install some dependencies, as well as to offer a useful service to Kodi
users, e.g., when an add-on lacks an important dependency.

6.2.3 Media Finding. Once an add-on is installed, De-Kodi attempts to find playable media
through the add-on. An add-on typed as “xbmc.python.pluginsource” (according to its addon.xml
file) can contain music, videos, pictures, or some executable application. Throughout this arti-
cle, we refer to such add-ons as media add-ons. When De-Kodi encounters a media add-on, it
attempts to browse that add-on until it finds videos or music. It is first worth noting that the cur-
rent version of De-Kodi is not capable of identifying when pictures or executables are opened

ACM Transactions on the Web, Vol. 17, No. 1, Article 2. Publication date: January 2023.

2:22 Y. Xiao et al.

Fig. 9. UpSet plot of a number of add-ons (y-axis) with each tag or combination of tags. Each bar’s corre-
sponding tags are marked with a black dot. The bar with no dots corresponds to untagged add-ons.

through the add-on. If an add-on does not provide music or video, it would appear that De-Kodi
failed to find content that should not be expected to exist. Additional metadata provided by an
add-on’s addon.xml data often provides this information. Of the 5,435 media add-ons discov-
ered by De-Kodi, 4,123 claimed to provide video, 356 claimed to provide music, and 1,046 add-
ons made no claims regarding video or music. Note that the sets providing music and video are
overlapping.

Beyond this, the possibilities regarding media exploration failures are broad. From manual in-
spection, we observed that many add-ons require subscriptions to third-party downloading and
streaming services such as Real-Debrid [16]. Others may be attempting to dynamically pull con-
tent lists from defunct web resources. While we do not attempt to provide or test for an exhaustive
list of such scenarios, we have designed De-Kodi to be easily extendable to handle new interaction
requirements. Some add-ons point to content not available in the region where this experiment
was performed. In the context of this article, all media content identified by De-Kodi was freely
accessible to De-Kodi, presenting no required sign-in, payment, or otherwise complex barrier.

6.3 Add-ons

6.3.1 Classification. We here clarify and formally “tag” add-ons based on three systems: (a) the
type/function of the add-on, (b) the approval of the Kodi official, (c) the safety of the add-ons.

Add-on Types/Function—As per Kodi officials, Kodi add-ons can be classified as follows [20].
A repository (repo) add-on is an add-on manager that contains one or more add-ons allowing
users to download, install, and update add-ons. A plugin add-on is a script or module that adds
to Kodi’s functionalities, which offers media content like audio and video. A script add-on is a
runnable program that mainly serves as a support for other add-ons (referred to as a module) or
as a standby program that starts at either login or startup (referred to as a service). A skin add-on
provides a customization of Kodi’s user interface. Finally, a resource add-on provides additional
files such as languages, fonts, and so on.

Kodi Official Approval—Kodi official maintains a repository in which all the add-ons are manu-
ally checked by the Kodi official team. The checking usually includes the purpose of the add-on and
if there are any copyrighted content provided. We tag these add-ons as kodi.tv. The Kodi official
also maintans another list of banned add-ons mainly because of copyright violation. We tag these
add-ons as XBMC banned. The add-ons that are in neither repository/list are tagged as unofficial.

ACM Transactions on the Web, Vol. 17, No. 1, Article 2. Publication date: January 2023.

Decoding the Kodi Ecosystem 2:23

Add-on Safety—We tag the add-ons based on the “suspicious” behaviors (ads injection, tracking,
and potential relationship to malware distribution) which are very much rumored in the Web
community. We specify the suspicious behaviors as follows:

— Ads & Tracking—In order to identify tracking and ad traffic, we match our traffic against
EasyList and EasyPrivacy (both maintained by [26]), state-of-the-art lists of advertisement
and tracking URLs, used by the most popular adbockers. We identify 5,247 add-ons that
trigger EasyList (advertisement) and 141 add-ons that trigger EasyPrivacy (tracking).

— Malware—We investigate potentially malware distributing add-ons by matching the URLs
they contacted against the Google Safe Browsing hash, which matches URLs against cur-
rent known threats and malware [31]. Note that Google’s Safe Browsing hashes malicious
URLs generally encountered via web browsing and may not necessarily address threats that
operate outside of that space, such as botnets. The number of add-ons triggering the Safe
Browsing hash is plotted in Figure 9 as “S.B. flag”. To increase coverage, we also compare
each observed IP address against FireHOL, an automatically updated aggregator of several
actively maintained IP address banlists [28], labeled in Figure 9 as “IP ban”. We found 13
add-ons to serve URLs, which Google SafeBrowsing labels as “social engineering” threats,
and 131 add-ons to access domains resolving to potentially malicious IP addresses.

If an add-on is associated with any of the malware tags, we consider it unsafe. Otherwise it is
considered to be safe. In addition, if an add-on is not successfully installed or its source code is not
found, we tag it unknown.

Tag Overlap—Each add-on will be tagged by all three tagging systems. For the type/function
and Kodi official approval systems, the tags are mutually exclusive. However, for the safety tag-
ging system, it is possible for an individual add-on to meet the criteria for multiple tags. Figure 9,
formatted as an UpSet plot, shows the extent of overlap between the add-on sets of each afore-
mentioned tag. All shown tag combinations yielded at least one add-on. From the figure, the stark
difference between the behavior of add-ons banned by the Kodi Team and the add-ons endorsed by
the Kodi Team becomes apparent. The add-ons available through the repository distributed with
Kodi—labeled “kodi.tv” in Figure 9—overlap only with three add-ons labeled “IP ban”. Conversely,
the banned add-on set overlaps with all four tags associated with suspicious behavior: tracking,
Safe Browsing threats, advertisements, and banned IP addresses. This supports Kodi Team’s claim
that their endorsed add-ons behave in a generally legitimate fashion.

In the following paragraphs, we analyze which kind (repository, script, and so on.) of add-on
Kodi users install, and how many add-ons actually serve content. We then investigate which add-
on category (safe, banned, and so on) is most prominent among SafeKodi users, which the previous
section shows being representative of the Kodi ecosystem. We further report on SafeKodi users’
“reaction” to the information learned via SafeKodi, i.e., whether they consider removing add-ons
or not and shed some light on why.

Figure 10(a) shows the Cumulative Distribution Functions (CDFs) of the numbers of dif-
ferent types of add-ons installed by SafeKodi users. The most frequent type is script (median of
70 installs per user, mostly modules) which is twice as popular as actually content-serving add-ons:
plugins. Among the plugins, 85.5% provide video content, while the rest consist of audio (6%) and
programs (8.5%). With respect to repository add-ons, the median users have installed 13 of them.
While this number might seem low, it has to be noted that repositories come equipped with a
potentially large number of add-ons. Finally, skins and resource add-ons are overall unpopular as
the median installation is only three per user, including two official skins at default. That is to say,
nearly half of the users do not seek to custom the interface, while the others may try several skins.

ACM Transactions on the Web, Vol. 17, No. 1, Article 2. Publication date: January 2023.

2:24 Y. Xiao et al.

Fig. 10. Characterization of Kodi add-ons.

