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ABSTRACT
As the solitary inter-domain protocol, BGP plays an important role
in today’s Internet. Its failures threaten network stability and will
usually result in large-scale packet losses. Thus, the non-stop rout-
ing (NSR) capability that protects inter-domain connectivity from
being disrupted by various failures, is critical to any Autonomous
System (AS) operator. Replicating the BGP and underlying TCP
connection status is key to realizing NSR. But existing NSR solu-
tions, which heavily rely on OS kernel modifications, have become
impractical due to providers’ adoption of virtualized network gate-
ways for better scalability and manageability.

In this paper, we tackle this problem by proposing TENSOR,
which incorporates a novel kernel-modification-free replication
design and lightweight architecture. More concretely, the kernel-
modification-free replication design mitigates the reliance on OS
kernel modification and hence allows the virtualization of the
network gateway. Meanwhile, lightweight virtualization provides
strong performance guarantees and improves system reliability.
Moreover, TENSOR provides a solution to the split-brain problem
that affects NSR solutions. Through extensive experiments, we show
that TENSOR realizes NSR while bearing little overhead compared
to open-source BGP implementations. Further, our two-year opera-
tional experience on a fleet of 400 servers controlling over 31,000
BGP peering connections demonstrates that TENSOR reduces the
development, deployment, and maintenance costs significantly –
at least by factors of 20, 5, and 10, respectively, while retaining the
same SLA with the NSR-enabled routers.
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• Networks→ Transport protocols; • Computer systems or-
ganization → Dependable and fault-tolerant systems and
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1 INTRODUCTION
The Border Gateway Protocol (BGP) [40] is the solitary inter-domain
protocol that stitches tens of thousands of autonomous systems
(ASes) up. Thus, managing BGP connections is crucial for AS opera-
tors. It is also hard: the number of AS peerings is growing rapidly be-
cause of the growing number of ASes [10] and the trend of Internet
flattening [15]. Manually configuring thousands of border routers is
not practical for any AS operator, nor does it meet the flexibility and
availability requirements of modern networks [28]. Instead, many
major AS operators have virtualized their network gateway, i.e., in-
troducing a software-defined control plane to scale up and centralize
the management of the BGP routing policies [13, 21, 22, 44, 47, 54].

Nevertheless, existing BGP virtualizations leave a critical prob-
lem of failure handling unresolved – the non-stop routing (NSR).
NSR aims to ensure the application-level BGP status and functional-
ity on both sides of the peering ASes are not affected by single-point
failures at the application, router, or network level. For example,
TCP connection failures, software/hardware failures of the border
routers, etc.

NSR is of critical importance because a border router will con-
sider the link to be broken when any of the low-level failures occur,
and withdraw all its BGP routes to the peering AS. That means
no packets will be routed through the link before the BGP session
re-establishes and all the BGP routes recover. The impact is large
during this period of time. For example, the average throughput
of Tencent Cloud and its peering ASes is 37 Gbps per link. As it
may require several minutes for the BGP to recover even if peers
reconnect right away [13, 26], a single point of failure may affect
over 1 TB of live traffic. The estimated cost due to BGP failure is at
the scale of multi-million dollars each year at Tencent Cloud.

Unfortunately, BGP NSR is not compatible with BGP virtualiza-
tion because BGP is based on the connection-oriented TCP protocol.
More concretely, to replicate incoming/outgoing TCP packets so
that the TCP connection can be recovered at any time, most of the
existing NSR solutions heavily rely on OS kernel modifications. The
dependency on kernel modifications is in conflict with lightweight
virtualization techniques such as containerization. Kernel-level so-
lutions introduce high development, deployment, and maintenance
costs for the AS operators. An alternative is to adopt replication
of virtual machines (VMs) [43]. However, replicating the VMs to
support NSR is too costly and not feasible in practice.

To tackle the above problem, we present TENSOR (Tencent
Cloud’s Non-Stop Routing). At the core of TENSOR’s approach
to BGP NSR is a novel design for primary-backup BGP replica-
tion in virtualized containers that builds atop a kernel-free packet
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replication mechanism. Packet replication is realized using only
Linux built-in system hooks in the protocols stack and does not
require kernel modifications; it only requires minimal modifica-
tions to the existing BGP codebase. Meanwhile, TENSOR improves
system reliability by reducing the number of system components
compared to existing NSR-enabled routers and by decoupling their
inter-dependency.

The downside of kernel-free packet replication is that it intro-
duces a delay to TCP acknowledgment packets, which negatively af-
fects TCP and application performance. To minimize its impact, we
leverage the parallelism from lightweight virtualization to distribute
the load and hence decrease the per-process overhead of replicating
packets without altering BGP semantics. The lightweight virtual-
ization also simplifies the BGP and NSR management. Moreover,
we demonstrate that TENSOR provides a natural way to tackle the
split-brain problem, which is a notorious source of problems for
previous primary-backup NSR solutions. This is because the light-
weight virtualization allows us to partition the BGP process into a
fine-grained, isolated participants, which offer greater robustness
to tolerate single-point failures.

We conduct extensive experiments in a production-level testbed
to demonstrate the benefits of TENSOR (§ 3). Our results show
that while enabling BGP NSR and BGP virtualization concurrently,
the kernel-modification-free (“kernel-free” for short below) packet
replication only introduces an overhead of less than one second
to receive tens of thousands of routing updates from a peering
AS, compared to open-source BGP implementations which do not
support NSR. And the lightweight virtualization design of TENSOR
keeps the overhead the same regardless of receiving from one or up
to hundreds of peering ASes. Meanwhile, TENSOR has barely any
performance degradation when generating and sending out routing
updates to its peers. While evaluating the failure recovery, we find
that the NSR of TENSOR costs less than 10 seconds to migrate the
BGP process with zero link downtime for any failure scenarios. The
migration time is reduced by a factor of 2 to 25 compared to the
link downtime of open-source BGP implementations.

When compared to the NSR-enabled routers, TENSOR achieves
the same service-level agreements (SLA) regarding the failure recov-
ery time and link downtime. Meanwhile, TENSOR outperforms the
NSR-enabled routers in the development, deployment, and mainte-
nance costs. From our operational experiences, TENSOR shortens
the development duration by a factor of 4 and the labor cost by a
factor of 20. Further, TENSOR also reduces the deployment costs
by a factor of 5 and the maintenance costs by a factor of 10. TEN-
SOR has been deployed at Tencent Cloud and achieved zero link
downtime for over two years.

This work does not raise any ethical issues.

2 BACKGROUND
2.1 BGP and Non-Stop Routing
Today’s Internet resides at the interconnection of tens of thousands
of ASes. BGP is the converged solution to stitch the ASes together.
BGP establishes sessions between gateway routers, i.e., routers at
the border of the ASes, to communicate with other gateway routers
of peering ASes to exchange necessary routing information and

build the routing tables for destinations beyond the AS that they
belong to.

Nevertheless, BGP sessions are subject to being interrupted by
failures. There are mainly three points of failures that may lead
to the breaking of the BGP sessions: application, router, and the
network. Application failuresmay occur when a program bug is trig-
gered [18, 58] or when erroneous configurations are imported [23].
To recover the application failure, it may take tens of seconds to
restart the BGP application [53]. Next, router failures may occur
due to OS-level software bugs, or hardware failures such as RAM or
disk failures. The time cost to recover from router failure is unde-
termined: it may take a few minutes to reboot the router, or it may
take days for multiple on-site and vendor engineers to fix the issue.
Lastly, network failures are the most common type of failures. They
may occur when the physical link is damaged or broken, or when
the connection between transceivers and cables is loose or inactive,
etc. Some failures are permanent and require on-site engineers to
repair or replace the physical devices while others are temporary,
e.g., a loose contact of the cable may result in network jitters that
last for tens of seconds but will recover on its own.

