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Abstract
In recent years, we have witnessed a growing trend of con-
tent hyper-giants deploying server infrastructure and ser-
vices close to end-users, in “eyeball” networks. Still, one of
the services that remained largely unaffected by this trend is
online streaming analytics. This is despite the fact that most
of the “big data” is received in real time and is most valuable
at the time of arrival. The inability to process requests at
the network edge is caused by a common setting where user
profiles, necessary for analytics, are stored deep in the data
center back-ends. This setting also carries privacy concerns
as such user profiles are individually identifiable, yet the
users are almost blind to what data is associated with their
identities and how the data is analyzed. In this paper, we re-
vise this arrangement, and plant encrypted semantic cookies
at the user end. Without altering any of the existing proto-
cols, this enables capturing and analytically pre-processing
user requests soon after they are generated, at edge ISPs
or content providers’ off-nets. In addition, it ensures user
anonymity perseverance during the analytics. We design
and implement Snatch, a QUIC-based streaming analytics
prototype, and demonstrate that it speeds up user analytics
by up to 200x, and by 10-30x in the common case.

CCS Concepts: • Networks → Network services; Public
Internet; Cross-layer protocols; • Security and privacy;
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1 Introduction
The ability to extract user analytics in a timely manner, i.e.,
as quickly as possible, is of critical importance for numerous
online applications [68]. An ad provider can more promptly
adjust its ad layout to capture more clicks based on the user
analytics extracted over short time scales. Many online ser-
vices are utilizing machine learning systems to “learn on the
fly” and either adjust content presentation (e.g., return search
results tailored towards a given user profile) or optimize
system performance. Still, such machine learning systems
fundamentally depend on analytics “triggers,” which again, if
available sooner or over short timescales, are more valuable.
Currently, the streaming analytics “machinery” typically

resides in data centers. On the one hand, the analytics servers
are fed by streams from web server clusters, which typically
serve tens of thousands of clicks arriving on average every
second. On the other hand, given that user web requests
alone are semantic-oblivious, i.e., carrying no direct informa-
tion about users, such information first needs to be obtained
from associated user-profile databases. The analytics servers
thus aggregate data streams from the web servers and user
databases to provide advanced analytics.

This approach, however, suffers from twomain drawbacks.
The first drawback comes from the trend of infrastructure
migration towards the network edge. In particular, content
and service providers have been continuously pushing their
systems and content to the users, from the content deliv-
ery networks (CDNs) to the off-nets – servers outside their
own autonomous systems (ASes) – which have become a
common approach to expanding the footprint of content hy-
pergiants [60]. Nevertheless, the semantic-oblivious requests
cannot be analyzed before they reach the data centers that
are distant from these edge systems/contents.

The second drawback is disrespect for user privacy, which
has raised increasing attention and concerns in recent years [34,
48, 95]. More concretely, the semantic-oblivious requests,
while simple in design and hence commonly adopted, carry
individually identifiable information, e.g., user IDs. The user
IDs have allowed the service providers to record any infor-
mation about the individual users as much as they can for
an indefinite duration as long as the users do not actively
clean up – and most users are not aware of it at all.

In this paper, we explore the potential of catching and pre-
processing user clicks early, much sooner than when they
reach the data centers while preserving user privacy to the
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largest extent. In particular, we look at the content providers’
network and off-nets, as well as edge ISPs. Our goal is to
design a system to make early click catching, in-network
processing, and anonymity preserving analytics possible,
and to quantify the achievable performance benefits.

To enable this approach, we propose semantic cookies, en-
crypted data structures set by the server and then kept at the
user. Contrary to widely-used state-of-the-art HTTP cook-
ies, which are effectively pointers to semantic user databases
(typically hosted at data center back-ends), we plant semantic
user information that is not individually identifiable directly
into the cookies themselves. This enables collaborating edge
components, mostly edge servers but also switches, to an-
alytically process the user requests. Importantly, semantic
cookies can be seamlessly deployed without altering any of
the existing protocols.
We design and implement Snatch, the first prototype of

our edge-network analytics system. We explore two designs.
The first one places semantic cookies at the application
layer, HTTPS, and processes them at the off-net’s or CDNs’
edge servers. The second one places semantic cookies at the
transport layer, QUIC, which enables processing them at
ISP switches. The underlying trade-off is that application-
layer semantic cookies provide high flexibility in terms of
the number of user features, while transport-layer cookies
provide faster analytics. Luckily, both types of cookies could
be utilized simultaneously, when needed.

Snatch is a two-tier analytics system. The first tier consists
of either edge servers, which handle application-layer seman-
tic cookies, or LarkSwitches, which handle transport-layer
semantic cookies. The second tier consists of AggSwitches,
which inspects all the incoming packets to the analytics
server. The first-tier devices early re-direct semantic data
to the state-of-the-art analytics servers. Optionally, the two
tiers coordinate to enable in-network analytics. The number
of supported operations available at switches is considerable
(see Appendix C); hence, it provides valuable in-network an-
alytics support. Snatch augments existing analytics systems
in a fully cooperative manner.

We implement Snatch and evaluate it in a testbed. To fully
understand the performance gains that Snatch can achieve
on the Internet, we conduct a large-scale measurement study.
In particular, Snatch involves several components: the edge
server, ISP switch, web server, and analytics server. To study
the performance of these entities in practice, we host HTTPS
websites using AWS EC2 instances. In addition, we purchase
CDN services from Cloudflare and AWS CloudFront. Finally,
we utilize over 2,000 residential nodes from the Mysterium
VPN, spread around the world, as users. These measurements
enable us to accurately estimate network latencies among
users, edge ISPs, off-nets and CDNs, and data centers, and
evaluate performance gains achievable by Snatch.

We find that Snatch brings significant speed-ups, particu-
larly in scenarios when all calculations can be done in the

network. Specifically, in-network analytics reduces latency
by 5x relative to the scenario when only redirections are
enabled. Processing semantic cookies at the transport layer
is 3-8x faster than at the application layer. When users are
spread across the world, Snatch manages to speed up user an-
alytics by 10x compared to existing analytics systems, while
the speedup climbs to 30x when users are located on a single
continent, e.g., North America.

2 Background And Motivation
2.1 Streaming Analytics
Data streaming analytics targets enormous data that arrive
continuously in time. Efficient data streaming analytics is es-
sential to many important real-time applications, e.g., social
networks [44], ad campaigns [46], and beyond [50]. Early
streaming analytics systems use dataflow models [32, 42, 43].
With the increasing demand for streaming analytics, the last
decade has witnessed a thriving of proposals: MillWheel [30],
Storm [91], Heron [70], Puma [44], Spark Streaming [11,
31, 102], Apache Flink [8], and more. Among them, Spark
Streaming [102] started to aggregate the streaming data over
a short interval and perform batch analytics in a Map-Reduce
fashion [51]. The state-of-the-art streaming analytics pro-
duce results at a timescale of ∼1 to ∼10 seconds [21, 46, 102].
The above-mentioned work focuses on streaming ana-

lytics in a single cluster environment, leaving the arrival
of data out of scope. In this paper, we make the arrival of
data a central topic of our research. For example, message
queues [9, 10, 15, 23] are usually adopted in real-world pro-
duction to link the data ingestion pipeline and the streaming
analytics systems [46].We include the message queues when
discussing the streaming analytics systems in this paper.
Yet, the message queues and the streaming analytics sys-

tems do not depict the whole picture. While some applica-
tions analyze only internal data, i.e., stored or generated
inside the data center, many applications analyze data from
outside the data center, e.g., the users’ requests, generated
from end-user networks scattered around the world. Fur-
ther, in online applications scenarios, the application-level
streaming data is typically sent to the analytics servers only
after it reaches web server endpoints in data centers. Hence,
rather significant latency can be added to the user requests
after they are generated by end users.
The time cost incurred before data arrives at the ana-

lytics server is nontrivial (see § 2.3), however, it is often
disregarded. To depict a comprehensive picture, we con-
sider an entire online streaming analytics cycle. The cycle
includes the streaming data generation and transmission, i.e.,
users send requests to the servers and the servers process
the requests, data processing, i.e., by message queues and
event processors [21]. Finally, the cycle terminates with a
traditionally-defined streaming analytics system, e.g., Spark
Streaming [11].
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2.2 Anonymity Preserving Analytics
Anonymity preserving analytics refers to computational an-
alytics over aggregated results from the users without re-
vealing the individual identities, and hence provides strong
privacy guarantees [54, 100]. Unfortunately, widely-adopted
Web cookies present a significant privacy-leaking vertical,
even at the network level [95]. A single identity leak in one
application opens up unforeseen tracking opportunities.
With the growing public attention and concerns about

individual privacy, anonymity preserving analytics has been
supported by legislators [2]. The related studies have also
become a hot topic in the security and privacy academic
community [48, 56]. Complying with the trend, hyper-giants
have also introduced their own data collection and ana-
lytics systems that preserve user anonymity, for instance,
Google [34, 57], Apple [90], Microsoft [52], and more.

2.3 Opportunities
Migrating infrastructure towards the edge. Content and
service providers are continuously pushing their systems
closer to the users. Content delivery networks (CDNs) allow
the content providers to place static content at servers nearby
users, and thus improve their experience. CDNs have thus
become one of the most crucial components of the Internet
today, serving billions of users across the world. In fact, more
than half of the Internet traffic originates from several top
CDN providers [60]. In addition to building their own data
centers and backbone networks [63, 69], the major content
providers also deployed off-net servers [60]. Such servers are
placed in the eyeball, end-user, networks. The deployment of
these edge servers further reduces the latency between the
user and the content, thereby improving the user experience.
In parallel with this trend, the service providers are also

pushing computation closer to the users. Hence, many dis-
tributed streaming analytics systems are proposed, aiming
at working with limited resources available at the edge [40,
41, 59, 79, 83]. While helpful in certain specialized scenarios,
most applications still require centralized streaming analyt-
ics with data from users scattered all around the globe. In
this paper, we focus on centralized streaming analytics.
Importantly, with the introduction of edge servers, the

overall architecture of online streaming analytics systems
has changed. The streaming analytics server (cluster) is usu-
ally not placed in the same region as the edge servers, which
is where the users are directed first. This results in compli-
cations of security and privacy issues, e.g., a third entity has
access to the cookies or sensitive content [74, 97], as well as
a rather substantial increment of delay between the compo-
nents of the online streaming analytics systems, as we will
demonstrate below.
Case Study. The above infrastructure migration to the edge
affects many online applications. A first example is that an

advertisement provider may want to receive aggregated re-
sults of its ongoing advertisement campaign in real-time
to make decisions, e.g., the offering in the following adver-
tisement auctions, based on them [46]. A second example is
that real-time crowd analytics, a technique crucial to many
businesses [27], needs to aggregate results about informa-
tion in a particular region. A third example is the needs for
faster response to users’ resource demands. Today, cloud
platforms have become the go-to solutions for many compa-
nies because of their capability to scale up/down in a timely
manner. Nevertheless, the service scaling (where contain-
ers are usually used) needs to deploy before they become
available. Hence, faster response to the demand and hence
earlier provoking service deployment changes are crucial to
the user experience for various online applications [1].