Figure 10(b) shows the CDF of the number of installed add-ons across SafeKodi users parti-
tioning add-ons based on Kodi-provided tags (Kodi approved, banned, and unofficial, i.e., neither
approved nor banned) and De-Kodi-provided tags (safe, unsafe, e.g., tracking or contacting black-
listed IP addresses, and unknown). Add-ons tagging is realized considering the final data-set as of
Oct 2020; this implies that unknown add-ons are the ones that our on-demand crawling either fail
at locating on GitHub or at crawling, e.g., due to some manual interaction required.

The good news from Figure 10(b) is that Kodi users mostly run safe add-ons, as shown by the
similarity between “safe” and “all” curves. The “median” user install about 140 safe add-ons and
only 3–4 unsafe add-ons. This is expected given our estimate that only 2% of Kodi add-ons are
unsafe, but still concerning given that even a single unsafe add-on is potentially dangerous and
only 15% of SafeKodi users only install safe add-ons. The figure also shows the importance of third
party add-ons which are not in the default Kodi-approved repository. Indeed, only 47% of the add-
ons installed by a user are Kodi-approved, and in 40% of the cases users have more unofficial than
official Kodi add-ons.

Finally, we conclude this subsection commenting on which add-ons are disabled as a reaction
to the tagging offered by SafeKodi (see Section 4). Overall, one-third of SafeKodi users used our
disabling function at least once. Figure 10(c) shows the CDF of the number of disabled add-ons

ACM Transactions on the Web, Vol. 17, No. 1, Article 2. Publication date: January 2023.

Decoding the Kodi Ecosystem 2:25

according to Kodi and De-Kodi tags. The median user only disables 2 add-ons, but 20% of the users
disable between 4 and 20 add-ons. Unsafe, unofficial, and XBMC banned add-ons are the ones
that are disabled the most, showing the benefit of SafeKodi’s visual tags. Among unsafe add-ons,
the majority of disabled add-ons are the one marked to communicate with malicious IP addresses.
This happens even for very popular add-ons; for example, among the add-ons disabled by most
users we find, in order, SportsDevil, Just4Him (Adult content), Exodus and IberiKa (IPTV resources),
which each have more than 1,000 installations. Given that, even after multiple months of running
SafeKodi, users still have installed 3–4 unsafe add-ons on average, it is fair to say that many Kodi
users are willing to take such risk to gain access to the content offered by such add-ons.

6.3.2 Popularity. The previous analysis suggests that the Kodi ecosystem is mostly composed
of “safe” add-ons, i.e., add-ons not showing any evident suspicious behavior like tracking or con-
tacting some banned IP addresses. However, this does not imply that Kodi users mostly install and
use such safe add-ons. We are thus interested in investigating add-ons popularity, both as a general
research question and to estimate the level of exposure to potentially unsafe add-ons.

For this measurement, we use two metrics: one is search rank with Microsoft Azure, which pro-
vides a web search API powered by Bing [14], and the other is the statistics from SafeKodi. For
the search rank, Bing was selected since no other major search engine provides the same func-
tionality. We estimate add-on popularity by counting the number of web search results appearing
when searching for an exact match of the add-on ID. To reduce potential for false positives, we also
require the appearance of either “xbmc” or “kodi” on all web pages contributing to the add-on’s
result tally. It has to be noted that this approach is an approximation of add-ons popularity, whose
ground truth can only be collected with the global knowledge of all Kodi users. For the statistics
from SafeKodi, it helps users detect or avoid potentially unsafe add-ons while opting-in to anony-
mously report the list of add-ons they have installed. This approach helps us further corroborate
on Kodi add-on popularity.

Table 4 shows the top 10 media add-ons with respect to both the number of installs and their
search rank in Bing—this combination boils down to 17 unique add-ons. The table is ordered based
on the number of installs since search rank is indeed a more arbitrary measure. We mark in blue
the new add-ons discovered via SafeKodi, and with an asterisk the utility add-ons, i.e., add-ons
which mostly offer functionalities used by other add-ons. For instance, F4mTester allows decoding
F4M files and strip out video streams to be played on Kodi, and as such it is used by many live TV
streaming add-ons. Note that F4MProxy is a pre-requisite proxy module for F4mTester and it has
also around 11,000 installations. We have combined both add-ons in the list.

Table 4 contains only three Kodi-approved add-ons: YouTube, Radio_de (international radio
broadcasts) and HD-Trailers.net (movie trailers). With the exception of PlaylistLoader and Live
Polish Tv, the rest of the add-ons are banned by Kodi officials. These add-ons provide access to
audio and video content with potential copyright infringements. Among these, the two most pop-
ular add-ons are Exodus (on-demand access to movies) and SportsDevil (live streams of most of
the major sporting events). Exodus has been abandoned by its original developers, but was inher-
ited by other independent developers, who carried out the newer add-on Exodus Redux. We have
combined both add-ons in the list.

Table 4 shows that search rank is not always accurate when reporting on add-ons popularity.
For example, YouTube is the most popular add-on among SafeKodi users despite having one third
of the search rank of Exodus, when associated with the “Kodi” keyword. This is intuitive since
Exodus sparks lots of discussions online both on how to use it and copyright concern. Similarly,
many new add-ons discovered by SafeKodi have high installation numbers (e.g., 6/5,000 for The
Crew and The Magic Dragon) but very low search ranks.

ACM Transactions on the Web, Vol. 17, No. 1, Article 2. Publication date: January 2023.

2:26 Y. Xiao et al.

Table 4. Most Popular Media Kodi add-ons given their Bing
Rank and Number of Installations Across SafeKodi Users

In blue, add-ons newly discovered via SafeKodi. The “*” refers to
utility add-ons, i.e., add-ons which offer functionalities to other

add-ons. SafeKodi tags include safe, tracking, and ipban;

Kodi tags include kodi.tv, XBMC banned, and unofficial.

With respect to the legality of Kodi consumed content, Table 4 shows a mixed result. The top
add-on, YouTube, is both a safe and Kodi-approved add-on, suggesting that Kodi users value their
experience with Kodi and not only the potentially illegal content they can consume on it. Never-
theless, Exodus and SportsDevil are also in the top 5 add-ons– top 3 if we ignore utility add-ons–
and they offer access to copyrighted movies and live sport [27, 40]. Both add-ons are banned by
Kodi and tagged as “ipban”, meaning that they communicate with malicious IP addresses (see Sec-
tion 2). SportsDevil is also tagged as “tracking” since it triggers a rule in the EasyList/EasyPrivacy
list [26]. These two add-ons alone are installed by 50% of SafeKodi users, showing evidence of a
significant privacy/security threat.

We proceed to look at the whole picture of all the identified add-ons. While Kodi offers a range
of add-on types, we opt to focus our assessment of popularity on media add-ons (video, music, or
images) and repository add-ons (collection of add-ons). Our reasoning for this is threefold. First,
most non-media add-ons only exist to provide support to media add-ons, e.g., content metadata
scraping and cosmetic changes to Kodi’s GUI. Second, through manual exploration, we observed
that repository add-ons are often touted an ideal starting place for Kodi users, as they can make the
installation of all other add-ons convenient. Lastly, building upon the second point, one’s choice of
repository add-ons is likely illustrative of one’s intended use of Kodi. XBMC banned repositories,
for example, often earn their “banned” status for referencing other known illicit add-ons (e.g., add-
ons engaging in piracy and other nefarious activity). In general, our choice to narrow the scope
of our popularity measurement serves to avoid potential noise added by add-ons unlikely to be
directly searched for by real Kodi users.