There aremultiple methods to detect a BGP failure. To beginwith,
each pair of gateway routers running BGP maintains a TCP con-
nection and exchanges routing information when network changes
occur and keep-alive messages to maintain the connectivity to
the peering router, and hence the peering AS. When keep-alive
messages time out, when the TCP connection breaks, or when the
accompanying link detection protocols such as Bidirectional For-
warding Detection (BFD) [24] report a link failure, gateway routers
consider the connectivity to their peering ASes to be failed, and
then withdraw all the routes to the peering AS.

Before the BGP session re-converges, all the packets that are
supposed to go through the link will be re-routed or, in the worst
case, dropped. This may mean a huge amount of packet drops,
especially when the link is busy. For instance, a one-minute one-
link downtime will impact 277 GBs of live traffic in Tencent Cloud
(see § 4.4). This results in a cost of several million dollars each year
for SLA violations.

Therefore, it is essential to keep the gateway router available
and avoid the disruption of BGP sessions between peering gateway
routers, either proactively, e.g., when a software upgrade is needed
and routers need to be rebooted, or passively, e.g., single-point
failure of gateway routers [53]. The first scenario is easy to han-
dle because of its predictable nature. BGP includes a mechanism
named graceful restart [42] that proactively notifies the peer
to keep the routing policies unchanged during the BGP connection
downtime. This is also referred to as non-stop forwarding (NSF).
Nevertheless, the latter scenario is much harder to handle because it
is caused by unpredictable failures – the BGP process cannot notify
its peer before the failure happens. The ability to keep the BGP
session from being disrupted by unpredictable failures is referred
to as non-stop routing (NSR). In this paper, we focus on the BGP
NSR.

2.2 NSR Challenges
Previous studies [29, 51, 56] have found that replication is key
to realizing BGP non-stop routing. Figure 1 presents a high-level
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Figure 1: Overview of the generalization of existing NSR
solutions.

overview of common NSR solutions. Typically, when the primary
router exchanges BGP messages with its peers, it needs to back up
both the application-layer state, i.e., BGP session information, and
the transport-layer state, i.e., the TCP connection state. The primary
router sends both application-layer and transport-layer states to
the backup router through a (highly available) backup module. The
common practice is to implement the backup module as a kernel
module. The backup router has a symmetric architecture as the
primary router, where its backup module receives the data and
feeds it into the TCP/IP stack and BGP process for replicating the
state. If the primary router experiences a failure, the backup router
takes over the BGP session after a failure detector triggers. Given
that the state of the TCP/IP stack and BGP session is replicated, the
process is transparent to the remote BGP peer.

Replicating data adds overheads. Early works proposed to modify
the TCP protocol [48–50], which however involves lengthy stan-
dardization processes and is not practical. In contrast, solutions that
ensure the transparency to the peering routers are more favored.

A line of work [16, 17, 29, 51, 56] is to seamlessly migrate the TCP
connection by introducing wrappers at the TCP/IP stack, which
corresponds to the backup module in Figure 1. The wrappers repli-
cate every egress packet before sending it out and every ingress
packet before passing it to the application layer. However, the (syn-
chronous) replication latency results in a delayed acknowledgment,
which negatively affects the performance. Existing work realizes
the wrappers as a loadable OS kernel module. Wrappers at the
TCP/IP stack are also favored by hardware vendors, e.g., Comware
router [1].

Another line of work supports non-stop routing through vir-
tual machine replication [19, 20, 53]. While these solutions provide
better scalability than packet replication, they are less performant
because of the large amount of state to be replicated and the asso-
ciated overheads.

Moreover, existing solutions have unresolved issues and encom-
pass complicated designs that lower the system reliability. Below,
we summarize the challenges lying ahead of realizing a practical
and effective BGP non-stop routing system in today’s network
environments.
System reliability. Existing BGP NSR solutions often require mod-
ification of the OS kernel and encompass designs that couple TCP/IP
stack, BGP process, device management, backup modules, and other

components. The numerous components inevitably result in a lower
level of system reliability.
Virtualization support. Following the heavy dependence on ker-
nel modifications or insertions of kernel modules, existing BGP
NSR solutions are left behind in today’s network evolution — a con-
trast with a trend towards network virtualization [21]. For instance,
Tencent has virtualized the cloud gateway with the disaggregated
software-defined router (DSR), which decouples the control plane
and data plane [47]. Meta and Google, among other cloud providers,
have also taken similar approaches [13, 21, 44, 54]. However, vir-
tualization is hard to achieve for most of the BGP NSR solutions
because kernel modifications are involved.
Performance. BGP NSR requires replicating a large amount of
states. But the availability guarantees of existing solutions are often
at the cost of performance. For a major cloud provider such as
Tencent, the number of peering ASes is over 6,000 and the total BGP
table size is over a million. Performance – in particular throughput
– is hence critical to ensure the functioning of the cloud gateway.
Split-brain problem. Split-brain refers to an error state where
the primary and backup servers (routers in BGP NSR) mistakenly
consider that the other server is down and they both execute as the
primary server. This is often due to misconfigurations, erroneous
communication, or asynchronous communication between the two
routers. The split-brain issue results in an availability inconsistency.
In the BGP scenarios, it translates to disruption of BGP connections
and in turn, packet losses. The split-brain issue exists for any repli-
cated primary-backup system design, e.g., two routers in Figure 1;
replicated state machine approaches [35] address it via a consensus
protocol at the cost of a larger replication group (i.e., 2𝑓 + 1 for 𝑓
crash failures).

3 SYSTEM DESIGN
3.1 Kernel-Free Packet Replication
3.1.1 Design Overview. To better satisfy the virtualization require-
ments [44, 47, 54], we propose a new method for BGP NSR based
on a kernel-free1 packet replication mechanism while minimizing
the data to be replicated. Our method is transparent to the remote
endpoint. Figure 2 illustrates the overview of our proposal.

Conceptually, our proposal is straightforward. When a message
is received by the primary BGP process at the application layer, we
replicate the message to a highly-available distributed database —
Redis [9] is used in our case. The backup BGP process reads and
processes the replicated messages to stay up to date with the pri-
mary. Meanwhile, the primary also performs the regular processing
of BGP messages and tracks TCP connection state. However, since
the primary receives messages via the regular TCP/IP stack, this
entails normal packet processing, which generates TCP ACK pack-
ets; the design must deal with this aspect in a careful way to avoid
replication inconsistencies.

An inconsistency would occur if the primary crashes after the
TCP ACK packets are sent out but before BGP messages have been
correctly replicated. This is because the remote endpoint will clear
its TCP sending buffer once it receives the TCP ACK packets. Thus,
the backup router will not be able to observe the messages as they
1In the sense that it requires no kernel modifications.
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Figure 2: Overview of kernel-free packet replication. To avoid
kernel modifications, we leverage the existing hooks of the
Netfilter Linux kernel module.

are acknowledged by the primary but not properly replicated, and
it will cause a BGP recovery failure.