Below, we analyze the first example of the advertisement
campaign in detail. Here, the data is generated when a user
clicks on an ad link. It follows that a request is sent to an
edge server, e.g., in the case of a CDN, with the user ID
embedded in the HTTPS cookie and the ad ID included in
the HTTPS URL. The edge server then passes the cookie to
the web server in the closest data center. Next, the web server
processes the cookie and delivers the data to the (centralized)
analytics system which is potentially at another data center.
Message queues are usually adopted to deliver the data. If
the user semantic information is needed, e.g., demographic
or other information, the analytics server needs to first fetch
this data from a database before being able to perform further
analytics operations.

In this example, we assume that the application developer,
who owns the web server, has control over all the cookies,
meaning that they are all first-party cookies. As a result, the
cookies are initially sent to the web server, and any ad broker
either resides at the analytics server or receives information
from it. It is important to note that in the current Web, this
assumption may not hold true, as users may send separate
requests to ad broker URLs along with third-party cookies.
However, the use of these third-party cookies contradicts the
prevailing trend of enhancing privacy and has already been
banned by some major browsers [4, 5, 28] and is expected to
be banned by the remaining browsers in the near future [3].
Consequently, we focus on first-party cookies in this study.
Drawbacks and Opportunities. We conduct a large-scale
measurement study to comprehensively quantify the latency
inflation cost (details are provided in § 5). Figure 1(a) illus-
trates an example of the analytics time cost breakdown of one
data point. It starts from the request generated by the user
in New York1. The closest edge server, which caches static
content, is selected and is in New York. The web server that
provides dynamic content and handles cookies is hosted at

1Here we assume QUIC is adopted as it is becoming popular, and its hand-
shake is simpler than TCP+TLS. With TCP+TLS handshakes, the time cost
of communication in Figure 1(a) will be more than doubled as it is now.
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User

15.4ms*3

32.3msDatabase
Edge Server

Analytics Server
Input: cookie stream C                                    
1: C <- filter(C.event_type=0)
2: client_features <- DB.get(C.client_id)
3: pairs <- \
      (C.ad_id, client_features).map(f => (f, 1))
4: count <- pairs.reduceByKey(_ + _)              
Output: count

Web Server

ISP

17.2ms*3

user_id user_featureA user_featureB events more_info
0xff01 0x01 0x03 ... ...

user_id ad_id event_type
0xff01 0x02 0x00

136.6ms241.6ms

(a) Scenario without semantic cookies.

User

Analytics Server

LarkSwitch

AggSwitch

Input: semantic cookie stream C                       
1: C <- filter(C.event_type=0)
2: pairs <- \
      (C.ad_id, C.client_features).map(f => (f, 1))
3: count_local <- pairs.reduceByKey(_ + _)       
Output: count_local

Input: local count stream CL               
1: count <- pairs.reduceByKey(_ + _)  
Output: count

~40ms

Edge ServerWeb Server

7.1ms

~40ms

HTTPS

user_featureA user_featureB ad_id event_type
0x01 0x03 0x02 0x00

~137ms

(b) Scenario with semantic cookies.

Figure 1. Breakdown of time cost in a simple application of advertisement campaign.

AWS’s us-east-1 region. The server for global streaming ana-
lytics is, however, located in California. All QUIC connection
handshakes take 97.8 ms in total. Adding up to the process-
ing time costs at both the edge and web servers, which take
378.2 ms in total, as well as the delay of 32.3 ms from the
web server to the analytics server2, the time cost before the
cookie arrives at the analytics server is 508.3 ms, which oc-
cupies more than 50% of the total time cost assuming 500 ms
is needed for the analytics itself3.
Besides the latency inflation highlighted above, we also

notice that in the current online streaming analytics systems,
the analytics operations are performed only after they arrive
at the analytics server. For instance, traversing through the
path of the data in Figure 1(a), we find that the data is held
by the edge server and web server for more than 300 ms in
total while they respectively handle the static and dynamic
web request – unrelated operations to the data analytics –
and is left untouched before it arrives at the analytics server.

We nowmove to privacy issues. In short, the above request
submits a user activity, i.e., clicking an ad, along with the
user ID to both the edge server controlled by a CDN provider,
and the analytics server controlled by the ad provider. After
that, the ad provider can perform any analytics as it wishes,
or save this event associated with the user ID in its data-
base for further analysis. Yet, this might lead to potentially
serious privacy violations. This is because as long as the
user does not clean up the cookie, all her activities will be
logged among potentially other individual information that
is obtained through other sources, as illustrated by the tables
in Figure 1(a). An attacker, e.g., a malicious data owner or
a third-party attacker who gets access to the database of
the ad provider, or network traffic, might then be able to

2We assume no handshake is needed because a persistent connection is
established by themessage queues, or otherwise the time cost will be greater.
3The default computing time interval of Spark is 1s [25]. If the data arrives
evenly, the average time of analytics is 500 ms.

impose danger to such individual users by splicing all the
information pieces [95].

3 System Design
In this section, we first present the overview of our system
design and illustrate the benefits using the same example
as in Section 2.3. Next, we present our security and privacy
threat model. We then present more design details and bene-
fit quantification of the semantic cookie as well as in-network
streaming analytics. Last, we touch on the functionalities of
Snatch’s controller.

3.1 Overview
At a high level, we propose to forward and (pre-)process
the data much earlier than the current online streaming
analytics systems do – at the edge server, or even at the
ISP switch, thanks to the programmable data plane [35].
One critical obstacle for the early data forwarding and pre-
processing is that the cookies are semantic-oblivious, i.e.,
no information about the user but only a reference to the
information is included. This is because at the time when
the cookies are assigned, the server knows nothing about
users. We instead propose semantic cookies. Like regular
application-level cookies, they are generated by servers, and
kept by users. The difference is that semantic cookies hold
encrypted application-level user data, and more importantly,
include no individually identifiable information. Typically,
once the information about the user is collected, e.g., when a
user clicks a specific web page, the web server should push
semantic information into the user cookie itself. To the best
of our knowledge, we are the first to seize this opportunity,
given the nature of our system.
We explain the procedure of Snatch with Figure 1(b), fo-

cusing on the same application as the case study in § 2. A
previous benchmark study [46] evaluated the streaming an-
alytics engines by operating a join operation to obtain the
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number of users who viewed the ads. But in practice, more
advanced analysis of the composition of the users may be
needed to allow the ad providers to make decisions based on
the results. Thus, we assume that the analytics server wants
to analyze the composition (by their demographic categories)
of users who viewed a particular ad in an instant windowed
time. This can be achieved with three operations as shown in
Figure 1(a): (𝑖) filtering the arriving cookie streams by event
type, e.g., a user viewed an ad (L1); (𝑖𝑖) then requesting the
database for the user features (demographic information) by
the user ID embedded in the cookies (L2); and (𝑖𝑖𝑖) counting
the number of users for every user feature (L3-4).

In Snatch, the web servers should set the semantic cookies
as a replacement of the user ID, as shown in Figure 1(b), after
the first connection with the user and the information of the
user becomes available. It is noteworthy that the first connec-
tion cannot be accelerated and is not depicted in Figure 1; all
the results we present in this paper focus on subsequent con-
nections after the initial one. The semantic cookies should
be kept by the user, similar to the current design. What is
different is that the ad provider should not store any user
information. From then on, the user sends requests with the
semantic cookies. The semantic cookies can be recognized
and processed by the edge server. As shown in Figure 1(b),
the edge server filters the cookies by the event type (right L1).
It also counts locally the number of users who viewed a par-
ticular ad for every user feature (right L2-3). The processed
data can be forwarded directly to the analytics server. Be-
fore it arrives at the analytics server, a programmable switch
close to the analytics server named AggSwitch aggregates
the local counts from all the edge servers (left L1) before
delivering it to the analytics server.

As there are many devices and parties involved in Snatch,
a controller (not shown in Figure 1) is present to coordinate
all the participants. As shown in Figure 2, Snatch controller
is run by a trusted party. It accepts analytics tasks from appli-
cation developers and distributes the associated instructions
to different devices held by different parties.

In this example, all the analytics have been completed on
the way to the analytics server while no user ID is present.
The time costs on analytics operations (∼500 ms) are reduced
to <1 ms given that (𝑖) each web server only handles a small
number of requests and hence has minimal costs and (𝑖𝑖) the
line-rate processing ability of the programmable switches. It
follows that the total latency from when the data is gener-
ated to when the decision can be made based on the data is
reduced by ∼80% from 1008.3 ms to 228.6 ms. This demon-
strates the feasibility and benefits of processing the data
early.

Moreover, the semantic cookies in many scenarios are con-
stant. For instance, in the second example of real-time crowd
analytics, what needs to be aggregated and analyzed is the
user’s information, e.g., demographic or interests; in the third
example of faster response to users’ resource demands, what

needs to be aggregated and analyzed is the typical demand
of the users. These information can be kept at the user’s
side and sent without knowing what the user’s requests
are. Thus, we further propose to encode encrypted seman-
tic cookies in the transport layer. With the programmable
switch’s capability to read and parse packet headers, the
semantic transport-layer cookies can be acted upon as soon
as the user requests reach the edge ISPs, as the dashed lines
in Figure 1(b) illustrate. In particular, semantic cookies could
(optionally) be pre-processed, and forwarded by the Lark-
Switch, as shown in the figure. This further cuts analytics
latency to around 48 ms – a ∼95% reduction in the total delay.

