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ABSTRACT

As residential bandwidth continues to grow and people become increasingly dependent on the

Internet, previously overlooked security and privacy issues have become severe threats to Inter-

net users, raising public concerns. These threats are numerous and far-reaching, spanning across

various network or system layers, as well as different applications and services. Despite the consid-

erable efforts made, the current situation is still far from ideal, mainly because of the continuously

evolving security and privacy demands, as well as the rapid development of countermeasures.

This thesis aims to examine the security and privacy vulnerabilities in the current Web com-

ponents and present appropriate solutions to address them. My approach is to develop practical

cutting-edge network systems that enhance security and privacy without compromising on effi-

ciency. To achieve this objective, I undertake comprehensive evaluations to gain insights into the

current systems, and suggest enhancements through revising the key system premises that con-

tribute to the vulnerabilities. Such revisions facilitate the mitigation of vulnerabilities and allow

the incorporation of new system pieces, e.g., advanced cryptographic tools. The resulting system

should also provide satisfactory performance and be feasible to be deployed today.

In this thesis, I begin by examining one general concept for securing any network system -

the virtual private network (VPN). Specifically, I concentrate on decentralized VPN (DVPN), a

recent system revision proposal that improves user privacy by distributing VPN proxies to multi-

ple parties, making it challenging for anyone to retrieve information about users and connections.
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Nonetheless, my analysis reveals that DVPN fails to provide adequate security and privacy guar-

antees due to the reliance on trust placed in the proxies.

Unfortunately, relieving such trust dependencies in a proxy-based system proves to be a formidable

task. Hence, I pivot to directly enhancing the specific Internet services and applications themselves.

My first target is the domain name service (DNS), a fundamental Internet service behind almost

any wild-area network requests. Through careful scrutinization of existing proposals, I find that

the presence of recursive resolvers is the key system premise that contribute to the current DNS

privacy vulnerabilities. DNS privacy can be substantially improved by having the recursive re-

solvers operate in blind, i.e., answering the queries without knowing their contents. While this

sounds counter-intuitive, it can actually be realized through advanced cryptography tools named

private information retrieval (PIR). Following this direction, I build PDNS, an efficient and practi-

cal DNS system based on PIR. Thorough evaluations demonstrate that PDNS achieves acceptable

performance as of today and offers better privacy preservation than any state-of-the-art proposals.

PDNS cannot safeguard the interconnected and multi-layered Internet alone. Indeed, user pri-

vacy exposure at one component negates protective measures at other components. With this in

mind, I proceed to investigate another vital Internet component, the Hypertext Transfer Protocol

(HTTP) – the bedrock of the Web – where I identify an instance of such a privacy violation. Specif-

ically, Web providers are harvesting user information through HTTP cookies. The root cause is

that current cookies are semantically oblivious, i.e., they carry personally identifiable information

(PII) but lack useful information for analytics. To solve this issue, I revise the system premises and

propose semantic cookies – cookies discarding any PII. Evaluations show that semantic cookies not

only patch up privacy leakage in HTTP requests but also accelerate cookie analytics by exploiting

edge infrastructures, providing incentives for adoption. This exemplifies my system design philos-

ophy of achieving balance among performance, security/privacy guarantees, and practicality.
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CHAPTER 1

INTRODUCTION

There has been growing public attention and concerns about security and privacy issues when

using Internet applications and services. Indeed, the Internet was born several decades ago for the

sole purpose of connection. Back then, the primary research and engineering efforts were focused

on improving the performance of the connections. Few people would rely on it for their day-to-

day activities. Yet, the Internet has evolved quickly over time and it has outlined a completely

different landscape today: the residential bandwidth has increased by thousands of times – from a

few Kbps to around 100 Mbps in most developed countries today [33] – and the Internet services

have become an integral part of billions of people’s daily routines [151], from communication and

entertainment to work and commerce.

As the reliance on the Internet continues to grow, the once-neglected security and privacy issues

have become serious threats to Internet users. These threats are diverse and widespread, extending

across various network layers and different applications/services: from pervasive monitoring of

plaintext traffic [168] to network middleboxes attempting to decrypt encrypted channels [58, 114,

132, 133, 134, 207, 223, 282, 289, 291, 310], from information exposure of domain name service

(DNS) [45, 178, 263, 285, 314] that acts as the "Internet phonebook", to privacy leakage caused

by HTTP headers/cookies [213, 313, 315] that originally aimed at customizing Web experiences,

from vulnerabilities in mobile devices [222, 302, 326] to exploitations of Internet of Things (IoT)

devices [97, 104, 197, 198, 201, 276, 303, 311, 313], and more.

Great efforts have been made to resolve these issues. For example, the virtual private network

(VPN) [281] and its variants [40, 160, 250] are proposed to hide user identity. Next, the end-to-
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end encryption scheme TLS [158]/HTTPS [265] has been widely adopted by Web browsing [12]

and gradually supported by DNS [187]. Further, more advanced cryptography techniques such as

differential privacy [166] and multi-party computation [145] have been applied to collect user logs

while preserving user privacy.