To avoid such failures, we propose to use a Linux built-in system
module called Netfilter to intercept the outgoing TCP ACK packets
and delay their transmission until the messages are known to have
been replicated. Hence, this effectively establishes a synchronous
replication channel. Synchronous replication ensures consistency
and correctness between the primary router and the database, and
by extension, between the primary and the backup router.

Importantly, our proposal avoids any modifications to the kernel.
The only changes are at the application level: the BGP process needs
to (𝑖) replicate the messages to the distributed database, and (𝑖𝑖)
delay the TCP ACK packets to ensure consistency. This kernel-free
design thus allows to easily virtualize the BGP NSR system.

3.1.2 Technical Details. Intercepting packets. To intercept the
TCP ACK packets, we rely on the Netfilter’s OUTPUT hook [2],
which is triggered by any locally created egress packet hitting the
network stack. We re-route the intercepted packets to an NFQUEUE
target delegating for tcp_queue, a thread of the primary BGP pro-
cess at the application layer.
User-space primary BGP. The common practice for BGP imple-
mentation spawns three threads: a main thread, an IO thread, and
a keepalive thread [5]. The main thread handles the high-level pro-
cessing of BGP, such as maintaining and updating the BGP routing
tables, generating routing information updates, etc. In particular,
the main thread may maintain multiple BGP routing tables using
the virtual routing and forwarding (VRF) technique [41], where
each VRF usually corresponds to a peering AS (we discuss more
complicated settings in § 3.2.4). The IO thread is responsible for re-
ceiving and sending messages for the main thread and the keepalive
thread, whereas the keepalive thread is responsible for processing
BGP keepalive messages. In fact, there are 5 types of BGP messages:
open, update, notification, keepalive, and route-refresh [40]. All the
types of BGP messages except keepalive are executed in the main
thread. Keepalive is implemented as a separate thread from the
main thread to ensure that the keepalive messages are not blocked

by other messages or routing table operations, which may result in
connection failures.

Besides the existing three threads, TENSOR introduces another
thread named tcp_queue. This thread accepts the TCPACK packets
re-routed by Netfilter and holds them in a FIFO queue until it
confirms that the messages are properly replicated.
Matching ACK numbers. tcp_queue releases any held-up TCP
ACK packet, i.e., allowing it to be put on egress, whenever the
correspondingmessage has been properly replicated in the database.
The corresponding message to a TCP ACK packet refers to the BGP
message that caused that TCP ACK packet.

The technical challenge is to establish a mapping between a TCP
ACK packet and the BGP message that generated it. Since the main
thread only receives BGP messages via the TCP byte stream from
the Linux socket interface, it has no visibility into the TCP header
information. We infer TCP-level information as follows. At the start
of a BGP connection, i.e., when the socket connects successfully,
we use the TCP_REPAIR option to obtain the initial SEQ and ACK
numbers along with other necessary information including the
values of protocol options using TCP_INFO option. When receiving
a message, the main thread infers the current ACK number by
adding the initial SEQ number and the cumulative size of all the
previously received messages. When the main thread replicates the
received BGP message, it also writes its inferred ACK number to
the database, which allows tcp_queue to match the corresponding
ACK packets.
Outgoing BGP messages. Similar to the case of incoming BGP
messages, we replicate all the outgoing BGP messages generated by
both the main and keepalive threads and the corresponding TCP
status in the database before sending them. This step is needed to
ensure that the backup router can recover the TCP sender buffer
once it takes over the connection.

Delayed sending is simpler than delayed acknowledgment: the
main and keepalive threads execute a database write operation
before handing over any message to the IO thread. Unlike with the
tcp_queue thread, no database read operations are needed.

Another difference between incoming and outgoing message
replication is that while in the former case only the main thread
writes messages to the database, in the latter case both the main
and keepalive threads write to the database. Race conditions may
occur when both threads write to the database at the same time.
One solution is to merge the keepalive thread to the main thread.
However, this might lead to a situation where a keepalive timeout
could happen and the BGP is disconnected because the keepalive
is hindered by too many other types of messages. To avoid such
BGP connection failures and to follow the common practice of BGP
multi-threading, we choose to implement a per-message lock to
support multi-threading read and write from/to the database. Note
that the ordering of the database operations is only required for
messages within a BGP connection but not required for messages
across different BGP connections.
Storage overhead. An additional problem arises in that the volume
of replicated messages for each BGP connection will constantly
grow. Since BGP connections are usually long-lived, the storage
overhead will become a burden for TENSOR. One observation is
that when the BGP process has received a complete BGP message
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Figure 3: Overview of TENSOR’s virtualized architecture.

and has updated the BGP routing table based on it, the processed
messages are no longer needed. Following this observation, we
remove the replicated messages that have been applied to routing
tables from the database to avoid the steadily increasing storage
burden. Hence, the total size of messages replicated in the database
will not be more than what is needed by one complete BGPmessage.
In general, it is less than 64KB per BGP connection.
BGP routing tables. Since BGP messages are now discarded from
the database, in order to restore the BGP routing tables at the backup
router, the main thread backs up in the database the BGP routing
tables whenever they are updated. This step also has the advantage
that the backup BGP router does not need to replay all previous
BGP messages to reconstruct the state of the BGP routing tables.

3.2 A Lightweight Virtualized Approach
One drawback of the packet replication design is performance – the
TCP throughput is impacted because the delayed acknowledgment
inevitably increases the network latency. In Tencent Cloud, one
gateway router is expected to support over one thousand BGP
connections. Thus, synchronously replicating all messages will
incur non-negligible overhead to the system. In this section, we
present our containerized approach to mitigate this issue.

3.2.1 Design Overview. To minimize the performance degradation,
we propose to spread out the BGP connections using containers
– a lighter-weight virtualization technique. More concretely, we
include one BGP process in one container where one BGP process
can support a few peers using VRF [41] – a technique that allows
multiple instances of a routing table to co-exist. Each BGP process
should be running in a pair of containers on different host machines
– one serves as the primary router and the other serves as the backup
router. In this design, each container has much less data – only for
one BGP process – to backup. In this way, we naturally leverage the
multi-threading parallelism provided by containerization without
the need to carefully tweak the BGP program which takes extra
effort.

Figure 3 illustrates an example of our containerized BGP design.
Specifically, container 1 has two instances distributed at server 1

and server 2, respectively. Its instance on server 1 serves as the
primary router whereas the other instance on server 2 serves as
the backup router. Inside container 1, there are two processes –
BGP and BFD. Both BGP and BFD processes include two VRFs (VRF
1 and VRF 2) which correspond to two ASes, respectively. When
the primary container fails, the backup container needs to take
over the conversation with the peering AS for both BGP and BFD
processes without letting the remote end-host acknowledge the
switch. Figure 3 also includes another “agent” server, for which we
will include more details in § 3.3.

Additionally, dispersing the BGP connections with containeriza-
tion will reduce the scale of impacts from exceptions. Under the
traditional BGP setup, all the other running BGP connections on
the same machine will be impacted if one of them fails, e.g., when
we need to upgrade the software version, when a BGP connection
crashes because of a configuration change, etc. This is because, in
essence, all of the BGP connections – regardless of whether VRF
is used or not – are running within the same process context. But
in our proposal, the impact of such failure is limited to the BGP
connections inside the same container.