3.2 Threat Model
We assume a third-party attacker who can monitor and
collect network packets from a limited geolocation range.
We also assume an attacker who may join the system as a
user to receive the semantic cookies from the web servers.
The attacker may try to decode the format of either the
application-layer or transport-layer semantic cookies by ex-
amining across the collected packets. Nevertheless, the at-
tacker should be computationally bounded and not be ca-
pable of decrypting ciphertexts that are encrypted using
advanced cryptography algorithms, such as AES and TLS.

In general, being able to decode the semantic cookie would
allow the third-party attacker to intercept user information
from network eavesdropping, or send fake data to distort
the application developers’ analytics results.
Moreover, we assume an honest-but-curious edge node,

i.e., edge server or LarkSwitch in Figure 1(b), who follows
the protocol but may try to understand the application-layer
purposes of the semantic cookies, and hence steal the user
information for commercial purposes. On the other hand,
we assume a malicious application developer who may try
to insert individually identifiable information into semantic
cookies while using our system.

3.3 Semantic Cookie
Contrary to "traditional" cookies, which are used as pointers
to a back-end database of user attributes, semantic cookies
enable web servers to directly encode user attributes and
push them to the end-users. The semantic cookies cannot be
in plaintext but need to be encoded and encrypted because
they will be stored at the users’ side.
Application-Layer Semantic Cookie. Because the edge
server is the endpoint of the users’ TLS connections, it has
the access to all the application-level information in the users’
requests, including the application-level cookies as required
by our system. For instance, if users are sending an HTTPS
request, then the edge server is able to access the headers,
cookies, and payload of the HTTPS request.
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Therefore, leveraging edge servers for early forwarding
the application-layer cookies is straightforward to imple-
ment. Most current edge services, e.g., Cloudflare’s CDN,
allow the user to set custom page rules to adjust caching
levels, forward requests, modify headers, etc [12, 14]. What
is needed in Snatch is to decrypt the cookies, match semantic
cookies’ names and values, and send the extracted data to
a custom destination (analytics server) – if possible – in a
custom format. The additional computational cost is minimal
as it is similar to existing header-related operations.
The benefits of application-layer cookies are three-fold:

First, it can support semantic cookies with as many sub-
cookies (user features) as needed by the applications. Second,
it does not require any modification on the user’s side. Third,
it is fully compatible with the current HTTPS request design
and simply needs to include semantic cookies. In addition,
the cookies can be easily kept across different connections
between the user and the server over time, regardless of the
underlying protocol, e.g., TCP, UDP, QUIC, TLS, etc.
To better quantify the benefits of using semantic versus

non-semantic application-layer cookies, we aim to quantify
the speedup. It is defined as the ratio of the expected la-
tency in two scenarios, i.e., non-semantic vs semantic. Hence,
speedup is ≥1. Denote user by𝐶 , edge server by 𝐸, web server
by𝑊 , and analytics server by 𝐴. Then, 𝑑𝐶𝐸 is the delay be-
tween the user and the edge server, and so on. Let 𝑇𝑡𝑟𝑎𝑛𝑠 be
the transmission duration of the request.
We further denote by 𝑇𝐸 , 𝑇𝑊 , and 𝑇𝐴 the time costs for

processing requests at the edge server, web server (including
database communication), and analytics server (including
message queues), respectively. Then, for HTTPS request on
top of QUIC 1-RTT, the speedup is

𝑆𝑎𝑝𝑝−ℎ𝑡𝑡𝑝𝑠 =
3𝑑𝐶𝐸 + 3𝑑𝐸𝑊 + 𝑑𝑊𝐴 +𝑇𝑡𝑟𝑎𝑛𝑠 +𝑇𝐸 +𝑇𝑊 +𝑇𝐴

3𝑑𝐶𝐸 + 𝑑𝐸𝐴 +𝑇 ′
𝐸
+𝑇 ′

𝐴

, (1)

where 𝑇 ′
𝐸
and 𝑇 ′

𝐴
are the time costs when Snatch is involved.

Because of the minimal additional cost from processing
application-layer cookies at the edge server, we consider
𝑇 ′
𝐸
= 𝑇𝐸 . Further, coefficient 3 in the equation comes from

the QUIC 1-RTT handshake process. More analysis on QUIC
0-RTT and TCP protocols is available in Appendix B.1.
Transport-Layer Semantic Cookie. Transport-layer cook-
ies are semantic cookies that are encrypted and encoded
in the transport-layer protocol. As identified in a previous
study [33], cookies can be encoded in three protocols with-
out requiring any modifications on the users’ machines: IPv6,
TCP, and QUIC. In this paper we only consider QUIC. Dis-
cussions for IPv6 and TCP and more details for QUIC are
provided in Appendix B.2.

Snatch fully utilizes the features of QUIC. We consider all
the connections between a user and an edge server except
the first one – at least one connection is needed before se-
mantic cookies are available. If the user uses QUIC 0-RTT,
she repeats the connection ID from the last connection where

transport-layer cookies are encoded. LarkSwitch then will be
able to decode the transport-layer cookies and forward them
to the analytics server. This requires no modification on the
user’s side. If the user uses QUIC 1-RTT, a slight modification
of the code in userspace is needed to allow the QUIC 1-RTT
to keep the transport-layer cookie in the new connection,
i.e., QUIC should remember the connection ID from last con-
nection but re-generate a subset of the bits without tweaking
the transport-layer cookies. In summary, both QUIC 0-RTT
and 1-RTT fit our vision and work for Snatch.

We further quantify the benefits of transport-layer seman-
tic cookies. Let 𝐼 denote ISP. Hence 𝑑𝐶𝐼 is the delay from user
to ISP. Similar to the analysis for application-layer cookies,
the speedup of the streaming analytics for QUIC 0-RTT is

𝑆𝑡𝑟𝑎𝑛𝑠−0𝑟𝑡𝑡 =
𝑑𝐶𝐸 + 𝑑𝐸𝑊 + 𝑑𝑊𝐴 +𝑇𝑡𝑟𝑎𝑛𝑠 +𝑇𝐸 +𝑇𝑊 +𝑇𝐴

𝑑𝐶𝐼 + 𝑑𝐼𝐴 +𝑇 ′
𝐴

. (2)

For QUIC 1-RTT, its handshake needs 1 RTT and hence the
coefficients for 𝑑𝐶𝐸 and 𝑑𝐸𝑊 become 3, while the denomina-
tor keeps the same as the transport-layer cookie is included
in the first packet header. The speedup is

𝑆𝑡𝑟𝑎𝑛𝑠−1𝑟𝑡𝑡 =
3𝑑𝐶𝐸 + 3𝑑𝐸𝑊 + 𝑑𝑊𝐴 +𝑇𝑡𝑟𝑎𝑛𝑠 +𝑇𝐸 +𝑇𝑊 +𝑇𝐴

𝑑𝐶𝐼 + 𝑑𝐼𝐴 +𝑇 ′
𝐴

. (3)

3.4 In-Network Streaming Analytics
Snatch further seizes the opportunity to accelerate stream-
ing analytics by leveraging the in-network computation: the
programmable switch performs computation at line rate,
much faster than the servers [82]. For transport-layer cook-
ies, streaming analytics can be completed in the data plane
– via the cooperation of LarkSwitches and the AggSwitch.
The LarkSwitch decodes the transport-layer cookies, pre-
processes the data, and send them to the analytics server. On
the last hop to the analytics server, an AggSwitch extracts
and aggregates the data from all LarkSwitches. Note that for
application-layer cookies, the analytics can be done in the
network as well. It only requires the edge server to forward
the application-level data in a format agreed in advance,
which allows AggSwitch to decode and aggregate the data.

The modern programmable switch is able to perform AES
encryption/decryption [45] and calculate most of the com-
mon statistics [65, 76]. We limit the pre-processing to the
supported operations, and leave more complex ones to the
analytics servers. When all the operations of a target analysis
are supported by the switches, Snatch reduces all the time
costs of Pub/Sub services and the analytics process.

We consider two types of forwarding schemes: per-packet
and periodical forwarding. Per-packet forwarding satisfies
the needs of applications that require very low latency and
immediate knowledge of the streaming data.When all the op-
erations of a target analysis are supported, Snatch provides
a huge speedup, i.e., 𝑇 ′

𝐴
< 1 ms because the programmable
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Figure 2. Snatch controller workflow.

switch operates at line rate. On the other hand, periodical for-
warding targets applications that have slightly loose require-
ments on latency. During each period, the programmable
switches updates the statistics based on incoming packets.
By the end of each period, LarkSwitch and AggSwitch coop-
erate to calculate statistics and forward them to the analytics
server. Compared to per-packet forwarding, periodical for-
warding saves bandwidth resources while sacrificing latency.
We explore this trade-off experimentally in § 5.2.

3.5 Controller
Snatch includes many components that spread across the
current Internet infrastructure. It is not practical for any
single party to possess or control all Snatch components.
Instead, Snatch should leverage the existing Internet infras-
tructure to the largest extent and builds on top of it. To
realize that, Snatch needs a controller to coordinate all the
other system components. Snatch controller should be run
by a trusted party that builds up commercial relationships
with the application developers, edge ISPs, content providers,
and optionally cloud providers. As illustrated in Figure 2,
the application developer submits the analytics tasks to the
Snatch controller, which then parses the tasks and distributes
the instructions to different devices controlled by different
parties, including the LarkSwitch by ISPs, edge servers by
content providers, AggSwitch by ISP or cloud providers, and
analytics server by the application developer or ad broker. It
also returns the format of processed cookies to the analytics
server which is controlled by the application developer.
At a high level, Snatch controller provides the follow-

ing APIs to the application developers: (1) Add or remove
applications. In our design, the system supports multiple
applications at the same time. Different applications are dis-
tinguished by application ID in the cookies (either at trans-
port or application layer). (2) Add or remove cookies. For
each application, Snatch supports multiple user features, or
sub-cookies. A transport-layer cookie is preferred if there
is enough space. When the space is scarce for all the sub-
cookies, the developer should decide which sub-cookies are
encoded at the application layer based on the needs. (3)

Change feature type and valid ranges. Snatch supports two
types of data: class and number. For a different feature type,
Snatch supports different pre-processing functions. Any data
that is not in the valid feature range will be aborted. (4)
Change the forwarding scheme, either per-packet or period-
ically.