ACM Transactions on the Web, Vol. 17, No. 1, Article 2. Publication date: January 2023.

Decoding the Kodi Ecosystem 2:27

Fig. 11. CDFs of popularity rank.

Figure 11(a) shows the Cumulative Distribution Function (CDF) of add-ons popularity rank
as a function of their classification tag. Overall, the figure shows very skewed distributions with
the majority (70–90%) of add-ons having low popularity ranks (∼200), and the remaining add-ons
having ranks up to two orders of magnitude higher. When focusing on the tail of the distributions,
we further observe that XBMC banned and tracking add-ons are one to two orders of magnitude
more popular than other add-ons types. A similar trend appears also in Figure 11(b), which shows
the CDF of repositories popularity. The figure further shows that the most popular repositories
rank two orders of magnitude higher than the most popular media add-ons. This analysis indicates
that a “typical” Kodi user has a higher probability to stumble upon a particular repository than a
given add-on.

Finally, we pause to consider the implications of observed add-on popularity with respect to De-
Kodi. The long-tailed distribution of add-on popularity suggests that, in general, most Kodi users
may be turning to the same, small handful of particularly popular add-ons (the top 1%–10% in
terms of popularity), which we will loosely refer to as “tier 1” add-ons. The majority of add-ons—
most of which are orders of magnitude less popular than tier 1—likely each individually either
serve a small minority of users or otherwise are obtained through tier 1 repositories. By this logic,
it is fair to reason that the marginal significance of each additional add-on potentially missed in
De-Kodi’s coverage decreases rapidly; the harder the add-on is for De-Kodi to find, the less likely,
we postulate, it is for a given Kodi user to stumble upon the same add-on.

6.3.3 Shared Distribution. Are some add-ons “guilty by association”? While slanderous to label
the Kodi community at large as nefarious actors, what may be more productive is an investigation
of smaller ecosystems and distribution channels that exist within factions of the Kodi commu-
nity. Specifically, in this subsection, we aim at quantifying the intuition that add-ons with similar

ACM Transactions on the Web, Vol. 17, No. 1, Article 2. Publication date: January 2023.

2:28 Y. Xiao et al.

Fig. 12. Content providers.

purposes—for example, piracy, malware, and so on—will naturally congregate together. This serves
two vital functions. First, it provides the unsavvy Kodi user with empirically backed reasoning to
help them in deciding what add-ons to download or install. In addition, better understanding of
how add-ons pool together according to their nature may advance future work concerning threat
detection and online content analysis.

For this analysis, we refer to five of our add-on tags—S.B flags, advertisement, IP ban, and XBMC
ban—as undesirable flags. For each line in Figure 11(c), we plot the number of undesirably flagged
add-ons distributed through a repository where at least one add-on of the line’s indicated tag was
observed. In other words, if we see a repository has an add-on tagged for XBMC, we want to know
how many undesirably flagged add-ons in general, are provided by that repository. The figure
shows that any one undesirably flagged add-on in a repository has a very low probability of being
the only add-on. In more than 85% of cases, undesirable add-on container repositories and sources
contained at least two such add-ons. Most notably, the presence of a single SafeBrowsing flag is a
strong indicator of 10 or more undesirably flagged add-ons cohabiting the same repository.

6.4 Content Providers

We here investigate the providers behind Kodi content, i.e., the domains where Kodi content (add-
ons, repositories, and media) is hosted. We obtain, for each add-on, the set of domains it accesses.
Next, we use Cisco’s Umbrella top 1 million [10]—which ranks domain names by the frequency
with which the Cisco Umbrella global network receives queries for each name—to rank the do-
mains contacted by Kodi. Figure 12(a) plots the median Umbrella rank per add-on. A clear pattern
emerges, dividing our add-on tags into two behavioral groups. We see that, in general, add-ons
tagged for banned IP addresses, Safe Browsing threats, and advertisements all tend toward using
very unpopular domain names. Much of the fourth quartile (beyond the 75th percentile) of these
add-ons use domains so obscure that their medians fall beyond the least popular domains ranked
by the Umbrella top 1 million (i.e., their Umbrella rank falls outside of 1 million). We postulate that
the providers of the content consumed by these add-ons place high priority on deliberate obscu-
rity (to avoid detection of nefarious activity) and low costs (as opposed to using potentially more
expensive, well-known infrastructure platforms).

Conversely, Figure 12(a) shows that only a small fraction of add-ons with other tags (kodi.tv,
XBMC banned, and untagged) have median domains less popular than the top 1 million. More
than 40% of the add-ons in this latter group of tags have median domain ranks that fall within
the top 10,000. Surprisingly, along this dimension, we see banned add-ons behaving similarly to
kodi.tv add-ons, suggesting they may have comparable or even overlapping infrastructure. To
investigate this, we plot the number of media containing add-ons using each of the top 10 media

ACM Transactions on the Web, Vol. 17, No. 1, Article 2. Publication date: January 2023.

Decoding the Kodi Ecosystem 2:29

Fig. 13. Local accessing times of the users.

serving second-level domains (ranked by the number of media containing add-ons using at least
one media URL from each domain) in Figure 12(b). Add-ons tend to have little overlap in the set
of domains hosting their content, as seen in the figure. However, we see that over 200 add-ons
employ “googlevideo.com”, an alias utilized by YouTube for streamingrelated network requests.

6.5 User Characterization

To capture Kodi usage in the wild, we have asked SafeKodi users to share some of their local
settings via extra permission (see Figure 4). Out of 15,768 SafeKodi users, 6,015 (or about 38%)
have opted-in, offering a statistically valuable sample. Most users report Kodi version 18.0+, with
a peak (1,083 users) on Kodi 18.6 which is the one adopted by De-Kodi. The latest stable version is
18.8, which is installed by 585 users, followed by 18.7 with 583 users. A handful of users run quite
old versions (e.g., 15.x and 16.x from 2015) as well as versions under current development (19.0
and 21.1).

We use the screen resolution reported to conjecture on the potential device used. Half of the
SafeKodi users report a screen resolution of 1080p, typical of HD TVs or computer desktops. About
15% of users have a higher resolution, mainly 2160p or 4K, suggesting running Kodi along with an
Ultra HD TV unit. Lower resolutions are also quite popular (5% at 480p, and 20% at 720p) suggesting
potential mobile devices.

Next, we find that 771 out of 6,015 users have enabled remote control of their Kodi box, i.e., they
allow Kodi to spin a simple webserver on port 8,080, unless changed by the user. According to [61],
this setting enables full control of the Kodi application. An adversary can achieve any function
on Kodi through the RESTful interface, including reading and writing arbitrary files from/to the
machine Kodi is running on. It has to be noted that we did not collect the port information, neither
keep their IP addresses to verify on public repositories (like Shodan [39]) if these Kodi instances
are indeed accessible via the Internet.

Finally, Figure 13 shows when during a day users access SafeKodi, which implies they are actively
running Kodi. It has to be noted that this results in an approximation of Kodi usage, given that
Kodi users do not run SafeKodi each time they use Kodi. However, this is the best we can do to
guarantee user privacy, and it still offers an interesting insight with respect to the usage trend.
The figure shows that Kodi is more used on weekends than during the weekdays – as typical of
generic residential traffic [69]. The usage pattern between weekday and weekend is also quite
different. While during the week, usage starts increasing from early morning (4–5 am) until the
peak at around 7 PM. During weekends, we instead notice a peak around 10 AM, after which Kodi
usage decreases as time goes by, until the next morning.