Last but not least, containerization also helps to speed up the
system booting. In Tencent’s cloud gateway, the number of con-
figurations, e.g., existing routing tables, on a gateway router will
often reach the scale of ∼10K or ∼100K. When the system boots or
reboots, it needs to load all the configurations into memory. This
may take up to ∼20 minutes. Some optimizations are proposed to
speed up the configuration loading, e.g., converting the configura-
tions into loadable binary files or implementing a parallel reading
spawning multiple threads. Yet, they take a lot of engineering ef-
forts and complicate the BGP program. But with the containerized
approach, the number of BGP connections is much smaller in each
container, and so is the number of configurations. With the parallel
nature of containers, we achieve a faster system booting without
any optimizations mentioned earlier –the loading time is shortened
from ∼20 minutes to ∼20 seconds.

3.2.2 Controller Design. With containerization, the minimum op-
eration unit becomes a container instead of a physical router. A
new controller is needed to organize the resources and manage the
containers on all the servers.

As shown in Figure 3, the controller directlymanages the contain-
ers on all the servers.We implement the controller based on Tencent
Kubernetes Engine (TKE) [11]. To ensure robustness, the controller
is logically centralized but physically distributed. The controller
connects to the containers using gRPC [7]. The controller is respon-
sible for not only the container orchestration, e.g., container pro-
visioning, deployment, scaling, etc., but also the application-layer
management, i.e., mapping the BGP connections to the contain-
ers and monitoring the health of BGP processes. In contrast, the
host server does not acknowledge the mappings between the BGP
connections and the containers but only focuses on local routing
control (VXLAN) and failure handling (see § 3.3).

3.2.3 Underlay Network Design. On a physical router, each VRF
routing table corresponds to a VXLAN. Thus it seems to be a natural
choice to include the VXLAN in the same container as the VRF’s
parent BGP process. Nevertheless, we choose not to do so but leave
the VXLAN on the host, as illustrated in Figure 3. This is because if
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the VXLAN is containerized, it would require the forwarding plane
– composed of commodity switches – to learn the mappings among
the physical servers, the container instances, and the VXLAN be-
fore being able to forward the packets accordingly. However, this
messes up the dependencies between different components of the
cloud gateway and contradicts the design principle of separation
of forwarding and control planes in DSR. Instead, we bind each
VRF to a pair of virtual Ethernet interfaces (vEth) – one inside the
container and one on the host – and use a bridge to connect the
VXLAN to the vEth on the host. In this way, the VRF is bound to
the VXLAN, and the containerization of the VRF is transparent to
any network components or middlewares outside the host.

3.2.4 Splitting the BGP. The conventional approach for border
routers involves each border router connecting to multiple ASes
to establish connectivity and exchange routing updates, enabling
the dissemination of network reachability information. Further, the
internal BGP (iBGP) is used to synchronize information between
different border routers. However, TENSOR revolutionizes this
setup by splitting the BGP routing of one border router intomultiple
containers, where each container hosts only one BGP process and
supports the minimum number of BGP connections necessary. Such
BGP splitting may impede optimal routing decisions, as they often
depend on information from multiple border routers or a larger
number of BGP containers.

To achieve the desired BGP routing split while retaining the
optimal routing decisions, we rely on a splitting strategy based on
ASes and clients and the creation of joint containers. As a general
rule, each BGP container is divided in such a way that it handles
one AS or one client, ensuring a clear separation. However, there
are exceptional cases where certain global information needs to be
shared between two separate BGP containers. In such scenarios,
we introduce an additional joint BGP container that synchronizes
the required information between these separate containers with
the iBGP protocol. Figure 4 illustrates this arrangement, which
creates dependencies among the containers. Whenever any of the
dependent BGP containers is updated, the joint BGP container
must be updated accordingly, and vice versa. This enables the joint
BGP container to make optimal routing decisions by leveraging the
shared global information.

3.3 Addressing the Split-Brain Problem
With the combination of kernel-free packet replication and con-
tainerization, TENSOR is able to mitigate the three challenges of
BGP NSR systems – system reliability, virtualization support, and
performance (see § 2.2). It still leaves a critical problem that needs
to be tackled – the split-brain problem.

3.3.1 Design Overview. The split-brain problem has been a pain for
the existing NSR solutions because their design only involves the
primary and the backup routers – a two-node system will always
suffer from split-brain because a majority consensus cannot be
reached when either node incurs a problem [35]. Solving the split-
brain problem requires adding at least a third “witness” node. Yet,
this adds cost and complexity to the system to maintain the witness
node.

It turns out that, unexpectedly yet reasonably, containerization
is also a cure for the split-brain problem. It naturally introduces
additional nodes to the system, e.g., the controller. Below, we first
explain the liveness probe in our system as the basis for any failure
localization and handling. Next, we discuss in detail the failure
handling in various scenarios.

3.3.2 Liveness Probe. Between the peering ASes. Bidirectional
Forwarding Detection (BFD) is a lightweight protocol designed for
fast link failure detection [24]. Implementing BFD for BGP brings a
significantly faster reconvergence time and is the common practice
for liveness probes between peering ASes [25], and we follow this
practice. Each BGP process connection is associated with a BFD
process. In TENSOR, it means that each container runs one BFD
process. BFD also supports VRF where its VRFs are one-to-one
mapped to the VRFs in the BGP process.

The BFD process will report the link failure (of the corresponding
VRF) to the BGP process through inter-process communication
(IPC). In TENSOR, a link failure will be detected if any of (𝑖) the
container, (𝑖𝑖) the host machine, or (𝑖𝑖𝑖) the link to the peering AS
fails. While failure (𝑖𝑖𝑖) indeed suggests that a restart of the BGP
is needed, the other two failures in addition to (𝑖𝑣) the failure of
the BFD process, should not be acknowledged by the BGP router in
the peering AS under NSR. That is to say, TENSOR needs to keep
sending the BFD keepalive messages either during the rebooting
of the primary BGP process/BFD process/container (see § 3.3.3) or
during the BGP migration to the backup container.

A strawman solution is to keep both the primary and backup
containers alive. Because the BFD keepalive messages are simple
and stateless, it is viable for both the primary and backup containers
to receive and reply to the incoming BFD packets. In this way, the
BFD process of the remote end-point will not detect a failure caused
by the primary BFD process/container/host machine errors.

Nevertheless, there are two major drawbacks of this approach.
First, it requires additional management of the BGP process in
the backup container. This is because while the BFD allows both
primary and backup processes to receive and reply to messages
concurrently, the BGP does not since it exchanges stateful packets
and it is based on TCP: the TCP connection will be interrupted if
both the primary and backup processes send packets to the remote
end-point concurrently. Therefore, the controller needs to micro-
manage the processes inside each container to ensure that the BGP
process in the backup container is not active when the primary
container works.

An alternative solution is to configure the forwarding plane
to drop the packets sent from the backup container. In this way,
the remote end-host receives only one reply while the backup
container believes that it is talking to the peering AS. A benefit
of this design is that the backup container can resume the BGP
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connection immediately after the primary container fails. However,
this solution requires the forwarding plane to identify which is the
backup container and the status of all containers. This disrupts the
dependencies between different components and defies the design
principle of DSR [47].

Either way, it requires the backup container to be alive at all
times, and this consumes computing and memory resources. We
instead propose an energy-saving BFD relay solution that supports
a “cold-start” of backup containers, i.e., the backup container needs
to be created and booted, or a “preheat start” of backup containers,
i.e., a few backup containers (fewer than primary containers) are
kept alive but they need to download the BGP and TCP status from
the database.