3.6 Security and Privacy
Snatch provides security and privacy guarantees. Following
our threat model, this guarantee needs to hold against three
potential attackers as detailed below.
Malicious Third-Party Attackers. First, we need to pro-
tect the cookies from being understood or tempered by third-
party attackers who monitor and collect network packets. To
achieve this, we propose to encrypt the transport-layer se-
mantic cookies with AES-128 (see § 4), and use HTTPS when
accessing the Web protecting the application-layer semantic
cookies with secure communication. In this way, third-party
attackers cannot decrypt or learn the format or the content
of the semantic cookies. The AES encryption keys should be
set differently in different regions and changed regularly to
strengthen security protection.
Honest-But-Curious Edge. Next, we need to prevent the
edge nodes from being able to understand the application-
layer purposes of the semantic cookies – unfortunately, they
can do so now. To achieve that, the app developer should
avoid using semantic names and, if possible, add transforma-
tions to the values, e.g., performing reversible mathematical
operations before pushing semantic cookies to the users
and recovering them after receiving aggregated results from
Snatch. This process renders plaintext semantic cookies se-
mantically incomprehensible. Further, app developers can
set multiple correlated cookies to substantially raise the bar
for interpreting them. For example, they can set two cookies
to represent the same purpose, but each time only update
either one of them, hence confusing the edge nodes.
More importantly, full protection can be achieved using

differential privacy (DP) [55], which secures data privacy
by introducing noise to it. A naive example is that if the
app developer intends to increase a cookie value by 1, they
could instead increase it by 2 with a probability of 75% and
decrease it by 2 with a probability of 25%. Such noises can
also be applied to all fields – including those that are not
undergoing actual changes – as well as their initial values, to
better disguise the sensitive data changes from specific user
groups or operations. Consequently, while individual data
may not be entirely precise, the aggregated analytical results
such as calculated statistics from all users remain accurate.

Note that the actual DP model will be adaptive and more
complex than the above example. Striking the right balance
between accuracy and the level of added noise is crucial
when implementing DP. But deriving specific DP models
is beyond the scope of this study as they depend on the
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Figure 3. Transport-layer cookie design (QUIC).
specific user data range and analytics accuracy requirements
following business models.
In general, Snatch may require the app developer to re-

design cookies mostly because of the discarding of individ-
ually identifiable information. Further, the app developer
should leverage cookie encodings, correlation, and poten-
tially DP, and maybe employ multiple edge providers to pre-
vent them from learning the semantic cookies. Beyond cookie
redesigns, it does not rely on any particular constraints on
app developers or ad brokers.
Malicious Application Developer. The last concern is that
it is possible for the application developer to include indi-
vidually identifiable information in a non-semantic cookie,
i.e., not processed by Snatch, during the communication be-
tween the web server and the users. This is prohibited by
Snatch’s policy and penalties will be applied once discovered.
We leave the technical enforcement of excluding individu-
ally identifiable information in this scenario as future work.
It is noteworthy that while such technical enforcement is
not included in this paper, Snatch has made it possible to
regulate the usage of individual identifiers in the cookies by
providing an alternative system that works well – or even
better – without such identifiers.

4 Implementation
4.1 Cookies and Programmable Switch
We implemented a prototype of LarkSwitch and AggSwitch
based on an Intel Tofino switch. We first present the cookie
and packet design. Then, we introduce the switch logic. Fur-
ther, we introduce our implementation and discuss the scope
of analytics with programmable switches.
Transport Cookie Design.We choose QUIC protocol as the
carrier of transport-layer cookies because it fully meets the
requirement of Snatch (see § 3.3). We encode the transport-
layer cookies in the up-to-160-bit connection-ID field of
QUIC headers. As shown in Figure 3, we split the connection-
ID into four parts: (1) 8-bit destination connection ID (DCID),
(2) 8-bit application-ID, (3) bitmap of variable length, and
(4) cookie-stack of variable length. DCID is randomly gen-
erated for connection identification. The application-ID is
used for distinguishing from normal QUIC packets and speci-
fying the format of the remaining bits. Because of the limited

space, the format of bitmap and cookie-stack are not fixed but
application-dependent. Assuming there are 𝑁 sub-cookies
used by an application, corresponding to𝑁 features, then the
bitmap has 𝑁 bits where each bit denotes whether this sub-
cookie is present. The cookie-stack includes 𝑁 sub-cookies
and the length of each sub-cookie is pre-defined by the con-
troller. 𝑁 is bounded by the memory and stage limitation of
the switch. The remaining bits (if any), unoccupied by the
bitmap and cookie-stack, marked as DCID-R2 in the figure,
are also randomly generated for connection identification.
Next, we create a custom packet header on top of UDP

to carry early-forwarded cookies or pre-processed data (ei-
ther by LarkSwitch or edge server) for AggSwitch. For more
details please refer to Appendix B.3.

To prevent the cookies and data from being hacked or tem-
pered by the users or attackers, the transport-layer cookies
after application-ID is encrypted using AES-128. The AES-
128 key is only known to the application developer and the
edge nodes, i.e., edge server or LarkSwitch/AggSwitch. It is
noteworthy that encrypting or decrypting the up-to-160-bit
transport-layer semantic cookies using AES-128 only adds
∼0.1 ms delay with a modern Tofino switch [45].
Switch Logic. When a new application is registered at a
LarkSwitch or AggSwitch, its parameters – including the
application-ID, the format of bitmap and cookie-stack, and
the AES key – are stored in the switches’ match-action table
entries. LarkSwitch will try to match the application-ID for
all the incoming QUIC packets. When a packet is matched,
the switch decrypts and decodes the available cookies/data
following the parameters of the corresponding application.
the switch then performs counting or other statistical opera-
tions on the decoded cookies/data. For per-packet forward-
ing cookies or for periodical forwarding cookies when the
period ends, the switch creates a new custom packet (see
appendix B.3) and sends it and associated statistics to the
analytics server. To do so, we make the switch clone the
original packet. The original packet is still forwarded to the
web server to keep the original communication. Meanwhile,
the cloned packet header will be rewritten and its payload
will be removed before being sent to the analytics server.
Statistics Calculation. Both the LarkSwitch and the Ag-
gSwitch involve statistics calculation when they process the
cookies and data. The match-action pipeline design makes
programmable switches naturally classifiers and counters.
In our prototype, we have implemented the basic statistics
which satisfy the (partial) needs of most streaming applica-
tions. For data type class, we implement counting by match-
ing value. For data type number, we implement sum, min,
max, and average calculations.

We further discuss the scope of applications supported by
Snatch’s in-network streaming analytics. P4 switches sup-
port most of the streaming analytics operations. A detailed
example is provided in Appendix C where we explore the P4
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switches’ support for Spark Streaming APIs. One limitation
is that complex operands, e.g., modulo and logarithm, are
not supported by most P4 devices. Nevertheless, this can
be resolved by using FPGA-based devices [93], redesigning
the algorithms [101], or using P4’s digest to complete the
operations with the help of the control plane [20]. Further,
machine learning algorithms or their pre-processing can also
be completed in the programmable data plane [87, 98].

To sumup, despite the limitations, programmable switches’
ability to process data at a high speed and low power cost is
a great asset to boost up the performance of Snatch.

4.2 Clients and Servers
We target minimal client modification. For QUIC 0-RTT, the
client does not need any modification. For QUIC 1-RTT, a mi-
nor change in userspace is needed so that the transport-layer
cookies from the last connection are stored and repeated in
the next connection, while the rest of the connection ID is
randomly re-generated. We implement a Snatch client based
on quic-go [6]. We realize the transport-layer cookie support
for QUIC 1-RTT by modifying only <50 lines of code. We
further implement the Snatch-enabled edge- and web-server,
also based on the quic-go repository.

4.3 Controller
Functionality. Snatch controller takes inputs from the ap-
plication developers. It then generates a random byte as
the application ID and a random AES-128 key for seman-
tic cookie encryption. Then, it updates the components in
the following order: AggSwitch, LarkSwitches, and the edge
servers. With corresponding programs pre-installed at all the
rest components, Snatch controller only needs to update the
parameters, e.g., altering the table entries in LarkSwitches
and AggSwitches so they can recognize new applications
and send results to new destinations, through RPCs to the
corresponding control plane. The update frequency is overall
low, e.g., days or weeks, because updates only happen when
new applications are added or AES keys need to be updated.
Consistency. When a controller updates an application, in-
consistency issues might arise because of the delay between
the controller and other components. For instance, some edge
servers might change the format of transport-layer cookies
before a LarkSwitch, or a LarkSwitch changes the recogni-
tion of the cookie-stack before changes are made. They may
result in missing or incorrect results being reported.
We solve the inconsistency issue by adopting a version

control scheme. When an update instruction is received by
the controller, it generates a new application version with a
new application identifier, i.e., the same application has dif-
ferent application IDs for different versions. It then updates
the components in order: AggSwitch, LarkSwitches, and the
edge servers. After a period of time (possibly days), the con-
troller deletes the old application ID and associated rules,

0 100 101 102

Figure 4. Overview of measurement sites.

i.e., revokes the corresponding rules on the AggSwitch and
LarkSwitches. In this way, Snatch ensures that consistency
is preserved when updating the applications.

5 Evaluation
In this section, we first present results from our global mea-
surement study on understanding the performance of data
streaming from normal Internet users. We then simulate and
evaluate the benefits of our approach with our testbed that
simulates real-world environments.

5.1 Measurement and Estimation
Methodology. Snatch involves multiple Internet compo-
nents: the ISP switch, edge server, web server, and analytics
server. To study the performance of these subjects in prac-
tice, we set up experiments as follows. First, we host HTTPS
websites using AWS EC2 instances [7], which represent the
web servers in Figure 1(b). Then, we purchase CDN services
from Cloudflare [12] and AWS Cloud Front [14]. This allows
us to set up the edge servers on a global scale.
Next, we need to measure the performance of regular

Internet users on a global scale. We choose the decentral-
ized VPNs (dVPNs), which have gained much popularity
recently [96], as our means of measurement over academic
measurement platforms [47, 53, 86, 89] for better flexibility.
In dVPNs, regular Internet users from all over the world
monetize their spare bandwidth by hosting a VPN proxy at
their homes, providing a VPN service to the public. Thus,
it provides a desirable measurement platform for our study.
We select Mysterium [18] among various dVPNs since it has
the largest footprint [96] – Mysterium currently holds over
5,000 dVPN nodes (proxies), among which over 2,000 are
recognized as "residential," i.e., hosted in regular Internet
users’ home networks.