ACM Transactions on the Web, Vol. 17, No. 1, Article 2. Publication date: January 2023.

2:30 Y. Xiao et al.

7 TRAFFIC IDENTIFICATION

In this section, we evaluate the Kodi traffic classification algorithm as proposed in Section 4.5.

7.1 Evaluation Settings

We consider two scenarios for traffic collection and identification: LAN and WAN. As discussed
above, the LAN is a less challenging environment given that: (1) we have access to mDNS traffic,
(2) each machine is uniquely identified by its local IP address. Accordingly, traffic from multiple
machines have no impact on the detection algorithm when running from within a LAN.

We emulate LAN and WAN using a single machine. We build a LAN hosting on a single virtual
machine, and then leverage the host machine as a node in the WAN. The VM NAT blocks any
internal traffic (e.g., mDNS and ARP) to the host. Traffic is collected using WireShark inside the
VM (to emulate traffic collection inside the LAN) and the host (to emulate traffic collection inside
the WAN).

At the host, we run multiple software including music and video streaming, chat, and Web
browsing. In the VM, we only run Kodi which is representative of, for instances, TV boxes equipped
only with Kodi. An alternative scenario consists of a user running Kodi on a laptop alongside other
software. We ignore this scenario since it represents a simplified version of the WAN scenario,
thanks to the availability of mDNS traffic. We instrument Kodi to launch and perform specific actions,
e.g., install or run an add-on. To illustrate the effectiveness of our algorithm, we focus on the top
10 most popular media add-ons which are used by 91% of SafeKodi users.

We run Algorithm 1 on the packets captured both inside the VM and the host, approximating
LAN and WAN respectively. We compute the accuracy of the algorithm as the ratio of the correctly
identified packets (true positives) over the true total Kodi traffic. For this, we rely on manual la-
beling. We compute the recall as the ratio of the true positive packets over the positive (identified)
packets. Finally, we use F1 score7 as a performance metric of our algorithm. We consider the F1
score both in terms of number of packets and traffic volume. Finally, we also compute the lag of
the algorithm, i.e., the difference between the timestamps of the first identified packet and the first
true Kodi packet, as well as that between the last identified packet and the last true Kodi packet.

7.2 Results

Table 5 summarizes the results of our experiments. The first row focuses on three simple actions.
First, we verify that in absence of Kodi traffic no detection is indeed triggered. Next, we evaluate the
detection of simply running Kodi. This actions show a perfect F1 score from the LAN, regardless
of whether we focus on the packet or traffic count. Accordingly, no lag is detected (both at start
and end of the action) since all packets are correctly detected. This detection is purely based on
mDNS, and for this reason it is not possible from the WAN. When Kodi is updating its add-ons, we
also achieve perfect detection both from the LAN and from the WAN.

We now focus on the install operation. Overall, Table 5 indicates that the algorithm accurately
identifies (F1 score > 0.9) most packets when installing different add-ons, either from the offi-
cial repository (e.g., YouTube) or from third-parties (e.g., F4MTester). Without extra traffic (LAN),
the algorithm identifies all packets/traffic with no lag, the only exceptions being Rising Tides and
cCloudTV due to some destination URLs not being recorded in our database. This suggest that by
increasing our crawling frequency and depth, i.e., by budgeting more time to crawl an add-on, this
penalty can be mitigated.

We now focus on the run operations. From within the LAN, the algorithm accurately identifies
all (YouTube, Rising Tides and Seren) or most (Exodus Redux, Magic Dragon, and cCloud TV) of the

7F1 Score = 2·accuracy·recall
accuracy+recall .

ACM Transactions on the Web, Vol. 17, No. 1, Article 2. Publication date: January 2023.

Decoding the Kodi Ecosystem 2:31
Ta

b
le

5.
P

er
fo

rm
an

ce
E

va
lu

at
io

n
o
f

K
o

d
i

D
et

ec
ti

o
n

A
lg

o
ri

th
m

A
ss

u
m

in
g

P
as

si
ve

T
ra

ff
ic

C
o

ll
ec

ti
o

n
at

a
L

A
N

an
d

W
A

N

A
d

d
-o

n
T

a
g

O
p

e
ra

ti
o

n
C

la
ss

ifi
e
d

A
ct

io
n

F
1

o
f

P
k

t
N

u
m

(L
A

N
)

F
1

o
f

V
o

l
(L

A
N

)
L

a
g

(L
A

N
)

F
1

o
f

P
k

t
N

u
m

(W
A

N
)

F
1

o
f

V
o

l
(W

A
N

)
L

a
g

(W
A

N
)

D
o

n
ot

ru
n

K
od

i
-

-
-

-
-

-
-

R
u

n
K

od
io

n
ly

√
1.

00
0

1.
00

0
(0
,0

)
-

-
-

U
pd

at
e

ad
d-

on
s

√
1.

00
0

1.
00

0
(0
,0

)
1.

00
0

1.
00

0
(0
,0

)

Yo
u

T
u

be
*

|
In

st
al

l
√

1.
00

0
1.

00
0

(0
,0

)
1.

00
0

1.
00

0
(0
,0

)
R

u
n

⊇
1.

00
0

1.
00

0
(0
,0

)
0.

65
9

0.
62

1
(0
,2

3)

F4
M

T
es

te
r

|
In

st
al

l
√

1.
00

0
1.

00
0

(0
,0

)
1.

00
0

1.
00

0
(0
,0

)
R

u
n

√
0.

71
6

0.
77

0
(0
,0

)
0.

67
1

0.
60

3
(0
,6

)

E
xo

du
s

R
ed

u
x

|
In

st
al

l
√

1.
00

0
1.

00
0

(0
,0

)
1.

00
0

1.
00

0
(0
,0

)
R

u
n

⊇
0.

98
9

0.
99

4
(0
,0

)
0.

86
8

0.
81

4
(0
,−

18
)

Sp
or

ts
D

ev
il

|
In

st
al

l
√

1.
00

0
1.

00
0

(0
,0

)
1.

00
0

1.
00

0
(0
,0

)
R

u
n

√
0.

83
2

0.
73

0
(0
,0

)
0.

81
4

0.
73

6
(0
,0

)

T
h

e
C

re
w

*
|

In
st

al
l

√
1.

00
0

1.
00

0
(0
,0

)
1.

00
0

1.
00

0
(0
,0

)
R

u
n

√
0.

80
1

0.
35

6
(0
,−

1)
0.

79
9

0.
39

2
(0
,−

11
)

M
ag

ic
D

ra
go

n
|

In
st

al
l

√
1.

00
0

1.
00

0
(0
,0

)
1.

00
0

1.
00

0
(0
,0

)
R

u
n

⊇
0.

93
7

0.
96

1
(0
,0

)
0.

93
7

0.
96

1
(0
,0

)

V
en

om
|

In
st

al
l

√
1.

00
0

1.
00

0
(0
,0

)
1.

00
0

1.
00

0
(0
,0

)
R

u
n

⊇
0.

84
6

0.
95

6
(0
,0

)
0.