Our design builds based on the fact that the BGP connections
can survive not sending/receiving packets for a short period of time
with the help of the TCP retransmission mechanism [39]. On the
other hand, BFD will not survive this pause because its timeout
interval is usually less than 1 second [14] – 100 ms ×3 is adopted
in Tencent’s cloud gateway. To avoid this problem, we introduce
a third node – an agent server – to be the BFD relay during the
short rebooting/migration interval. As shown in Figure 3, the agent
server runs duplicate BFD processes for all the containers on other
machines. The agent server replaces the role of the backup con-
tainer for sending the BFD packets concurrently with the primary
container. When the primary container is down, the agent keeps
sending BFD keepalive messages so the remote end-host does not
acknowledge the local failures.

Since the task on the agent server is simple and lightweight, we
do not containerize its BFD processes. At a high level, the agent is
weakly coupled with the other components of the system including
the primary/backup containers and the controller: in normal times,
the failure of the agent, e.g., server downtime, will not affect the
normal TENSOR functioning. The only failure that could affect the
BGP NSR is when both the primary container and the agent are
down at the same time while the backup container is not pulled up
yet. The chance of such failure is minimal. And it cannot be handled
by any existing NSR solutions where only single-point failure is
considered.
Inter-component measurements. In TENSOR, we implement
various measurements between the system components. First, the
controller will set up gRPC channels to all the containers, their
host machines, and the agent server. The gRPC channels will send
gRPC heartbeats for health monitoring. Next, the agent server will
send Internet protocol service level agreement (IP SLA) probes
to the containers and their host machines. Further, the host ma-
chines will also send IP SLA probes to each other to monitor the
inter-connectivity. The agent server and the host machines will re-
port their measurement results to the controller through the gRPC
channels.

3.3.3 Failure Location and Handling. Application failures. The
BGP/BFD application process may fail due to misconfigurations,
bugs, insufficient resources, etc. This corresponds to E1 in Figure 3.
To locate such failures, we conduct continuous monitoring and
periodical examinations of the running status of the BGP/BFD ap-
plication process inside the container. When an application failure
is detected in the primary container, the incident will be reported

to the controller through gRPC. The controller will reboot the con-
tainer or initiate an NSR migration.
Container failures. As identified by E2 in Figure 3, containers
might fail due to misconfigurations, over-commitment of resources,
etc. Such failures can be detected by (𝑖) process monitors on the
host machine, such as Docker Daemon, (𝑖𝑖) gRPC health check from
the controller, and (𝑖𝑖𝑖) IP SLA probes from either the host machine
or the agent server. After detecting container failures, the controller
begins the BGP NSR migration, which includes booting the backup
container, starting the BGP and BFD processes, recovering TCP and
BGP status from the database, and resuming the connections.
Host machine failures. Another possible failure point is the host
machine (as a replacement of the router in § 2). Possible causes
include hardware failures, loss of electricity, etc. As illustrated by E3
in Figure 3, all the containers as well as the network configurations
will be lost when a host machine fails and all of them need to be
recovered. Given the large scale of impacts that a host machine
failure involves, we take multiple measurements to verify it and
avoid false positives.We only take action to isolate the host machine
and recover everything on it when all the failure measurements
return positive results, i.e., that the host machine indeed fails. These
measurements include (𝑖) gRPC heartbeat from the controller, (𝑖𝑖)
IP SLA to all the containers on this host machine, and (𝑖𝑖𝑖) IP SLA
between servers in the cluster. Moreover, a 3-second timer will be
given before we begin the recovery to avoid false positives of other
failures – we will discuss below in “network failures”.
Network failures. Figure 3 illustrates two possible network fail-
ures: one is that the (virtual) network of the primary container fails
(E4), and the other is that the network of the host machine fails (E5).
The location of the virtual network failure of the primary container
is similar to that of the container failures. The only difference is that
the process monitor on the host machine will not report an error
while all the network probes will fail. After locating the failure,
the controller will kill the primary container through TKE while
starting the BGP NSR migration to the backup container.

On the other hand, the network failure of the host machine
is similar to that of the host machine failures: we take similar
measurements to locate the failure and similar actions for recovery.
Nevertheless, one critical difference is that the network failure
might not be permanent, e.g., network jitter is only temporary.
Given the scale of impacts from failure handling similar to host
machine failures, we take extra caution to distinguish permanent
network failures from temporary ones. Our solution is setting an
extra timer of 3 seconds. If all the measurements still fail after 3
seconds, then we consider this failure to be permanent and migrate
all the containers. Note that once we decide to migrate, the original
server will not be re-used before a manual reset – even if it goes
back online before that – to avoid split-brain issues or oscillations.

4 EVALUATION
We evaluate the performance and benefits of TENSOR below. We
first focus on evaluating the impact on TCP performance from
delayed acknowledgment and the delay we introduce in our design
(§ 4.1). Next, we show the integral performance of TENSOR (§ 4.2).
We then analyze the failure recovery and demonstrate the key
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Figure 5: Evaluation of the delayed acknowledgment. (a) TCP
maximum throughput as a function of the acknowledgment
delay; (b) Total time costs of database read operation as func-
tions of the number of records.

benefits of TENSOR compared to existing solutions (§ 4.3). Last,
we talk about our operational experience of TENSOR over the past
two years (§ 4.4).

For all the following evaluations, we use the same setup as the
actual production environment in Tencent Cloud. In particular, each
machine is equipped with a 96-core Intel Xeon CPU with 400 GB
RAM. On the forwarding plane, the machines are connected via
100 Gbps Ethernet.

4.1 Impact of Delayed ACKs
A key innovation of TENSOR is the kernel-free packet replication
which enhances the system reliability and, most importantly, en-
ables the virtualization of BGP NSR. Nevertheless, the benefits come
at the cost of performance as we introduce delayed acknowledg-
ment. Below, we aim to understand the performance impact of the
delayed acknowledgment.
Transport layer. We first focus on the transport layer to under-
stand the applicability of delayed acknowledgment to general appli-
cations. We set up two machines connected via a 100 Gbps Ethernet.
Then, we run iperf between two machines, where we implement
the kernel-free delayed TCP acknowledgment on one machine rep-
resenting the machine in our cloud gateway while keeping the
other machine as normal representing the peering AS.

Figure 5(a) presents the maximum throughput of the TCPs with
and without delayed acknowledgment. the results show that the
TCP maximum throughput decreases as the acknowledgment delay
increases. Particularly, we notice that a threshold exists: the TCP
maximum throughput will stay the same as the TCP without any
acknowledgment delay when the introduced delay is less than a
threshold.

When testing with different packet sizes, we observe that the
threshold, i.e., the maximum delay which does not affect the TCP
performance, decreases as the packet size increases. In particular,
the maximum delays with no impact on the TCP throughput are
20 ms, 10 ms, 5 ms, 2 ms, and 2 ms for TCP connections with
packet sizes of 100B, 200B, 500B, 1000B, and 2000B, respectively.
When the acknowledgment delays are larger than these numbers,
the maximum throughput will decrease. The pace of throughput
decrement also increases as the packet size increases.

The results conform to the design of the TCP congestion control:
the optimal congestion window size will be limited and dependent
on the delay [37, 38]. In essence, introducing an acknowledgment

delay is similar yet slightly different from increasing the end-to-end
delay. Figure 5(a) shows that for a given acknowledgment delay,
there exists an upper bound for the maximum throughput. When
the TCP throughput with a given packet size is smaller than the
upper bound, it behaves as normal TCP; otherwise, it will be capped
by the upper bound, i.e., performance is degraded.
Application layer. To investigate whether the kernel-free packet
replication fits the BGP NSR requirement, we need to understand
how much delay will be introduced by the application layer opera-
tions, particularly, the database-related operations in TENSOR.