We iteratively connect to all the available residential dVPN
nodes as measurement sites. During each dVPN connec-
tion, we send out various packets and derive delays between
Snatch components. More details on the delay derivations
are provided in Appendix D.1. For all the per-site operations,
we iterate 10 times and take the median for further analysis
to avoid outliers resulting from unstable network conditions.
Measurement Results. We conduct our measurement over
14 days, during which we tested 2,253 sites (dVPN nodes)
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Figure 5.Measurement and speedup results.

around the world. Figure 4 shows the per-country site counts.
Among 87 countries we have investigated, the US has the
most sites, followed by the UK and Germany. It is notewor-
thy that while the measured sites are not representative of
billions of Internet users, they allow us to capture a glimpse
of the current global WAN practice and provide a meaning-
ful basis to estimate the potential benefits of Snatch. Also,
the number of sites is not entirely proportional to the total
number of Internet users per country, but they represent
the user engagement to a large extent. Thus, we utilize such
collected statistics to evaluate Snatch.
Figure 5(a) shows the delays between client, ISP, edge

(server), and cloud (web server and analytics server), respec-
tively. The delay from client to ISP is the smallest as expected,
with a median of 1.4 ms. The delay from the client to the
edge is slightly larger, with a median of 6.7 ms. This shows
the success of CDN services as a means to improve Internet
performance, and also Snatch’s potentials from the semantic
cookie early forwarding. For each site, we take the minimal
delay from the off-net servers, Cloudflare CDN, and AWS
Cloud Front. Appendix D.2 provides additional details.

Next, we look at the cloud performance. Figure 5(a) shows
that the delays from client to the cloud (dashed red area) vary
a lot – from 13.1 ms to 150.3 ms in the median – depending
on the relative geolocation. Further, the median delays from
the client and from the edge to our hosted EC2 machines are
60.1 ms and 43.6 ms (red and green lines), respectively. Note
that the sum delays from the client to the edge and from the
edge to the cloud are not always equal to the delay from the
client to the cloud, because of the complex routing policies
across ASes which may not assign the same path [39].
Moreover, we find that the intra-data center delays for

AWS range from 0.8 ms to 4.4 ms, whereas the inter-data
center delays range from 4.7 ms to 206 ms, with a median of
75.5 ms. Additional details are provided in Appendix D.3.
Quantifying SnatchBenefits.Here, we estimate the speedup
that Snatch brings. In particular, we utilize the speedup Equa-
tions for different protocols, i.e., (1), (2), and (3), combined
with the above measurement results. If not otherwise in-
dicated, we estimate based on medians: 1.4 ms for delay
between client and ISP (𝑑𝐶𝐼 ), 6.7 ms for delay between client

and edge server (𝑑𝐶𝐸 ), 43.6 ms for delay between edge and
web server (𝑑𝐸𝑊 ), 0.8 ms for transmission time cost (𝑇𝑡𝑟𝑎𝑛𝑠 ),
136.6 ms for time cost at the edge (𝑇𝐸 ), 241.6 ms for time cost
at the web server (𝑇𝑊 ), and 500 ms for time cost at the ana-
lytics server (𝑇𝐴) – assuming default Spark parameters [25].

We first investigate the expected Snatch speedup as a func-
tion of the median delay between the web server and the
analytics server, (𝑑𝑊𝐴). We adopt the “best practice” assump-
tion: the client will always choose the closest edge and web
servers. We further assume that 𝑑𝐶𝐴 and 𝑑𝐸𝐴 grows propor-
tionally as the delay 𝑑𝑊𝐴, within their own range respectively.
Appendix D.2 provides details.

Figure 5(b) shows Snatch’s speedup as a function of the
delay from the web server to the analytics server (𝑑𝑊𝐴). The
solid line represents the case when only early forwarding is
enabled (𝑇 ′

𝐴
= 𝑇𝐴 = 500 ms) whereas the dashed line repre-

sents when in-network streaming analytics (INSA for abbre-
viation) is also enabled (𝑇 ′

𝐴
= 1 ms). The figure shows that

enabling Snatch’s INSA feature improves the performance
by a great margin, by up to two orders of magnitude, versus
when INSA is disabled. Looking at various protocols, we see
that the scenarios where Snatch benefits the most to least are
Trans-1RTT, Trans-0RTT, and APP-HTTPS. This is expected
as transport-layer cookies provide better performance than
application-layer cookies.
Figure 5(b) further shows that as 𝑑𝑊𝐴 increases, hence

𝑑𝐶𝐴 and 𝑑𝐸𝐴 increase following best practice assumption,
the Snatch benefits necessarily decrease. Indeed, the more
distributed the users are, the network latency more signifi-
cantly affects Snatch’s performance. Next, we focus on two
scenarios: (1) US, where end-users are located in the US and
the median inter-data-center delay is 26.3 ms, and (2) world-
wide, where users are dispersed around the world and the
median inter-data-center delay is 75.5 ms (see Figure 9(a)).
Figure 5(b) shows that QUIC 1-RTT INSA speedup is 31x in
US and 12x worldwide, while App-HTTPS INSA speedup is
5.5x in US and 4.4x worldwide.
Figure 5(c) shows the speedup as a function of analytics

time cost, 𝑇𝐴. In practice, the analytics time cost depends on
many factors, including the analytics algorithms, workload,
the Pub/Sub queuing delays, the settings of traditionally
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Figure 6. Testbed evaluations. Total time cost as functions of (a) delays, (b) workload, and (c) periodical interval.

defined analytics systems, etc. The time cost thus ranges
from negligible to ∼10 seconds at the hyper-giants [21]. Here
we consider general tasks and hence vary 𝑇𝐴 from 1 ms to
10s. When 𝑇𝐴 is negligible, INSA naturally does not play an
important role. But as 𝑇𝐴 grows, the speedups diverge: they
decrease when INSA is disabled but increase when INSA is
enabled. Overall, Snatch always boosts up the performance
of streaming analytics. For reference, when 𝑇𝐴 is 10s, and
INSA is enabled, the speedup for Trans-1RTT is 183x, for
Trans-0RTT is 181x, and for App-HTTPS is 53x.

Figure 5(d) shows the speedup in the case of periodical
forwarding, as a function of the period (interval) ranging
from 5 ms to 200 ms. When the interval is 5 ms, the speedup
is naturally closer to per-packet forwarding. As expected, the
speedup decreases when the interval increases because the
data takes more time to the analytics server. For reference,
for interval of 5 ms, the speedup for Trans-1RTT is 18x, while
for interval of 200 ms, the speedup for Trans-1RTT is 4.3x.

5.2 Testbed Experiments
Environment Setup. We set up a testbed consisting of 6
host machines and one Tofino programmable switch. Among
them, three host machines represent the client (request gen-
erator), the edge server, and the web server, respectively. The
analytics server is represented by a cluster of three machines,
which consist of two slave nodes and one master node. The
Tofino switch represents both LarkSwitch and AggSwitch.
The topology follows Figure 2 where the Tofino switch con-
nects to the client, the master node of the analytics server,
and the edge server (with two different ports connecting to
two different network interfaces, respectively). Each host
machine is equipped with an 8-core AMD EPYC CPU with
16GB RAM. The delays between the machines are controlled
via Linux Traffic Control module [26].

We adopt QUIC 1-RTT in our evaluation below. Once
the analytics server (master node) receives an aggregation
packet, meaning that INSA is enabled, it will log the times-
tamp; otherwise, it will submit the data to Spark Streaming
which processes the data and logs the finishing timestamp.

We select the advertisement campaign analytics as the
target application. Different from Yahoo Streaming Bench-
mark [46], which correlates the user ID and the ad campaign
ID, we go further to count the user demographic information
(we randomly generate gender, age, and geolocation for each
user) for each ad campaign. In addition, we set the interval
of Spark Streaming to be 150 ms as it is suitable for most of
our tasks and environment, i.e., it minimizes the time cost.
Performance Evaluation.We first evaluate the impact of
delays between the components for per-packet forwarding.
We adopt different delays—taking 𝑁 th percentile of delays
from Figure 5(a)—in our testbed and perform 10,000 requests
from the client for each experiment. We send 10 requests per
second (RPS), a relatively low rate, to exclude the impact of
workloads (which we explore later in the text). We adopt the
same “best practice” assumption as in § 5.1.

Figure 6(a) shows the total time costs given different delay
percentiles in our measurement. The total time costs are mea-
sured from when clients send requests until the results are
obtained, either from Spark Streaming (solid lines and hollow
markers) or from AggSwitch if INSA is enabled (dashed lines
and filled markers). Overall, the results show that the total
time cost increases as the delay percentile increases, i.e., the
clients experience worse Internet infrastructure. Still, Snatch
is beneficial at all times. The shortest to longest total time
cost are between Trans-1RTT and App-HTTPS with INSA,
and between Trans-1RTT and App-HTTPS without INSA.
One exception occurs at the 100th delay percentile where
the performance of Trans-1RTT without INSA exceeds App-
HTTPS with INSA because 𝑑𝐶𝐸 drastically increases.

In terms of speedups, APP-HTTPS and Trans-1RTT reduce
the time cost at most by a factor of 2.1x and 5.4x without
INSA (at 95th delay percentile), or by 24.5x and 31.2x with
INSA (at 1st delay percentile). When INSA is enabled, the
speedups slowly decrease as the delay percentile increase, i.e.,
the clients experience worse Internet infrastructure. Yet, the
speedup of Trans-1RTTwith INSA is at least 3.8x at the 100th
delay percentile, which brings the total time from 2,807 ms
down to 735 ms. In the median case, the speedups for APP-
HTTPS and Trans-1RTT are 1.9x and 2.0x without INSA, or
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6.3x and 8.3x with INSA. Compared to Figure 5(b), Trans-
1RTT under-performs the results from § 5.1, yet App-HTTPS
over-performs the corresponding results. This is because the
processing time costs at the edge server and at the analytics
server in our testbed are both smaller than in § 5.1.

Next, we evaluate the impact of the workload. We take the
median delays from the measurement, and adjust the work-
load, which we quantify as the number of requests that the
clients send per second. We consider per-packet forwarding
here because it consumes more bandwidth and is thus more
sensitive to workload compared to periodical forwarding.
Figure 6(b) shows that the total time costs are stable with the
same rank as in Figure 6(a) when the workload is relatively
low (<100). Later, i.e., when workload >100, the total time
costs increase as the workload increases for all scenarios
except Trans-1RTT with INSA, demonstrating the power of
in-network transport-layer switch-based processing. When
the workload is equal to or greater than 300, the time costs
for no-Snatch and App-HTTPS start to increase sharply (note
that the y-axis of Figure 6(b) is in log scale). Likewise, App-
HTTPS with INSA is less effective than Trans-1RTT without
INSA. This suggests that congestion happens at the edge
server and the web servers because they are overwhelmed
by the high request rate.