84
6

0.
95

6
(0
,0

)

Se
re

n
*

|
In

st
al

l
√

1.
00

0
1.

00
0

(0
,0

)
1.

00
0

1.
00

0
(0
,0

)
R

u
n

√
1.

00
0

1.
00

0
(0
,0

)
0.

97
8

0.
99

0
(0
,3

)

R
is

in
g

T
id

es
|

In
st

al
l

√
0.

80
0

0.
82

0
(0
,0

)
0.

77
2

0.
80

0
(0
,0

)
R

u
n

√
1.

00
0

1.
00

0
(0
,0

)
0.

32
4

0.
90

9
(0
,−

1)

cC
lo

u
d

T
V

|
In

st
al

l
√

0.
98

8
0.

99
3

(0
,0

)
0.

71
4

0.
93

5
(0
,0

)
R

u
n

⊇
0.

99
3

0.
99

4
(0
,0

)
0.

90
2

0.
98

0
(0
,6

)

T
h

e
la

gs
ar

e
ex

pr
es

se
d

as
tw

o
in

te
ge

rs
in

ro
u

n
d

br
ac

ke
ts

,c
or

re
sp

on
di

n
g

to
th

e
la

g
fr

om
th

e
st

ar
t

an
d

th
e

en
d

of
an

ac
ti

on
,r

es
pe

ct
iv

el
y.

Fo
r

th
e

ad
d-

on
s

w
it

h
“*

”,
a

h
in

t

th
at

K
od

iw
as

ru
n

n
in

g,
e.

g.
,K

od
iw

as
re

ce
n

tl
y

la
u

n
ch

ed
,i

s
u

se
d

to
h

el
p

w
it

h
de

te
ct

io
n

in
th

e
W

A
N

.S
af

eK
od

it
ag

s
in

cl
u

de
sa

fe
,

tr
ac

ki
n

g,
an

d
ip

ba
n

;K
od

it
ag

s

in
cl

u
de

K
od

io
ffi

ci
al

,
K

od
ib

an
n

ed
,a

n
d

u
n

offi
ci

al
.

ACM Transactions on the Web, Vol. 17, No. 1, Article 2. Publication date: January 2023.

2:32 Y. Xiao et al.

packets/traffic. An exception is The Crew, for which we measure an F1 score of 0.801 and 0.356
for packets and traffic, respectively. As above this is due to missing some destination URLs/IP
addresses which carry large traffic volume. When including such missing URLs/IP addresses in
our database, we achieve F1 score of 1 and 0.997 for packets and traffic, respectively. For YouTube,
the table shows a large discrepancy between F1 score in LAN (1.0) and WAN (0.6). This happens
because many add-ons access YouTube content, which results in YouTube URLs being mapped to
tens if not hundreds of add-ons. In this case, when the background “noise” is effectively mapped to
some add-ons as well, more misclassification is originated which detracts from YouTube detection.
This is also the reason of the long (23 seconds) lag for the end of the detection. For most of the
add-ons, we have similar results with a relative lower F1 score to the LAN. The reason also comes
from the impact of lower recalls.

Some add-ons in Table 5 are associated with a “*”. These add-ons only use HTTPS (: Youtube)
or a a custom User-Agent (: The Crew and Seren) in HTTP—thus making them indistinguishable
from a browser, for instance. Accordingly, their detection in the WAN is only possible if paired
with a hint, e.g., a previous indication of an ongoing Kodi session. While in the LAN this hint
naturally comes from the frequent mDNS messages, in the WAN it needs to be replaced by events
like updates, add-on installations, and so on.

Finally, five out of the top ten add-ons are classified as multiple add-ons, as indicated by “⊇” in
Table 5. This happens for add-ons which are more careful with respect to the user privacy (e.g.,
using HTTPS or a less unique User-Agent) and which serve popular content which is accessed by
many add-ons. This is the case of YouTube, whose content is accessed by 201 other add-ons, thus
causing few false positives with respect to the only classification possible (domain name either via
DNS or SNI).

8 CONCLUSIONS

Kodi is a convenient and widely popular media center which mostly aggregates audio/video con-
tent on the Web in a simple and extensible interface. Kodi is also the perfect vehicle for copyrighted
content, traffic manipulation (ads injection), and even malware execution.

This article introduces the first formal approach to dissecting the behavior of Kodi. By leveraging
features of the Kodi platform itself, we were able to build De-Kodi, a full-fledge crawling system
for the Kodi ecosystem, spanning thousand of add-ons and content providers. We demonstrate
tool’s effectively tunable levels of crawl depth, breadth, and speed, with scalability at the heart of
our design, and we make tool publically available to other researchers.

We exploit an overlap of interest between researchers aiming at studying Kodi, and its users
looking for a safer approach to Kodi. In February 2020, we have launched SafeKodi, a Kodi add-on
which warns users about potential threats associated with their installed add-ons. SafeKodi users
share with our servers which add-ons they have installed along with local settings which might
expose them to security threats. In the background, our servers extensively test these add-ons to
verify their behavior, e.g., interaction with blacklisted IP addresses.

Coined as Kodi’s first “antivirus” by several news outlets, SafeKodi currently counts a user-
base of more than 15,000 users across 104 countries. Over 7 months, SafeKodi users have reported
2.3 million add-ons which led to the testing, identification, and labeling (safe versus unsafe) of,
in joint with an active Web crawl based on the seeds we have identified, about 11,000 unique
add-ons. We find that while most add-ons are safe, most users have installed at least one unsafe
add-on. Exposing this information to Kodi users is important, and in fact, one-third of SafeKodi
users reacted by disabling unsafe add-ons. Still, many users opted to keep 3–4 unsafe add-ons on
their devices, suggesting they value more the offered content than their “safety”.

ACM Transactions on the Web, Vol. 17, No. 1, Article 2. Publication date: January 2023.

Decoding the Kodi Ecosystem 2:33

We further explore the add-on popularity, content provider, and user characterization. We find
YouTube to be the most popular add-ons installed by SafeKodi users followed by several add-ons
that are banned from Kodi official due to copyright infringement. Besides YouTube, over 200 add-
ons access the YouTube resources, making Google to be the top content provider for Kodi users.
This shows that Kodi is not all about illegal content.

Last but not least, we show that Kodi traffic is far from private and easily identifiable in the
wild. For example, given that 97.6% of SafeKodi users have enabled Kodi’s auto-update, they can
be passively identified by a third party like an ISP. Detecting the usage of a specific add-on is
harder, especially without assuming LAN access, e.g., detection running at a home gateway. Still
we found that, especially unofficial add-ons, rely less on HTTPS and often use Kodi’s default User-
Agent. In combination with the sketchy URLs/IP addresses they tend to contact, this makes them
much easier to identify by a snoopy ISP. In our mission to “rescue” Kodi users, we plan to extend
and further automate such methodology and offer, via SafeKodi, a new privacy label next to their
installed add-ons.

APPENDIX

A APPENDIX

The HTTP usage in top 20 official media add-ons and top 20 unofficial (including banned) media
add-ons. For each add-on, we investigate if it is HTTP dependent (depend.). If it is, we check if
it has customized the HTTP header that does not contain Kodi information. If it does, we further
look for if the customization covers all the requests versus falling back to the default Kodi HTTP
header at some time.