When TENSOR receives a packet, the TCP acknowledgment will
be held until two database operations are done: a write operation
when its message is received and a read operation by tcp_queue to
confirm that the corresponding outgoing acknowledgment packet
is properly backed up (See § 3.1). When TENSOR sends a packet,
the packet will be held after being generated until a database write
is done.

We set up a Redis server on another host machine. Each record
to write to or read from the Redis database is a pair of a 90B key and
a 4 KB value. This represents the largest BGP message, where each
message can carry tens or hundreds of routing updates. Specifically,
the key consists of a 16B VRF prefix, a 36B four-tuple identification
for IPv6-based TCP connection, and a 38B identification for the
peering AS and the client. The value is the whole BGP message
which has a maximum size limit of 4 KB [40].

Note that our Redis server will not store data on disk but only
in RAM. This setting provides better performance, i.e., faster read
and write operations, while satisfying our fault-tolerance needs.
Specifically, TENSOR targets providing BGP NSR with respect to
single-point failures. When either the database or the BGP con-
tainer fails, TENSOR can be recovered by simply rebooting the
failed service and re-synchronize all the data. The scenarios where
both the database (a fault-tolerant service by itself) and the BGP
container fail are multi-point failures and hence are out of scope.

Figure 5(b) presents the total time costs of database read and
write operations as functions of the number of records. The time to
read one record only takes less than 500 𝜇s, and the time to write
one record takes roughly 1 ms. Corresponding to Figure 5(a), this is
well within the threshold for the delayed acknowledgment to start
affecting the performance.

Overall, the relationships between the time costs and the number
of records are very similar for both database read and write opera-
tions. The difference is that the write operation takes approximately
2.5x longer than the read operation. When operating on multiple
records in a batch, the per-record time will be shortened. It takes
less than 1 ms to read roughly 70 records, and 200 ms for up to 10K
records. For writing records, it takes less than 2 ms for 10 records,
and ∼500 ms for 10K packets.

4.2 Integral Performance
Next, we explore the integral performance of TENSOR.For perfor-
mance comparison, we adopt the three most popular open-source
BGP implementations: FRRouting [5], GoBGP [6], and BIRD [12].
Note that these open-source BGP implementations do not support
BGP NSR. Despite that, we used them as a reference of comparison
because they have very similar performance to our original BGP
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Figure 6: Evaluation of TENSOR. (a)(b) The time cost as a function of the number of routing updates exchanged; (c) The time
cost as a function of the number of peers; (d) The memory usage and CPU utilization as functions of the number of containers.

programwithout the NSR capability. We set up twomachines where
one installs TENSOR and the other installs FRRouting to represent
the peering AS.
Receiving routing updates. Figure 6(a) illustrates the time cost of
receiving and learning from the peering AS with different numbers
of routing updates, ranging from 100 to 500K. When there are
only 100 updates, all the solutions take around 40 ms to complete.
The time costs for all solutions stay low (less than 100 ms) before
the number of updates reaches around 10K. Later, the time costs
increase almost linearly as the number of routing updates increases,
and discrepancies appear: FRRouting has the best performance;
GoBGP and BIRD have very similar performance; TENSOR has the
lowest performance.

We suspect the performance discrepancy originates from inde-
terministic behaviors of tcp_queue that needs to read the database
multiple times before confirming a packet is backed up properly.
Despite slight performance discrepancy, TENSOR boosts other as-
pects of the system (see § 4.3). Note that the maximum number of
500K routing updates in Figure 6(a) represents an extreme scenario.
In normal cases, the number of routing updates exchanged will be
less than 10K, where the overhead is tens of milliseconds and is
acceptable.

There will be no difference for the IO thread to handle packets
from one or multiple ASes. Thus, when receiving and learning from
multiple ASes, the time costs of other BGP implementations will
conform to Figure 6(a) where the number of routing updates should
be equal to the sum of that from all the ASes. For instance, it will
take at least 5 seconds for any open-sourced implementation to
finish the learning from 50 ASes, where each AS sends 10K updates
(thus the sum is 500K updates). But thanks to the containerized
approach which naturally enables parallelism, each BGP process in
TENSOR only needs to connect to one to several ASes, and hence
bears sub-second’s overhead. Therefore, the overall performance
of TENSOR is acceptable in practice.
Sending routing updates. Figure 6(b) presents the time costs of
generating and sending out routing updates to a peering AS. Overall,
the pattern is similar to that of receiving and learning updates, i.e.,
the time costs stay low before the number of updates reaches 5K
and then they start to increase linearly as the number of updates
increases. The good news is that TENSOR achieves approximately
the same performance as the other three implementations. The
smaller performance difference between TENSOR and the other

implementations is also expected because less delay will be involved
when sending packets than receiving packets (see § 4.1).

When sending the updates to multiple peers, the BGP process
has different behaviors. Because the BGP update message for many
peers will be largely the same except for the header information, it
is possible to speed up the process by copying the messages. This is
referred to as “update packing” [57]. We have implemented update
packing in TENSOR.

We now test sending routing updates to multiple peering ASes.
We simulate from 50 up to 700 peering ASes and set a fixed number
of updates to send per AS as 100. As shown in Figure 6(c), we observe
similar performance for TENSOR, FRRouting, and BIRD, whereas
GoBGP costs at least 5x more time than the other implementations.
This is because the update packing is not implemented in GoBGP.
Moreover, TENSOR outperforms BIRD when the number of peering
ASes is greater than 600.
Scalability. Next, we demonstrate the scalability of TENSOR. Fig-
ure 6(d) shows that the memory usage and CPU utilization rate
increase linearly as the number of containers on one host machine
increases. Supporting 100 containers only costs 25 GB of memory
and 5.6% of the CPU. The containerization design allows easily
scaling up the services on one machine as well as scaling up the
number of machines. To date, we have deployed TENSOR on over
400 machines and they cover 100% BGP traffic for all enterprise
peers in Tencent Cloud.

In conclusion, the performance of TENSOR is acceptable in prac-
tice while it provides critical boosts over the system reliability,
virtualization support, and fault tolerance.

4.3 Failure Recovery
We now demonstrate the failure recoveries of TENSOR and other
BGP implementations in four failure scenarios: application, con-
tainer, host machine, and host network. Container failure is unique
to TENSOR since no virtualization is used in other BGP implementa-
tions. As illustrated in Table 1, the most frequent failure (65%) is the
host network failure, which is often caused by cable aging or unsta-
ble adapters, whereas the least frequent failure (3%) is application
failure which is mostly due to software bugs.

Table 1 presents the detailed time costs for TENSOR (the first
number) and other BGP implementations (the second number in
the brackets) side by side. It is noteworthy that the numbers are
different: the time costs for TENSOR represent how long it takes
to operate internally, and they are transparent to the peers, i.e., no
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Table 1: Failure recovery comparison between TENSOR (the first bold number outside the brackets) and other BPG implementa-
tions (FRRouting/GoBGP/BIRD, the second number in the brackets). The time cost is in second.