Meanwhile, however, Trans-1RTT with INSA keeps a very
stable performance – it takes 61 ms regardless of the work-
load. This reveals a property of Snatch: no parallelism in-
flation. The stable performance is expected because of the
nature of line-rate processing of programmable switches and
the design of Snatch: Trans-1RTT skips all the computation
on the edge and web servers (and the analytics server if INSA
is enabled) where congestionmay happen at a high workload.
In fact, Trans-1RTT and Trans-0RTT are able to keep the
best performance as long as the throughput does not exceed
the capacity of the switches, which is over 10 Tbps [16].

Finally, we evaluate the periodical forwarding. We adopt
the median delays and a workload of 200 RPS. Figure 6(c)
shows that as the periodical interval increases, the total
time cost increases while the bandwidth consumption (grey
line) between LarkSwitch/the edge server and AggSwitch de-
creases. Nevertheless, when the periodical interval is 500 ms,
Trans-1RTT and App-HTTPS still speed up the total time
cost by 1.2x and 1.1x without INSA, or 1.8x and 1.7x with
INSA. The bandwidth consumption linearly decreases from
∼112 Kbps to ∼1 Kbps as the periodical interval increases
from less than 5 ms to 500 ms.

6 Discussion
Semantic Cookie Related Issues. One question may raise
on how the application developers can derive the semantic
information without a user ID. In fact, we can regard the
semantic cookie as a state machine: the developers have the
state from the last request, update it based on the current
request, and save it on the users’ side for the next request.

Another issue may be the additional overhead from adopt-
ing semantic cookies. Transport-layer semantic cookies do
not incur any overhead as an existing header field of QUIC
with limited length is used. Application-layer semantic cook-
ies inherit the current cookie design but ideally only discard
the individual identifiers, which brings no overhead. Still,
overhead may be introduced by the way that the developers
design the application-layer semantic cookies. Currently, the
developers build their own database and store as much user
information as they want, e.g., the complete visit history
per user [92]. With the semantic cookies, the developers can
only collect the visit history by appending the new visit to
the semantic cookies every time the user visits the website.
This will indeed bring non-trivial overhead. Nevertheless,
while no hard restriction on the size of semantic cookies is
applied, we argue that this is a feature rather than a defect:
the semantic cookies are meant to prevent the developers
from logging everything about the user, e.g., complete visit
history. Hence, it forces the developers to carefully re-design
the cookies and only ask for the least; otherwise, they may
lose customers because of bad experiences.
Alternative to Latency Inflation. One alternative to re-
duce latency inflation introduced in § 2.3 is to ask the users
to send duplicate requests to both the web servers and the
analytics servers. Yet, there are many drawbacks from this
approach. First and most importantly, it does not enhance
user privacy as Snatch does because individual identifiers
are still present. Second, it cannot benefit from in-network
computation, which may be a larger factor in performance
improvement than latency inflation (see § 5). Third, it re-
quires the users to double their bandwidth consumption and
leads to a worse web experience, yet without offering any
incentives to the users. In addition, exposing the analytics
server to public may open the door to attacks.
View From Application Developers. With Snatch, appli-
cation developers can benefit from faster online streaming
analytics and hence obtain more valuable results. Meanwhile,
they lose the freedom to store whatever they want from the
users’ activities andmay fail to perform certain analytics, e.g.,
individual profiling [92]. Nevertheless, more studies are look-
ing into how to effectively perform anonymity-preserving
analytics [34, 52, 90]. It is thus questionable how much the
cost really is from discarding individual-level analytics. More-
over, developers may lose the freedom anyway as stricter
privacy policies may be enforced given the public’s rising
privacy concerns. In addition, the developers can actually
benefit from respecting user privacy: users who care about
their privacy may be more inclined to websites that adopt se-
mantic cookies compared to other competing websites. This
may become an important incentive for more developers to
adopt the semantic cookies, and (hopefully) eventually lead
to widespread adoption of semantic cookies, similar to the
history of HTTPS adoption.
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Generality of Analytics. In our implementation, we pre-
install programs at the edge devices and have them accept
RPCs from Snatch controller to update certain parameters
(§ 4.3). This would allow edge devices to recognize new appli-
cations and perform analytics accordingly. Yet, we acknowl-
edge that our implementation only supports fixed types of
aggregation analytics. While the edge servers should be able
to conduct any streaming analytics, we have analyzed the
capabilities as well as the limitations of the programmable
switches (§ 4.1). In an ideal implementation, the controller
should generate efficient and on-demand codes and push
them to the edge devices. We leave this as future work.
Fault Tolerance. Snatch might fail due to various issues.
For example, inconsistency might occur when the controller
tries to update other components (see § 4.3). Other examples
include failing to update AES keys at edge servers, or packet
drops, etc. All these issues will result in the same outcome:
the aggregated results become inaccurate. Fortunately, we
can detect such failures by running the same analytics on
data that is collected from the web servers and arrives at a
later time. Application developers should report the result
difference to the Snatch controller, which would then check
and update the other components through RPCs. We leave
the real-time detection and correction for future work.
In-Network Streaming Analytics Trade-offs. In the eval-
uation, we consider that either INSA is enabled or disabled.
In practice, and for most real-world scenarios, the speedup
is in between because of the complexity of queries. When
more computation is offloaded to the network, the speedup is
higher given the negligible time cost for the processing at the
switches. Still, more computation also incurs more switch
resources, i.e., fewer applications can utilize the switches’
support. Thus, there exists a trade-off for the ISPs: support
more applicationswith a smaller speedup for each, or support
fewer applications with a larger speedup for each. Indepen-
dently, Snatch provides a considerable speedup compared to
the state-of-the-art even when INSA is disabled.

7 Related Work
Streaming Analytics. In addition to streaming analytics
systems discussed in § 2, JetStream [84] and AWStream [103]
explore thewide-area streaming analytics whose data sources
are widely distributed and propose to reduce the data rate
to cope with the limited WAN bandwidth. In addition, Irid-
ium [83] optimizes the data placement before the arrivals
of queries. Sana [67] applies WAN-aware multi-query opti-
mization. The wide-area streaming analytics assumes that
the data is heading directly to the analytics server after it
is generated. This is however different from our concerned
scenarios where the data accompanies the user requests and
thus makes a detour. Snatch removes this detour and enables
in-network analytics via semantic cookies.

In-NetworkComputation.With the advent of programmable
networking hardware and programming languages [35, 36,
88], researchers have proposed to leverage in-network com-
putation to handle network management [73], caching [66],
load balancers [78], deep neural network training [72, 87],
etc. Ports et al. [82] summarizes a general guide of what
and when to offload the computation to the network. While
most work targets scenarios within data centers, Jagen tar-
gets ISP-centric defense [77]. Snatch aims to speed up online
streaming analytics by leveraging the in-network computa-
tion and in cooperation with both the ISPs and the cloud.
Anonymity Perseverance. The anonymity perseverance
research spans across different fields including social net-
works [58, 85], crowd-sourcing [64], recommendations [99],
etc. One approach is to add structural noise to its data to
report [54], and thus prevent the attackers from inspecting
what each user actually sends while ensuring that the ag-
gregated results are statistically correct. Another approach
is using secure multi-party computation protocols, where
a set of non-colluding servers privately perform computa-
tion over the user data [48]. However, MPC methods often
come with significant overhead [38, 75, 80]. In general, the
common challenges for all privacy-preserving analytics in-
clude a high cost and robustness towards malicious users
and servers. A third approach is to make the users send data
through an anonymizing network, e.g., mix-net [37, 71] or
Tor [62, 81], where the data and individual identities are de-
coupled. However, these methods incur a high cost [49, 94].
Our proposal instead prevents the user from sending indi-
vidually identifiable information by design.

8 Conclusion
This paper presented Snatch, a system that early forwards
and pre-processes the online streaming data at the network
edge to speed up the online streaming analytics and pre-
serve user anonymity. The key to enabling Snatch is the
introduction of semantic cookies, which carry encrypted
user information that is individually unidentifiable and di-
rectly available for analytics. We demonstrated that it is
viable to encode semantic cookies in the existing application
or transport protocols. Our evaluation of Snatch – based on
real-world measurements – showed that when processing
can be done early in-network, Snatch can speed up user
analytics by 10-30x. Given the growing trend of migrating
infrastructure towards the edge, such speedups along with
privacy enhancements are likely to soon become a reality.
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A Ethical Consideration
Our measurement in Section 5.1 involves sending requests
through proxies located at Internet users’ home networks.
However, these Internet users are selling their Internet ac-
cess, and the dVPN service is publicly available. Therefore,
this is no different than connecting to traditional VPNs. Fur-
ther, we did not send any malicious requests or had any
operations which might endanger the proxies. Thus, this
work does not have any ethical concerns.

B System Design
B.1 Application-Layer Semantic Cookie

Speedup. Here we investigate the speedup for application-
layer semantic cookie with QUIC 0-RTT connections. Be-
cause QUIC-0RTT send data at the very beginning, we have

𝑆𝑎𝑝𝑝−ℎ𝑡𝑡𝑝𝑠−0𝑟𝑡𝑡 =
𝑑𝐶𝐸 + 𝑑𝐸𝑊 + 𝑑𝑊𝐴 +𝑇𝑡𝑟𝑎𝑛𝑠 +𝑇𝐸 +𝑇𝑊 +𝑇𝐴

𝑑𝐶𝐸 + 𝑑𝐸𝐴 +𝑇 ′
𝐸
+𝑇 ′

𝐴

.