Table 6. Top 20 Official Media add-ons

Add-on
Num. of
Installs

HTTP
Depend.

Custom
Header

Cover All
Requests

YouTube 13,588 × - -
NFL 2,517

√ √ √

Radio_de 1,178
√ √

×
Fox News 786 × - -
Xumo TV 755

√ √ √

Crackle 651 × - -
NBC Live 597

√ √ √

IPlayer WWW 529 × - -
Popcorn Film 524

√ √ √

Pluto TV 472
√ √ √

Sound Cloud 414 × - -
Daily Motion 390

√ √ √

Live Stream 349
√ √ √

Earth Cam 330
√ √ √

DAZN 275 × - -
Snag Films 270

√ √ √

TED Talks 245
√ √ √

iTunes Podcast 224
√ √ √

RedBull TV 191 × - -
Classic Cinema 186

√ √ √

ACM Transactions on the Web, Vol. 17, No. 1, Article 2. Publication date: January 2023.

2:34 Y. Xiao et al.

Table 7. Top 20 Unofficial Media add-ons

Add-on
Num. of
Installs

HTTP
Depend.

Custom
Header

Cover All
Requestss

F4MTester 10,700
√ √

×
Exodus Redux 7,820

√ √
×

SportsDevil 6,810
√

× -
The Crew 6,715

√ √ √

Magic Dragon 5,472
√

× -
Venom 4,990

√ √
×

Seren 4,526
√ √ √

Rising Tides 4,483
√ √

×
cCloud TV 4,394

√ √
×

NuMb3r5 4,366
√ √

×
MP3 Streams 4,298

√ √
×

Limitless 4,175
√ √

×
Spotiwa TV 4,166

√ √ √

Video Devil 4,042
√ √ √

UWC 3,927
√

× -
7 of 9 3,633

√ √
×

Goto 3,473
√ √

×
Deja Vu 3,457

√
× -

Wolf Pack 3,441
√ √

×
YouTube Music 3,372

√ √
×

REFERENCES

[1] Crean el primer antivirus para Kodi: protégete de addons con malware. [n. d.]. Retrieved June 2021 from https://www.
adslzone.net/noticias/seguridad/safekodi-primer-antivirus-kodi.

[2] Is Your Kodi Virus Free? How to Scan With SafeKodi - TROYPOINT Vids. [n. d.]. Retrieved June 2021 from https://www.
youtube.com/watch?v=xCW_2v1vkWM.

[3] Kodi2020 - Novedad para kodi - El antivirus! - tutvboxaldia kodiAndroid. [n. d.]. Retrieved June 2021 from https://www.
youtube.com/watch?v=tLxmJLcaZq4.

[4] mwarrior/dekodi. [n. d.]. Retrieved June 2021 from https://github.com/mwarrior92/dekodi.
[5] Safekodi, el addon definitivo si quieres utilizar Kodi de forma segura. [n. d.]. Retrieved June 2021 from

https://www.hobbyconsolas.com/noticias/safekodi-addon-definitivo-quieres-utilizar-kodi-forma-segura-599759.
[6] Sandvine 2017. [n. d.]. Spotlight: The “Fully Loaded” Kodi Ecosystem. Available at Retrieved June 2021 from

https://www.sandvine.com/hubfs/downloads/archive/2017-global-internet-phenomena-spotlight-kodi.pdf.
[7] Warning - Be Aware What Additional Add-ons You Install. 2016. Retrieved June 2021 from https://kodi.tv/article/

warning-be-aware-what-additional-add-ons-you-install/.
[8] Kodi Add-ons Launch Cryptomining Campaign. 2018. Retrieved June 2021 from https://www.welivesecurity.com/

2018/09/13/kodi-add-ons-launch-cryptomining-campaign/.
[9] Rampant Kodi Malware? It’s Time to Either Put Up or Shut Up. 2018. Retrieved June 2021 from https://

torrentfreak.com/rampant-kodi-malware-its-time-to-either-put-up-or-shut-up-190610/.
[10] Cisco Umbrella Top 1 Million. 2019. Retrieved June 2021 from https://umbrella.cisco.com/blog/2016/12/14/cisco-

umbrella-1-million/.
[11] ffprobe Documentation. 2019. Retrieved June 2021 from https://ffmpeg.org/ffprobe.html.
[12] Fishing in the Piracy Stream: How the Dark Web of Entertainment is Exposing Consumers to Harm. 2019. Retrieved

June 2021 from https://www.digitalcitizensalliance.org/clientuploads/directory/Reports/DCA_Fishing_in_the_
Piracy_Stream_v6.pdf.

[13] Kodi Add-On Developer Arrested On Same Day as Popular Repo Goes Down. 2019. Retrieved June 2021 from
https://torrentfreak.com/kodi-add-on-developer-arrested-on-same-day-as-popular-repo-goes-down-190619/.

[14] Microsoft Azure. 2019. Retrieved June 2021 from https://azure.microsoft.com/en-us/.

ACM Transactions on the Web, Vol. 17, No. 1, Article 2. Publication date: January 2023.

https://www.adslzone.net/noticias/seguridad/safekodi-primer-antivirus-kodi
https://www.youtube.com/watch?v=xCW_2v1vkWM
https://www.youtube.com/watch?v=tLxmJLcaZq4
https://github.com/mwarrior92/dekodi
https://www.hobbyconsolas.com/noticias/safekodi-addon-definitivo-quieres-utilizar-kodi-forma-segura-599759
https://www.sandvine.com/hubfs/downloads/archive/2017-global-internet-phenomena-spotlight-kodi.pdf
https://kodi.tv/article/warning-be-aware-what-additional-add-ons-you-install/
https://www.welivesecurity.com/2018/09/13/kodi-add-ons-launch-cryptomining-campaign/
https://torrentfreak.com/rampant-kodi-malware-its-time-to-either-put-up-or-shut-up-190610/
https://umbrella.cisco.com/blog/2016/12/14/cisco-umbrella-1-million/
https://ffmpeg.org/ffprobe.html
https://www.digitalcitizensalliance.org/clientuploads/directory/Reports/DCA_Fishing_in_the_Piracy_Stream_v6.pdf
https://torrentfreak.com/kodi-add-on-developer-arrested-on-same-day-as-popular-repo-goes-down-190619/
https://azure.microsoft.com/en-us/

Decoding the Kodi Ecosystem 2:35

[15] Popular Kodi Addon ‘Exodus’ Turned Users into a DDoS “Botnet”. 2019. Retrieved June 2021 from https://
torrentfreak.com/popular-kodi-addon-exodus-turned-users-into-a-ddos-botnet-170203/.

[16] Real-Debrid. 2019. Retrieved June 2021 from https://real-debrid.com/.
[17] Tesseract Open Source OCR Engine. 2019. Retrieved June 2021 from https://github.com/tesseract-ocr/tesseract.
[18] Tstat - TCP STatistic and Analysis Tool. 2019. Retrieved June 2021 from http://tstat.polito.it/.
[19] XVFB. 2019. Retrieved June 2021 from https://www.x.org/releases/X11R7.6/doc/man/man1/Xvfb.1.xhtml.
[20] Add-on Structure. 2020. Retrieved June 2021 from https://kodi.wiki/view/Add-on_structure#Directory_Name.
[21] AWS EC2. 2020. Retrieved June 2021 from https://aws.amazon.com/ec2/.
[22] Canadian ISPs Continue Quest To Bankrupt TVAddons, Site That Hosted Tons Of Legal Kodi Addons. 2020. Re-

trieved June 2021 from https://www.techdirt.com/articles/20190924/17181743063/canadian-isps-continue-quest-to-
bankrupt-tvaddons-site-that-hosted-tons-legal-kodi-addons.shtml.