Failure Type (Frequency) Failure
Detection

Initiates NSR Migration /
Reboot Machine or BGP

TCP Recovery /
Reconnection

BGP Application
Recovery

Total Time
Cost

Application (3%) 0.01 (∼1) 0.10 (∼20) 1.09 (∼1) 1.06 (∼5) 2.26 (∼30)
Container (13%) 0.31 (N/A) 0.10 (N/A) 1.19 (N/A) 1.01 (N/A) 2.61 (N/A)

Host Machine (19%) 3.30 (∼15) 0.20 (∼200) 4.50 (∼5) 1.05 (∼10) 9.05 (∼240)
Host Network (65%) 3.30 (∼5) 0.21 (∼5) 4.45 (∼5) 1.21 (∼10) 9.17 (∼25)

link downtime. On the other hand, the time costs for other BGP
implementations represent the link downtime duration, where no
packets can be routed through.

Overall, we find that TENSOR takes a shorter time to detect
failures in most scenarios. After that, other BGP implementations
require the engineer to manually reboot the BGP process or the
machine, which is very time-consuming. The only exception is the
host network failure where they do not reboot but wait for the
network to recover and then reconnect, which empirically takes
several seconds to tens of seconds. In contrast, TENSOR’s con-
troller will initiate NSR migration automatically within hundreds
of milliseconds.

The TCP recovery for TENSOR and TCP reconnection for other
implementations takes barely the same time costs. For BGP applica-
tion recovery, TENSOR can complete within ∼1 second whereas it
takes 5 to 10 seconds for other implementations. Note that we con-
sider an average workload here. In case of high workload, it might
take other implementations several minutes to recover [13, 26]
whereas the time cost will stay almost the same for TENSOR be-
cause it (𝑖) does not require reconverging the routing policies and
(𝑖𝑖) handles the workload in a highly parallel manner.

In general, TENSOR speeds up the failure recovery with no link
downtime by 2x to 25x compared to the link downtime of the other
BGP implementations, e.g., FRRouting/GoBGP/BIRD.

4.4 Operational Experience
Service level agreement. Table 2 summarizes the SLA guarantees
and operational costs of TENSOR and other solutions. In general,
TENSOR realizes the same SLA in terms of NSR migration time at
the level of seconds as the NSR-enabled routers. The open-source
BGP implementations including FRRouting, GoBGP, and BIRD in
the previous evaluations (see § 4.2), however, do not realize any
NSR guarantees. Hence, it will take tens of seconds to minutes for
them to recover the BGP connections and rebuild the routing tables.
Development. TENSOR has alleviated the workload for our de-
velopment team. While ensuring the same SLA, TENSOR is much
simpler than the NSR-enabled routers. The NSR-enabled routers
usually require the coordination of multiple modules, e.g., routing,
forwarding, high availability (HA) modules, etc. The development
of each module requires 2-3 engineers. That means that an NSR-
enabled router requires ∼10 engineers in total. The development
and testing time will take 4 to 5 years before the product is open
for sale. That translates to ∼500 man-months. In contrast, TENSOR
is developed by mainly 2 engineers in Tencent. It took 4 months to
complete the prototype and 12 months to bring TENSOR online in

the Tencent Cloud. That is a roughly 20x reduction of development
costs from NSR-enabled routers.

The development difference is also reflected in the size of the
codebase. The source lines of code of the NSR-enabled routers are
around 50 thousand in addition to the base BGP program, whose
codebase may include from 70K to 400K lines [5, 6, 12]. Meanwhile,
TENSOR’s source lines of code are less than 10 thousand on top of
the base BGP program.
Deployment. TENSOR also helps to reduce deployment costs.
Typically, an NSR-enabled router costs at least $15K whilst TENSOR
with a $3K server can handle roughly the same amount of workload.
Open-source BGP implementations cost similar to TENSOR, yet
they are not comparable to TENSOR due to the lack of NSR support.
Maintenance. TENSOR has minimized the maintenance costs as
well. First, TENSOR allows easier management. The NSR-enabled
routers need to be manually pre-configured. In addition, their
management requires on-site engineers. In case of a failure, it
may take multiple on-site engineers, from both our company and
hardware vendors, several days to fix the issue. That translates to
over 100 man-hours per month given the failure rate in our op-
erations. In contrast, TENSOR allows us to manage all the BGP
processes/containers remotely with the central controller. In our
operations, it takes less than 10 man-hours per month to maintain
TENSOR.

Another critical help is on the software update. BGP, regardless
of the presence or absence of NSR-enabled routers, relies on the
graceful restart when the system or software needs to be updated.
If the peering AS does not support a graceful restart – which is,
unfortunately, the common case for most of our peers – we need
to negotiate a specific time window with them or make announce-
ments before performing a system update. And the link will be
down during the update. If the peering AS supports the graceful
restart, they can keep the current routing policies until the update
is done. Yet, no routing policies can be updated during the update.
When the network is busy, an outdated routing policy might lead
to a massive amount of packet losses. Therefore, we can only per-
form the update at non-peak hours, e.g., at night. TENSOR, instead,
allows transparent system updates at any time.

To quantify the potential losses, we first look at the amount
of ongoing traffic in Tencent Cloud. Figure 7(a) is the CDF of the
average throughput over 24 hours between Tencent Cloud and its
peering ASes. The average and median numbers of the average
throughput are over 37 Gbps and 64 Mbps, respectively. Over 30%
of the links to peering ASes carry over 1 Gb of data per second.
Thus, the impact of link downtime or even not being able to update
the routing policies in a timely manner will be significant.
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Table 2: Summary of different BGP solutions.

Failure Recovery Development Costs Lines of
Source Code

Deployment
Cost (US$)

Maintainance Cost
(man-hour/month)Time Labor

FRRouting/GoBGP/
BIRD [5, 6, 12]

(Offline) Tens of
Seconds to Minutes

- - 70K-418K ∼3K ∼72

NSR-Enabled Router [1] (Online) Seconds ∼50 months ∼500 man-months +50K >15K ∼110
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Figure 7: Quantification of operational benefits of TENSOR. (a) The
CDF of the average throughput between Tencent Cloud and peering
ASes; (b) The adoption of TENSOR and BGP downtime in Tencent
Cloud over two years.

Figure 7(b) illustrates the adoption of TENSOR in Tencent Cloud
as well as the link downtimes because of updates or failures. Before
June 2020, we did not deploy either TENSOR or other NSR solutions
because of the complexity and high maintenance costs. At that time,
roughly 34 TB of data is impacted every month. We started the
initial deployment of TENSOR in June 2020 with 100 ASes. That
number stayed for a few months when we thoroughly verified the
correctness and robustness of TENSOR. Later, we gradually sped
up the deployment process. After a year and a half, we migrated all
the enterprise BGP business to TENSOR by the end of 2021.

Until now, TENSOR has been in operation in Tencent Cloud
for more than two years, and has supported all the enterprise BGP
business for over half a year. We operate TENSOR on a total of more
than 400 servers with the same equipment as in our experiments.
They support over 3,000 enterprise clients including on-premise
datacenters and public cloud and span over 6,000 ASes. With all
the clients, TENSOR establishes more than 31,000 BGP connections
and exchanges over 1 million routing updates. For the past two
years, TENSOR had a link downtime of zero despite that we have
tripled the update frequency.

5 LESSONS AND DISCUSSION
Microservice and open-source as the trend for network in-
frastructure development for cloud providers. In the past, the
network infrastructure of different companies heavily relied on
mature routing devices provided by hardware vendors. However,
this approach no longer meets the requirements of modern cloud
providers who prioritize rapid deployment and high flexibility. A
new trend has emerged, exemplified by the practice of TENSOR,
which involves combining microservices and open-source technolo-
gies to revolutionize network infrastructure development.