(4)
We further look into the speedup for application-layer

semantic cookies when TCP connections are adopted. For
an unencrypted HTTP request, on top of TCP, the speedup
𝑆𝑎𝑝𝑝 of the streaming analytics is

𝑆𝑎𝑝𝑝−ℎ𝑡𝑡𝑝−𝑡𝑐𝑝 =
3𝑑𝐶𝐸 + 3𝑑𝐸𝑊 + 𝑑𝑊𝐴 +𝑇𝑡𝑟𝑎𝑛𝑠 +𝑇𝐸 +𝑇𝑊 +𝑇𝐴

3𝑑𝐶𝐸 + 𝑑𝐸𝐴 +𝑇 ′
𝐸
+𝑇 ′

𝐴

,

(5)
where the coefficient 3 in 3𝑑𝐶𝐸 and 3𝑑𝐸𝑊 comes from the
1-RTT TCP handshake process during the connection estab-
lishment.
For HTTPS requests, TCP + TLS 1.2 handshakes need at

least 3 RTTs to set up. Thus, the speedup is

𝑆𝑎𝑝𝑝−ℎ𝑡𝑡𝑝𝑠−𝑡𝑐𝑝 =
7𝑑𝐶𝐸 + 7𝑑𝐸𝑊 + 𝑑𝑊𝐴 +𝑇𝑡𝑟𝑎𝑛𝑠 +𝑇𝐸 +𝑇𝑊 +𝑇𝐴

7𝑑𝐶𝐸 + 𝑑𝐸𝐴 +𝑇 ′
𝐸
+𝑇 ′

𝐴

.

(6)
For example, 3 RTTs needed to establish an HTTPS connec-
tion between a client and an edge servers implies 7 one-way
delays, i.e., 7 𝑑𝐶𝐸 .

B.2 Transport-Layer Semantic Cookie
Transport-layer cookies are semantic cookies that are en-
coded in the transport-layer protocol. As identified in a pre-
vious study [33], there are three ways to encode cookies in
the transport layer without requiring any modifications on
the users’ machines: (1) encode the cookie into the least sig-
nificant bits of IPv6 addresses with a maximum of 64 bits, (2)
encode the cookie into the timestamp option of TCP with
a maximum of 32 bits, and (3) encode the cookie into the
conneciton ID of QUIC with a maximum of 160 bits.
IPv6 – The use of IPv6 addresses requires the assumption
that the MAC address is associated with the least signifi-
cant bits of the IPv6 address, and thus is not appropriate in
our case. We consider the other two options: via the TCP
timestamp and via the QUIC connection id.

Client

Initial (SrcConnID, DstConnID), TLS Hello

Initial (DstConnID*, SrcConnID),  

TLS Hello, CERT, FIN

Data (DstConnID*)

Server

ACK (SrcConnID), 200

....

3x delay

(a) QUIC 1-RTT.

Client

Initial (SrcConnID, DstConnID*), TLS Hello, Data

Initial (DstConnID**, SrcConnID),  

TLS Hello, CERT, FIN

Data (DstConnID**)

Server

ACK (SrcConnID), 200

....

1x delay

(b) QUIC 0-RTT.

Figure 7. QUIC handshake procedure and the time cost for
the server to receive data.

TCP – When the TCP timestamp option TSP is set and used
in one direction (e.g., from server to client), all the packets
in the reverse direction (from client to server) will attach the
same TSP value automatically. However, there are several
issues with this approach. First, the TSP value cannot be
reused in the next TCP connection. Second, if the client wants
to send the cookie in the next TCP connection proactively,
it requires non-negligible modification on the client’s side
– access to the root privilege and modifying the outgoing
packets accordingly. This breaks our vision of minimal to no
client modification.
QUIC – QUIC is a transport-layer protocol implemented in
the userspace on top of UDP. The QUIC connection establish-
ment procedure is illustrated in Figure 7 (left for the 1-RTT
handshake, right for the 0-RTT handshake). For QUIC 1-RTT,
a long QUIC header will be used during the handshake phase.
The client will send two randomly generated connection IDs
SrcConnID and DstConnID. Then the server will copy Src-
ConnID but set a new DstConnID* and return them to the
client. In the following communication, a short QUIC header
will be used where the client sends packets with DstConnID*
and the server sends packets with SrcConnID. Further, the
server can reset the connection ID with version negotiation
packets at any time. For QUIC 0-RTT, it is only applicable
when there was a previous connection between the same
end-points. The client will send the same DstConnID* as in
the last connection.
We find that the connection-id field, in particular Dst-

ConnID*, allows the encoding of transport-layer cookies. In
addition, it takes minimal effort to modify the connection-id
field because QUIC is implemented in the userspace. Thus, it
fits our vision of minimal (QUIC-1RTT) to no (QUIC-0RTT)
client modification.

B.3 Custom Aggregation Packet
We create a custom packet header on top of UDP to carry
early-forwarded cookies or pre-processed data (either by
LarkSwitch or edge server) for AggSwitch. Figure 8 shows
that the custom packet header includes three parts: 1) a 16-
bit special string SID, a custom identifier for distinguishing
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UDP
Custom Identifier

(16) Summary (16)

Application ID (8)
# Per-Packet

Fwd (4)
# Periodical

Fwd (4)

Cookie 1
Name (Var)

Cookie 1 Value
(Var)

Cookie 2
Name (Var)

Cookie 2 Value
(Var)

Data 1 Name
(Var) Data 1 Value (Var)

......
Data Stack

......

AES-128
Encrypted

Figure 8. Custom aggregation packet design.

from regular UDP packets; 2) a 16-bit summary that con-
tains application-ID and the number of sub-cookies/data for
either per-packet forwarding or periodical forwarding, re-
spectively; 3) data-stack that contains 𝑁 sub-cookies and
data. All data after the application ID are encrypted using
the AES-128 algorithm.
The extracted cookies and data encoded in the custom

aggregation packet from LarkSwitch and edge server to Ag-
gSwitch may be lost because UDP is used. We argue that
the benefits of using UDP overtake the loss. The loss here
is that less than 0.01%, i.e., the packet drop rate in today’s
WAN [17, 19, 24], of the cookies or data will be lost. In com-
parison, there are two major benefits. First, for short-term
analysis, which is the target for Snatch, the value of the data
is much higher when the data is available sooner. Dropping
one data point out of tens or hundreds of thousands will
not make a large difference to the distribution of the data,
and thus to the results. At the same time, the data is not lost
forever. For a long-term analysis, full and accurate results
can be obtained by syncing up the records at the web servers
or related databases. Second, implementing a retransmission
mechanism on programmable switches is non-trivial and
consumes scarce DRAM resources to keep the status. In-
stead, the resources can be used to offload more computation
and thus provide better speedup or support more applica-
tions. In conclusion, it is the best choice for Snatch to adopt
UDP for the custom aggregation packet.

B.4 Repeated Counting
One potential issue with periodical forwarding is that one
user might send multiple requests to the web server within
one period and thus cause repeated counting. While repeated
counting is needed in some scenarios, it can be avoided by
implementing a hash table or a Bloom filter, which is widely
used in projects involving programmable switches [66, 73,
78].

C Scope of Snatch Applications
Here, we take Spark Streaming as a comparison to illustrate
what can be done for the in-network streaming analytics
(INSA). Indeed, INSA is not as flexible as Spark Streaming
because of the constraint on the programming model and
computational and storage resources. Our goal for INSA is to
assist with the streaming analytics and potentially complete

Table 1. Supported operations and related application with
in-network streaming analytics. N/A for not applicable, N
for not supported, Y for supported, and Y∗ for supported
with limitation.

DStream Method INSA Category

cache() N/A DStream-specific
checkpoint(interval) N/A DStream-specific
cogroup(other[, numPartitions]) Y∗ partition, table-join
combineByKey(createCombiner,
mergeValue, . . . )

Y∗ foreach

context() N/A DStream-specific
count() Y reduce
countByValue() Y reduce
countByValueAndWin-
dow(windowDuration, . . . [, . . . ])

Y window, reduce

countByWindow(windowDuration, slide-
Duration)

Y window, reduce

filter(func) Y∗ foreach
flatMap(func[, preservesPartitioning]) Y∗ partition, foreach
flatMapValues(func) Y∗ foreach,
foreachRDD(func) Y∗ foreach
fullOuterJoin(other[, numPartitions]) Y∗ partition, table-join
glom() N/A DStream-specific
groupByKey([numPartitions]) Y partition, reduce
groupByKeyAndWin-
dow(windowDuration, . . . [, . . . ])

Y partition, window,
reduce

join(other[, numPartitions]) Y∗ partition, table-join
leftOuterJoin(other[, numPartitions]) Y∗ partition, table-join
map(func[, preservesPartitioning]) Y∗ partition, foreach
mapPartitions(func[, preservesPartition-
ing])

Y∗ partition, foreach

mapPartitionsWithIndex(func[, . . . ]) Y∗ partition, foreach
mapValues(func) Y∗ foreach
partitionBy(numPartitions[, partition-
Func])

N partition

persist(storageLevel) N/A DStream-specific
pprint([num]) N/A DStream-specific
reduce(func) Y∗ reduce
reduceByKey(func[, numPartitions]) Y∗ partition, reduce
reduceByKeyAndWindow(func, invFunc,
. . . [, . . . ])

Y∗ partition, window,
reduce

reduceByWindow(reduceFunc, invRe-
duceFunc, . . . )

Y∗ window, reduce

repartition(numPartitions) N partition
rightOuterJoin(other[, numPartitions]) Y∗ partition, table-join
saveAsTextFiles(prefix[, suffix]) N/A DStream-specific
slice(begin, end) Y window
transform(func) Y∗ foreach
transformWith(func, other[, keepSerial-
izer])

Y∗ foreach

union(other) Y∗ table-join
updateStateByKey(updateFunc[, . . . ]) Y∗ foreach
window(windowDuration[, slideDura-
tion])

Y window
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relatively simple tasks alone, but not to entirely replace Spark
Streaming.
While Snatch handles multiple tasks, here we focus on

the “depth” of each task and hence assume to support only
one task. In the discussion of the feasibility to achieve a
function, we consider that modifications can be made at
either the compiling phase, i.e., modifying the P4 code, or
Snatch application submission phase, i.e., the application
developer encodes the cookies and sets up the corresponding
receiver at the analytics server.
In addition, because today’s P4 model only supports par-

tial integer operation (see “Statistics Calculation” in Sec-
tion 4.1), we limit the following discussion in the scope of
integer operations. Yet, it is noteworthy that it is possible
to perform counting operations for strings: The application
developer can either encode the string to integer or use a
dictionary when the value possibility is limited. In this way,
counting can be done by matching the hash value or the
keyword. Still, other string functions such as concatenate
are not supported. It is also noteworthy that the latest study
has demonstrated that it is viable to perform float operation
with programmable switches by carefully rescheduling the
computation procedure [101]. An alternative is to leverage
float number quantization [61].
A Spark Streaming program often executes a series of