[23] CBlocked Kodi Streams by UK Service Providers: Access More Streams! 2020. Retrieved June 2021 from https:
//koditips.com/blocked-kodi-streams-uk/.

[24] Conline: 18 Million Brits Fall Victim To Counterfeit Electrical Goods Online. 2020. Retrieved June 2021 from
https://www.electricalsafetyfirst.org.uk/media-centre/press-releases/2018/06/conline-18-million-brits-fall-victim-
to-counterfeit-electrical-goods-online/.

[25] Docker. 2020. Retrieved June 2021 from https://www.docker.com/.
[26] EasyList. 2020. Retrieved June 2021 from https://easylist.to/.
[27] Exodus Redux. 2020. Retrieved June 2021 from https://github.com/I-A-C/I-A-C.github.io/.
[28] FireHol IP Lists. 2020. Retrieved June 2021 from https://iplists.firehol.org/.
[29] GeoLite2. 2020. Retrieved June 2021 from https://dev.maxmind.com/geoip/geoip2/geolite2/.
[30] Github. 2020. Retrieved June 2021 from https:/github.com.
[31] Google Safe Browsing. 2020. Retrieved June 2021 from https://safebrowsing.google.com/.
[32] HTTPS Encryption on the Web. 2020. Retrieved June 2021 from https://transparencyreport.google.com/https/

overview.
[33] Kodi’s JSON-RPC. 2020. Retrieved from https://kodi.wiki/view/JSON-RPC_API/v8.
[34] LazyKodi. 2020. Retrieved from https:/lazykodi.com.
[35] Mitmproxy. 2020. Retrieved June 2021 from https://mitmproxy.org/.
[36] Pirate TV Box Seller Sentenced to 16 Months in Jail. 2020. Retrieved June 2021 from https://torrentfreak.com/pirate-

tv-box-seller-sentenced-to-16-months-in-jail-180820/.
[37] Reddit. 2020. Retrieved June 2021 from https:/reddit.com.
[38] SafeKodi. 2020. Retrieved June 2021 from https://safekodi.com/.
[39] Shodan. 2020. Retrieved June 2021 from https://www.shodan.io/.
[40] SportsDevil. 2020. Retrieved June 2021 from https://github.com/AsvpArchy/plugin.video.SportsDevil/.
[41] TVAddons Returns, But in Ugly War With Canadian Telcos Over Kodi Addons. 2020. Retrieved from https://

torrentfreak.com/tvaddons-returns-ugly-war-canadian-telcos-kodi-addons-170801/.
[42] Timm Böttger, Félix Cuadrado, Gianni Antichi, Eder Leão Fernandes, Gareth Tyson, Ignacio Castro, and Steve Uhlig.

2019. An empirical study of the cost of DNS-over-HTTPS. In Proceedings of the Internet Measurement Conference. 15–21.
DOI:https://doi.org/10.1145/3355369.3355575

[43] Cisco. 2020. A New Paradigm for Dealing with Illegal Redistribution of Content. 2020. Retrieved June 2021 from
https://blogs.cisco.com/sp/a-new-paradigm-for-dealing-with-illegal-redistribution-of-content.

[44] Andrew Clay. 2011. Blocking, Tracking, and Monetizing: YouTube Copyright Control and the Downfall Parody. Institute
of Network Cultures: Amsterdam.

[45] Christian Dewes, Arne Wichmann, and Anja Feldmann. 2003. An analysis of Internet chat systems. In Proceedings of

the 3rd ACM SIGCOMM Internet Measurement Conference. 51–64. DOI:https://doi.org/10.1145/948205.948214
[46] Yuan Ding, Yuan Du, Yingkai Hu, Zhengye Liu, Luqin Wang, Keith Ross, and Anindya Ghose. 2011. Broadcast yourself:

Understanding YouTube uploaders. In Proceedings of the 2011 ACM SIGCOMM Conference on Internet Measurement

Conference. ACM, 361–370.
[47] Lucas Hilderbrand. 2007. YouTube: Where cultural memory and copyright converge. FILM QUART 61, 1 (2007), 48–57.
[48] Luke Hsiao and Hudson Ayers. 2019. The price of free illegal live streaming services. arXiv:1901.00579. Retrieved from

http://arxiv.org/abs/1901.00579.
[49] Damilola Ibosiola, Benjamin Steer, Alvaro Garcia-Recuero, Gianluca Stringhini, Steve Uhlig, and Gareth Tyson. 2018.

Movie pirates of the caribbean: Exploring illegal streaming cyberlockers. In Proceedings of the International AAAI

Conference in Web and Social Media.
[50] Dilip Antony Joseph, Arsalan Tavakoli, and Ion Stoica. 2008. A policy-aware switching layer for data centers. In Pro-

ceedings of the ACM SIGCOMM 2008 Conference on Applications, Technologies, Architectures, and Protocols for Computer

Communications. 51–62. DOI:https://doi.org/10.1145/1402958.1402966

ACM Transactions on the Web, Vol. 17, No. 1, Article 2. Publication date: January 2023.

https://torrentfreak.com/popular-kodi-addon-exodus-turned-users-into-a-ddos-botnet-170203/
https://real-debrid.com/
https://github.com/tesseract-ocr/tesseract
http://tstat.polito.it/
https://www.x.org/releases/X11R7.6/doc/man/man1/Xvfb.1.xhtml
https://kodi.wiki/view/Add-on_structure#Directory_Name
https://aws.amazon.com/ec2/
https://www.techdirt.com/articles/20190924/17181743063/canadian-isps-continue-quest-to-bankrupt-tvaddons-site-that-hosted-tons-legal-kodi-addons.shtml
https://koditips.com/blocked-kodi-streams-uk/
https://www.electricalsafetyfirst.org.uk/media-centre/press-releases/2018/06/conline-18-million-brits-fall-victim-to-counterfeit-electrical-goods-online/
https://www.docker.com/
https://easylist.to/
https://github.com/I-A-C/I-A-C.github.io/
https://iplists.firehol.org/
https://dev.maxmind.com/geoip/geoip2/geolite2/
https:/github.com
https://safebrowsing.google.com/
https://transparencyreport.google.com/https/overview
https://kodi.wiki/view/JSON-RPC_API/v8
https:/lazykodi.com
https://mitmproxy.org/
https://torrentfreak.com/pirate-tv-box-seller-sentenced-to-16-months-in-jail-180820/
https:/reddit.com
https://safekodi.com/
https://www.shodan.io/
https://github.com/AsvpArchy/plugin.video.SportsDevil/
https://torrentfreak.com/tvaddons-returns-ugly-war-canadian-telcos-kodi-addons-170801/
https://doi.org/10.1145/3355369.3355575
https://blogs.cisco.com/sp/a-new-paradigm-for-dealing-with-illegal-redistribution-of-content
https://doi.org/10.1145/948205.948214
http://arxiv.org/abs/1901.00579
https://doi.org/10.1145/1402958.1402966

2:36 Y. Xiao et al.