Despite these efforts, the security and privacy guarantees provided by current network systems

are not ideal. On the one hand, the demand for security and privacy is continuously rising as users’

needs evolve, and countermeasures continue to develop. As a result, the deployed security and

privacy mechanisms periodically fall behind the state of the art and require updating. On the other

hand, some of the state-of-the-art cryptographic tools face obstacles in integration with current

network systems, hindered by performance constraints and contradictions with established system

premises, thereby impeding their gradual adoption.

1.1 Thesis Statement

This thesis aims to lay the groundwork for the next generation of Web systems by critically exam-

ining the current security and privacy vulnerabilities of existing systems, identifying key system

premises that relate to these vulnerabilities, investigating whether such system premises are in con-

tradiction with the latest cryptographic tools, exploring the system designs that alter the key system

premises, and evaluating the trade-offs among performance, security and privacy improvements,

and practicality of the new system designs.

Thesis Statement

Devising the best next Web systems with enhanced security and privacy hinges on judicious

revisions of system premises, which alter key system behaviors to eliminate security and

privacy vulnerabilities while ensuring satisfactory performance and practicality.
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www.northwestern.edu

8.8.8.8

User WAN

129.105.136.48

HTTP

What is the IP address of 
www.northwestern.edu?

GET index.html
Cookie: _uuid=1234567

DNSOptional

Figure 1.1: Visualization of the basic path of a Web request, representing the scope of this thesis.

1.2 Thesis Contributions

Notably, given the interconnected and interdependent nature of different network layers and ap-

plications, the security and privacy guarantees of network systems follow the Cannikin Law that

every component must be resilient for the guarantee to hold. For instance, sending a request with a

Web cookie that contains personally identifiable information to a Web server can expose the user’s

identity, regardless of what other measures at different layers, such as VPN at the network layer,

are taken. Therefore, this thesis explores multiple network systems across different layers and

applications.

Specifically, I concentrate on three critical and widely-used network systems that function as

components of the Internet along the path of a Web request: VPN, DNS, and Web cookie analyt-

ics, as illustrated in Figure 1.1. In the first project, I conduct a comprehensive evaluation of the

ecosystem of the decentralized VPN – an already realized system revision to centralized VPN sys-

tems – through extensive measurements. Subsequently, I propose novel system revisions for DNS

and Web cookie analytics, aiming to enhance security and privacy assurances while maintaining

optimal performance and practicality, in alignment with the thesis statement. It is noteworthy that
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this thesis serves as a start rather than the conclusion of a continuous effort to strengthen network

security and privacy.

Measurement of both the existing network system and potential enhancement toolkits is an

indispensable part of the exploration process, serving as the first step in my approach. The next

critical step is to locate the key system premises that contribute to the vulnerabilities in current

network systems based on careful analysis of the measurement results. Then, I thoroughly explore

hypothetical scenarios involving alterations to these key system premises, answering “what-if”

questions. Proceeding with further evaluation to ascertain the trade-offs elucidated in the thesis

statement, I then determine the most appropriate option from the system design space and proceed

to build and, if possible, deploy the new system.

1.3 A First Look Into Decentralized VPNs

VPN [281] is a widely used method for preserving user anonymity and safeguarding privacy. To-

day, most VPN providers host multiple servers as proxies and serve numerous users. However,

there are no mechanisms in place to prevent the proxies from learning the destinations of each

user, potentially giving rise to privacy concerns unless the users unconditionally trust the VPN

providers, which is an unrealistic assumption. Additionally, since VPN providers have a central-

ized structure, it is easy to identify their nodes, which undermines the effectiveness of VPNs in

bypassing censorship [206].

Fortunately, there have been many proposals to solve this. In this thesis, I focus on the de-

centralized VPN (DVPN), which is an upgraded version of the prevalent centralized VPN and has

recently gained much popularity. DVPN introduces a revision to the system premises that tra-

ditional centralized VPNs hold, where the VPN nodes are provided and managed by one party.

This revision provides enhancements to security and privacy guarantees by scattering traffic across
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many parties, making it harder to recentralize the information if needed.

Several systems [17, 21, 24, 25, 32, 35] have realized this idea, and they have attracted in-

creasing user bases by exploiting the trend of increasing idle traffic of Internet users [34, 39, 116,

268, 275], enabling them to monetize their spare bandwidth. Despite the proliferation of such

systems, little is known about their performance, security and privacy guarantees, and how such

marketplaces operate. For instance, it is unclear what the key factors are that determine the price of

spare bandwidth and how such prices differ worldwide. I thus investigate the ecosystem of DVPNs

shedding light on the above questions [312]. My observations motivated me to create RING, a first

and concrete system that helps to enhance the current DVPNs.