DStream methods [22], e.g., map, reduce, etc, to a DStream
object, i.e., the data within an interval. For the sake of con-
venience of discussion, we classify the DStream methods
into several categories: DStream-specific, partition, foreach,
window, table-join, and reduce. A method may belong to
multiple categories at the same time. For instance, reduce-
ByKeyAndWindow belongs to three categories: partition, win-
dow, and reduce. Table 1 lists all the DStream methods,
whether they can be done with INSA, and their categories.
Indeed, the complexity of some DStream methods heavily
depend on the input functions, and whether INSA supports
such a DStream method depends on the input function, i.e.,
when the operands in the input function are supported by
programmable switches, the DStream method is supported
by P4, and vice versa. Moreover, the total number of DStream
methods that are operated on a DStream object is restricted
by the limited number of pipeline stages of the programmable
switches [29]. Below, we discuss the methods in detail by
category.
DStream-specific methods include cache, checkpoint,

context, glom, persist, pprint, and saveAsText-Files.
They are not applicable to INSA because they are specific for
assisting the Spark programmingmodel but not computation-
related operations. Related discussion involves fault toler-
ance, where more details are available in Appendix B.3.
Direct partition methods include partitionBy and re-

partition, whereas indirect partition methods, i.e., where
partition number is an optional input parameter, include

methods in foreach, window, table join, and reduce cate-
gories. To investigate these methods, we first need to un-
derstand more about the underlying data model of Spark
Streaming. Resilient Distributed Dataset (RDD) includes all
the streaming data within a batch interval from all partitions,
which refers to the data stored at one Spark node and is the
basic operable unit in Spark. In Snatch, each edge node, i.e.,
ISP switch or edge server, can be regarded as a partition
where data is stored. But unlike Spark, the data in each par-
tition depends on client location and activities, and cannot
be moved or reassigned in Snatch. Therefore, partitionBy
and repartition are not supported by INSA. However, op-
erations on the partition are possible: AggSwitch can set
up a match table for each edge node and perform different
actions accordingly. The modifications should be made at
the compiling phase.
Foreach methods include combineByKey, filter, fore-

achRDD, map, flatMap, flatMapValues, mapPartitions, map-
Values, mapPartitionsWithIndex, transform, transform-
With, and updateStateByKey. The main purpose of these
methods is to allow operations at a finer granularity, i.e.,
at per data point level. In INSA, the programmable switch
is processing at per-packet granularity. Therefore, foreach
methods are naturally supported by INSA while subjected to
input function, i.e., as long as the input function is supported
by INSA, the foreach methods are supported by INSA.

Direct windowmethods include slice and windowwhereas
indirect window methods, i.e., where window settings are
optional input parameters, include methods in reduce cate-
gories. Method window provides flexibility by allowing the
user to extract a new windowed DStream based on the ex-
isting DStream but with a different interval. Method slice is
similar but only needs aggregated data within one interval.
The periodical forwarding in Snatch is similar to window
methods as it returns data on windowed packets. In the
same spirit, Snatch is able to realize both direct and indirect
window methods by achieving another periodical forward-
ing with a second time counter registers. The modifications
should be made at the compiling phase.
Reduce methods include count, countByValue, count-

ByValueAndWindow, countByWindow, groupByKey, group-
ByKeyAndWindow, reduce, reduceByKey, reduceByKeyAnd-
Window, and reduceByWindow. Among them, count and group-
ByKey and their associated methods can be regarded as spe-
cial cases for reduce and associated methods, and they have
been implemented in our Snatch prototype. Reduce and as-
sociated methods fit in the match and action programming
model, and thus should be supported by INSA as long as
the input function is supported by INSA. The modifications
should be made at the compiling phase.

Finally, table-join methods include cogroup, join, full-
OuterJoin, leftOuterJoin, rightOuterJoin, and union.
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These methods correspond to SQL join clauses which com-
bine the columns from one ormore tables. Snatch’s cookie/data-
stack has very similar data structure from tables, and techni-
cally it is possible to perform the join method at AggSwitch
by storing all the cookie/data from periodical aggregation
packets (representing DStreams) in the switch and then con-
struct another custom packet as a result of join and deliver it
to the analytics server. For instance, we take the fullOuter-
Join as an example. Stream 1 has cookies A, B, C whereas
Stream 2 has cookies A, D, E. AggSwitch reserves a register
space for a table with columns A, B, C, D, E. When collect-
ing periodical aggregation packets from LarkSwitches, what
AggSwitch needs to do is simply fill in the registers accord-
ing to the value in cookie A. Thus, when all the periodical
aggregation packets are received, AggSwitch has a full table
of the result of fullOuterJoin on Stream 1 and 2. Other
table-join operations can be done in a similar spirit. Here, the
modifications should be made at both the compiling phase
and the application submission phase.
Note that table-join methods might be beneficial when

applying to two separate applications per the developers’
agreement, which is a topic we plan to explore in future
work. Otherwise, it is a bad practice since it costs too much
of the switch storage resources and a better design of the
cookie/data-stack will remove the necessity for the join op-
eration.

D More Measurement Results
D.1 Methodology and Delay Derivation
Snatch involves several components: the ISP switch, edge
server, web server, and analytics server. To study the perfor-
mance of these subjects in practice, we set up experiments
as follows. First, we host two HTTPS websites with separate
domains using AWS EC2 instances [7], which represent the
web servers in Figure 1(b). Then, we purchase CDN services
from Cloudflare [12] and AWS Cloud Front [14], respectively
for each domain. This allows us to set up the edge servers
on a global scale.
Next, we adopt the decentralized VPNs (dVPNs) as our

means of measurement. We iteratively connect to all the
available residential dVPN nodes. For each connection, we
performmeasurements as follows. First, we perform tracer-
oute to our hosted domains, which retrieves the hops along
the path to the destination with RTTs to each hop. A dVPN
connection creates a VPN tunnel between the client and the
proxy, which all the packets traverse through. Thus, the first
hop will be the dVPN proxy itself, meaning that the delay to
the first hop is the delay between our machine and the dVPN
proxy. Because we want to measure the delays between the
destinations and the dVPN proxy, we accordingly subtract
the delay of the first hop for all the other measured delays.
We then investigate the next hops in increasing order.

When the hop’s IP is not private (judged by the prefix of IP

address) for the first time, we consider it to be the first hop
reaching the ISP, and record the associated delays. When
we do not find the ISP in the first 10 hops, either because
all are private IPs or the hop is not available to traceroute
(“*” is returned), we consider the host not to be residential,
i.e.,miscategorized by Mysterium, and discard the associated
results.

Next, we investigate the delays between the dVPN proxy
and the edge servers and cloud by performing ping to cor-
responding destinations. For edge servers, we perform ping
to our domains. Because of the CDN services, the packets
will be directed to Cloudflare CDN servers or Amazon edge
servers instead of our EC2 instance in the cloud. In addi-
tion, we look up for, and ping, off-net servers that are in the
same AS as the proxy, using the recently published database
[60]. We record all the associated delays. For clouds, we per-
form ping to the IPs of our EC2 instances, as well as public
servers in every AWS cloud region. We also measure the
AWS inter-cloud delays following cloudping [13].

Further, we perform HTTPS GET and POST requests to
our domains and the IP addresses of our EC2 instances. For
POST requests to our domains, the CDN service will forward
them to web servers by default. Along with the delays we
measured using ping, we can infer the time cost of handling
GET and POST requests by the edge and web servers, as well
as the delay from the edge server to the cloud.

For all the per-site operations mentioned above, we iterate
10 times and take the median for further analysis to avoid
outliers resulting from unstable network conditions.

D.2 Best-Practice Assumption
When the web server and the analytics server are not in the
same data center, the delays from the client and from the
edge to them (𝑑𝐶𝐴, 𝑑𝐸𝑊 , and 𝑑𝐸𝐴) change as 𝑑𝑊𝐴 changes.
For the sake of simplicity, we assume the best setup practice:
edge servers are set up globally for caching static content;
the web servers are set up in all data centers for serving
dynamic content; and one centralized analytics server is
located at one data center. In this way, the client will always
choose the closest edge and web server. In particular, the
delay from the edge to the web server (𝑑𝐸𝑊 ) is approximated
by taking the difference between the delays from the client
to the closest cloud and from the client to the edge server,
whereas the delay from the edge to the analytics server (𝑑𝐸𝐴)
is represented by the “Edge-Cloud” curve in Figure 5(a).
In Section 5.1, we consider the delays from the client to

edge (𝑑𝐶𝐸 ) and from the edge to the web server (𝑑𝐸𝑊 ) to be
constant as the median values. In Section 5.2 where the 𝑁 th
percentile of delay is adopted, we take the 𝑁 th percentile of
𝑑𝐶𝐸 and𝑑𝐸𝑊 as well. Importantly, we further assume that the
delay from the client and from the edge to the analytics server
(𝑑𝐶𝐴 and 𝑑𝐸𝐴) grows proportionally as the delay from the web
server to the analytics server (𝑑𝑊𝐴) grows, within their own
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Figure 9. Measurement results.

range respectively. For instance, 𝑑𝐸𝐴 grows from 0.2 ms to
249.5 ms when 𝑑𝑊𝐴 grows from 0.8 ms to 206 ms.

D.3 Measurement Results
Figure 9(a) shows the matrix of intra- and inter-data cen-
ter delays of the AWS cloud. The delays range from 0.8 ms
(within the same data center) to 206 ms (from ap-southeast-2
region to the af-south-1 region). The inter-data center me-
dian delay is 75.5 ms. The inter-data center delays represent
the communication cost from the web server to the ana-
lytics server, which may reside in different data centers as
explained in Section 2.

Figure 9(b) shows the delays from client to different edge
servers. The results show that the off-net servers are much
closer to the clients compared to regular CDN services, though
they cover only 57.9% clients in our measurement. Moreover,
Amazon CloudFront outperforms Cloudflare CDN in our
measurement. In our analysis in Section 5, we take the min-
imal delay among all the edge servers for each client, i.e.,
if the off-net servers are present and outperform Amazon
CloudFront and Cloudflare CDN, then the delay is for the
off-net server; otherwise, the delay is the minimum between
Amazon CloudFront and Cloudflare CDN.
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