[51] Thomas Karagiannis, Andre Broido, Michalis Faloutsos, and Kimberly C. Claffy. 2004. Transport layer identification of
P2P traffic. In Proceedings of the 4th ACM SIGCOMM Internet Measurement Conference. 121–134. DOI:https://doi.org/
10.1145/1028788.1028804

[52] Thomas Karagiannis, Konstantina Papagiannaki, and Michalis Faloutsos. 2005. BLINC: Multilevel traffic classification
in the dark. In Proceedings of the ACM SIGCOMM 2005 Conference on Applications, Technologies, Architectures, and

Protocols for Computer Communications. 229–240. DOI:https://doi.org/10.1145/1080091.1080119
[53] Hyunchul Kim, Kimberly C. Claffy, Marina Fomenkov, Dhiman Barman, Michalis Faloutsos, and KiYoung Lee. 2008.

Internet traffic classification demystified: Myths, caveats, and the best practices. In Proceedings of the 2008 ACM Con-

ference on Emerging Network Experiment and Technology. 11. DOI:https://doi.org/10.1145/1544012.1544023
[54] Tobias Lauinger, Kaan Onarlioglu, Abdelberi Chaabane, Engin Kirda, William Robertson, and Mohamed Ali Kaafar.

2013. Holiday pictures or blockbuster movies? Insights into copyright infringement in user uploads to one-click file
hosters. In Proceedings of the 16th International Symposium on Research in Attacks, Intrusions, and Defenses - Volume

8145. Springer-Verlag New York, Inc., New York, NY, 369–389. DOI:https://doi.org/10.1007/978-3-642-41284-4_19
[55] Wei Li and Andrew W. Moore. 2007. A machine learning approach for efficient traffic classification. In Proceedings of

the15th International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems.
310–317. DOI:https://doi.org/10.1109/MASCOTS.2007.2

[56] Chaoyi Lu, Baojun Liu, Zhou Li, Shuang Hao, Hai-Xin Duan, Mingming Zhang, Chunying Leng, Ying Liu, Zaifeng
Zhang, and Jianping Wu. 2019. An end-to-end, large-scale measurement of DNS-over-encryption: How far have we
come?. In Proceedings of the Internet Measurement Conference. 22–35. DOI:https://doi.org/10.1145/3355369.3355580

[57] Aniket Mahanti, Niklas Carlsson, Martin Arlitt, and Carey Williamson. 2012. Characterizing cyberlocker traffic flows.
In Proceedings of the 37th Annual IEEE Conference on Local Computer Networks. IEEE, 410–418.

[58] Srdjan Matic, Costas Iordanou, Georgios Smaragdakis, and Nikolaos Laoutaris. Identifying sensitive URLs at web-scale.
In Proceedings of the 20th ACM SIGCOMM Internet Measurement Conference.

[59] Andrew W. Moore and Konstantina Papagiannaki. 2005. Toward the accurate identification of network applications.
In Proceedings of the International Workshop on Passive and Active Network Measurement. 41–54. DOI:https://doi.org/
10.1007/978-3-540-31966-5_4

[60] Andrew W. Moore and Denis Zuev. 2005. Internet traffic classification using bayesian analysis techniques. In
Proceedings of the International Conference on Measurements and Modeling of Computer Systems. 50–60. DOI:
https://doi.org/10.1145/1064212.1064220

[61] Alexios Nikas, Efthimios Alepis, and Constantinos Patsakis. 2018. I know what you streamed last night: On the security
and privacy of streaming. Digital Investigation 25 (2018), 78–89. DOI:https://doi.org/10.1016/j.diin.2018.03.004

[62] E. Rescorla. 2020. The Transport Layer Security (TLS) Protocol Version 1.3. 2020. Retrieved June 2021 from https:
//tools.ietf .org/html/rfc8446.

[63] E. Rescorla, K. Oku, and N. Sullivan and. 2020. TLS Encrypted Client Hello Draft-ietf-tls-esni-07. 2020. Retrieved June
2021 from https://tools.ietf .org/html/draft-ietf-tls-esni-07.

[64] Sandvine. 2018. Global Internet Phenomena Spotlight - Kodi. 2018. Retrieved June 2021 from https://
www.sandvine.com/hubfs/downloads/archive/2017-global-internet-phenomena-spotlight-kodi.pdf.

[65] Subhabrata Sen, Oliver Spatscheck, and Dongmei Wang. 2004. Accurate, scalable in-network identification of p2p
traffic using application signatures. In Proceedings of the 13th international conference on World Wide Web. 512–521.
DOI:https://doi.org/10.1145/988672.988742

[66] Justine Sherry, Shaddi Hasan, Colin Scott, Arvind Krishnamurthy, Sylvia Ratnasamy, and Vyas Sekar. 2012. Making
middleboxes someone else’s problem: Network processing as a cloud service. ACM SIGCOMM Computer Communica-

tion Review 42, 4 (2012), 13–24.
[67] Haifeng Sun, Yunming Xiao, Jing Wang, Jingyu Wang, Qi Qi, Jianxin Liao, and Xiulei Liu. 2019. Common knowl-

edge based and one-shot learning enabled multi-task traffic classification. IEEE Access 7 (2019), 39485–39495. DOI:
https://doi.org/10.1109/ACCESS.2019.2904039

[68] Pelayo Vallina, Victor Le Pochat, Álvaro Feal, Marius Paraschiv, Julien Gamba, Tim Burke, Oliver Hohlfeld, Juan
Tapiador, and Narseo Vallina-Rodriguez. Mis-shapes, mistakes, misfits: An analysis of domain classification services.
In Proceedings of the 20th ACM SIGCOMM Internet Measurement Conference.

[69] Florian Wamser, Rastin Pries, Dirk Staehle, Klaus Heck, and Phuoc Tran-Gia. 2011. Traffic characterization of a resi-
dential wireless Internet access. Telecommunication Systems 48, 1–2 (2011), 5–17.

[70] XBMC. 2019. Official:Forum Rules/Banned Add-ons. 2019. Retrieved from https://kodi.wiki/view/Official:
Forum_rules/Banned_add-ons.

Received 9 June 2021; revised 3 June 2022; accepted 11 September 2022

ACM Transactions on the Web, Vol. 17, No. 1, Article 2. Publication date: January 2023.

https://doi.org/10.1145/1028788.1028804
https://doi.org/10.1145/1080091.1080119
https://doi.org/10.1145/1544012.1544023
https://doi.org/10.1007/978-3-642-41284-4_19
https://doi.org/10.1109/MASCOTS.2007.2
https://doi.org/10.1145/3355369.3355580
https://doi.org/10.1007/978-3-540-31966-5_4
https://doi.org/10.1145/1064212.1064220
https://doi.org/10.1016/j.diin.2018.03.004
https://tools.ietf.org/html/rfc8446
https://tools.ietf.org/html/draft-ietf-tls-esni-07
https://www.sandvine.com/hubfs/downloads/archive/2017-global-internet-phenomena-spotlight-kodi.pdf
https://doi.org/10.1145/988672.988742
https://doi.org/10.1109/ACCESS.2019.2904039
https://kodi.wiki/view/Official:Forum_rules/Banned_add-ons