Microservices, known for their modularity and independent
deployability, have gained popularity across various domains. TEN-
SOR demonstrates the extension of this concept to network infras-
tructure development, offering significant advantages. By adopting

microservices, the network infrastructure can isolate and separate
different routing services such as BGP and BFD. This ensures that
failures in one service do not have a detrimental impact on others.
Moreover, microservices enable finer-grained management of each
routing service, such as BGP, minimizing the network failure do-
main. For instance, in the absence of TENSOR, a single gateway
router typically handles BGP sessions from multiple clients span-
ning multiple ASes. A failure in one AS can potentially crash the
router and affect other ASes. However, with TENSOR, the BGP
programs are split for different ASes, minimizing the scope of the
damage.

Additionally, microservices offer the flexibility to scale and adapt
to changing demands seamlessly. Open-source technologies com-
plement this trend by breaking down closed product ecosystems
created by hardware vendors. They provide cloud providers with a
wide range of customizable and community-driven solutions for
constructing their network infrastructure. Open-source software
also facilitates the rapid development of new network functionali-
ties, allowing providers to stay at the forefront of innovation.

In summary, the combination of microservices and open-source
technologies represents a significant paradigm shift in network
infrastructure development for cloud providers. It empowers them
to address the evolving needs of fast-paced environments while fa-
cilitating efficient management and fault tolerance through service
isolation and flexibility.
Alternative designs. An alternative to realize the kernel-free
packet replication is to run the TCP stack in user space. This ap-
proach may be undesirable due to the need for privileged rights
to receive all network traffic. We believe it would come with high
development and maintenance costs and might also be error-prone
due to the complexity of adding a complete TCP stack to our code
base. Hence, we retain our design choice of leveraging Linux hooks.

Furthermore, our implementation of TENSOR relies on the Net-
filter module because at the time this project started it was a ma-
ture technology. We acknowledge that an alternative is to rely on
eBPF [4] which has demonstrated better performance over Netfil-
ter [32]. We leave further implementation and comparison as future
work.
Dependency loop dilemma. TENSOR relies on a distributed data-
base to back up data including the ongoing TCP packets and routing
updates. The distributed database ensures high availability and per-
formance. In our implementation, we adopt Redis and set it up
on multiple local servers. One alternative is to use the cloud stor-
age services – most cloud providers including Tencent Cloud have
developed multiple cloud products for storage based on Redis or
other distributed databases. The cloud storage service may provide
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better availability and more functionalities than the local setup
while minimizing the maintenance cost.

However, relying on cloud storage services may introduce a
dependency problem. This is because TENSOR is meant to be the
infrastructure for the cloud services. In other words, the cloud
is depending on TENSOR. If TENSOR relies on the cloud storage
services, a dependency loop appears. When an error occurs at either
TENSOR or the cloud storage services, the other service will go
down as well. Worse, this might result in a cascade failure where
all the components or services on the dependency chain will be
affected.

Thus, it still needs further studies on wahat to adopt. It is note-
worthy that this might apply to all the cloud infrastructure subsys-
tems that could benefit from some cloud services.
Remote replication for disaster recovery. TENSOR could bene-
fit from remote replication for disaster recovery which would help
to ensure better data availability. However, the performance will
be a problem in realizing synchronized remote replication for TEN-
SOR. As Figure 5(a) shows, the TCP throughput will be impacted
significantly if the introduced delay exceeds certain thresholds.
And unfortunately, the delay for backing up data at another city or
another data center is most likely to exceed the milliseconds-level
threshold. An alternative is to back up data in an asynchronous
manner. Nevertheless, this would reduce the benefit of availability
improvement since TENSOR adopts an application-driven approach
(see Section 3.1.2), i.e., only stores the TCP packets that have not
been parsed by the BGP application. To summarize, a more detailed
study of the trade-off needs to be carried out before implementing
the remote replication.

6 RELATEDWORK
BGP-related studies. Cloud or content providers have been one
of the spots for the BGP research community given their scale and
connectivity to multiple ASes. Existing research has explored the
(inter-)connectivity of the cloud providers [15, 55], the routing poli-
cies of the cloud providers [52], inter-domain routing failures [23],
BGP security vulnerabilities and the actions of the network oper-
ators [33, 45, 46], and more. Researchers usually rely on popular
tools such as peeringDB [8] or data from IXPs such as CAIDA [3]
to conduct research from outside the clouds.

On the other hand, cloud or content providers have also con-
tributed to the community. EdgeFabric by Facebook [44] and Espresso
by Google [54] share their deployment experiences of running BGP
at the edge. Both EdgeFabric and Espresso use an SDN-based ap-
proach, i.e., a central controller is responsible for making the deci-
sions. TENSOR and DSR have similar designs. Yet, Facebook [13, 44]
and Google [54] handle failures relying on the graceful restart
mechanism. There are no discussions with respect to unexpected
disruptions such as machine/network failures. In this paper, we
focus on BGP non-stop routing for unexpected failures.
BGPnon-stop routing. For other routing protocols such as RIP [27],
ISIS [36], and OSPF [34], themessage exchangewith peering routers
are connectionless, and hence the non-stop routing support only
requires replicating the protocol status, i.e., application-layer status.
Nevertheless, BGP relies on the connection-oriented TCP protocol.
As a result, non-stop BGP routing requires replicating not only the

application-layer status but also the transport-layer status when
a failure occurs or migration is needed. It thus follows that TCP
packet replication is the key to non-stop BGP routing.

Early proposals propose to extend the TCP protocol so that
the peering router can help in the connection migration when
needed [48–50]. They however require a consensus of all the gate-
way routers from all ASes to adopt the same new transport-layer
protocol – which is an impractical assumption and is not adopted
by the BGP. Another solution involves introducing a proxy server
between the peering routers [30, 31]. However, it introduces yet
another potential single point of failure.

FT-TCP [56] instead proposed to migrate the TCP transparently
to its peers by introducing TCP stack wrappers to back up the
packets. The downside of this approach is that it introduces de-
layed acknowledgment and negatively affects the performance. Later
studies [17, 29, 51] also adopted the packet replication approach.
Nevertheless, existing works involve kernel modification, which
imposes challenges to network virtualization [47]. In contrast, our
approach realizes kernel-free packet replication. In the context of
general VM-based fault-tolerance systems [43], our work relies on
the deterministic nature of the BGP state machine to avoid high
costs from replaying all past inputs/outputs, and does not require a
logging channel for state machine operations.

Clark et al. [19] and VROOM [53] propose to replicate the en-
tire virtual machine. Remus [20] advances the virtual machine
migration approach by extending the replication at the snapshot
granularity and demonstrates better performance. Despite these
efforts, performance is still the bottleneck given the much larger
volume to be replicated. Instead, our approach only replicates the
minimal information that is required to recover the BGP sessions
while leveraging lightweight virtualization to provide even better
scalability.

7 CONCLUSION
In this paper, we presented TENSOR, a system that supports BGP
virtualization and BGP NSR concurrently via a novel kernel-free
packet replication design. TENSOR fully leverages the parallelism
of lightweight virtualization to improve the performance while also
solving the critical split-brain problem. Through experiments in a
production-level environment, we demonstrate that TENSOR bares
minimal to acceptable performance overhead compared to popu-
lar open-source BGP implementations while providing significant
benefits in failure recovery. From our two-year operational experi-
ence, we find that TENSOR meets our production requirements by
achieving the same SLA levels as the NSR-enabled routers, while sig-
nificantly reducing the development, deployment, and maintenance
costs.
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