Despite the efforts, I find that DVPN still cannot provide satisfactory security and privacy

guarantees to its users given that it cannot prevent the DVPN nodes from monitoring the bypass-

ing traffic. This problem is intrinsically hard to solve without full control of the entire network.

An alleviation could be to employ multiple proxies before reaching the destination, preventing

each proxy from learning the identity of the user and destination at the same time. This can be

accomplished through complicated user setups [22, 105] or by using Tor [40, 160], which directs

user traffic through multiple proxies in a volunteer overlay network. However, this enhancement

incurs performance penalties [93, 228, 251] due to encryption/decryption and the need to traverse

multiple proxies before reaching the destination. Tor or similar setups are also not free from secu-

rity issues or privacy leaks. For example, to preserve privacy guarantees, Tor requires that a large

portion, e.g., >75% [299], of the bandwidth capacity is controlled by honest proxies.

In conclusion, VPN, which involves introducing a proxy between two end hosts, is a funda-

mental concept for enhancing security and privacy in network systems and can be applied almost

universally. Several variations and improvements have been proposed, such as DVPN – which I

have extensively explored in this thesis –, Tor, and more. However, all of these solutions require
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some trust assumptions about the proxies, or their security and privacy guarantees will fail, leav-

ing them inadequate for the growing security and privacy concerns and requirements. Therefore,

proxies can no longer solely be relied upon. I instead re-focus my attention on Internet applica-

tions and services themselves, searching for solutions that offer more robust security and privacy

enhancements that meet current expectations.

1.4 Enhancing DNS Privacy with Private Information Retrieval

I shift my attention to the Internet applications/services themselves. My first target is the DNS

for two reasons. First, it represents one of the Internet’s cornerstone services. Second, the latest

advancements in DNS privacy enhancements hinge on proxy trust, echoing the challenges inherent

in VPN scenarios.

To provide a clearer explanation, let us begin by understanding what DNS is. Before any

application requests are sent, they need to locate the destinations. This process relies on a key

infrastructure of the Internet – the DNS [49], which translates human-readable domain names to

machine-understandable IP addresses. DNS privacy has been neglected for years. Recently, DNS

over HTTPS (DoH) [187] has improved the situation by fixing the issue of in-path middleboxes.

Further progress has been made with proxy-based solutions such as Oblivious DoH (ODoH) [285]

and DoH over Tor (DoHoT) [245, 246], which separate a user’s identity from their DNS queries.

Nevertheless, these solutions rely on trusted DNS resolvers and non-collusion with the proxy net-

work.

In general, the issue of privacy leaks primarily occurs at the DNS resolvers. It follows that the

solutions involve altering this key system premises – by either removing the ReRs from DNS [278],

or having ReRs operating in the blind, i.e., by resolving domains without knowing what they

are. The former option exhibits high performance penalties to users, amplifies workloads on the
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ANSes, and raises additional security concerns. The latter option seems counter-intuitive, but in

reality several techniques exist which allow similar operations. These techniques fall in the branch

of Private Information Retrieval (PIR), which is achieved by various cryptographic tools such as

homomorphic encryption [113, 172, 173, 264, 264].

After assessing both strategies, I concluded that eliminating RRs from DNS is impractical

due to its prohibitive performance impacts and security vulnerabilities. Conversely, incorporating

PIR techniques into DNS is a viable option. Driven by these findings, I introduce PDNS [314],

which, to the best of my knowledge, is the first practical initiative enabling ReRs to function

privately through the use of single-server PIR technology [241]. PDNS aims to augment rather

than substitute DNS, akin to DoH and ODoH, but it offers superior privacy protection, including

safeguards against collusion and analysis of regional access patterns.

1.5 Semantic Cookies for Anonymous Online Streaming Analytics

Still, security and privacy guarantees cannot be realized if any other Internet component fails to

provide them. The HTTP request – another bedrock of Web – is one such component where I

have identified a flaw in the current practice: the current HTTP cookies are semantic-oblivious,

i.e., carrying personally identifiable information such as user IDs [135, 252]. If the user sends its

user ID to others during HTTP sessions, its privacy will be exposed despite the efforts of adopting

PDNS or using VPN. The user IDs have allowed the service providers to record any information

about the individual users as much as they can for an indefinite duration as long as the users do

not actively clean up – and most users are not aware of it at all [273]. It follows that when the

user sends the HTTP requests with semantic-oblivious cookies, privacy preservation will become

incomplete.

The solution to this problem resides in the trend of migrating infrastructure towards the edge.
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More concretely, in recent years, we have witnessed a growing trend of content hyper-giants de-

ploying server infrastructure and services close to end-users [190, 214], in “eyeball” networks [175].

This results in a separation between where the contents are served and where the user cookies are

analyzed, i.e., the users will first access the edge servers, e.g. CDN servers, to obtain the Web-

page contents whereas the user cookies will be forwarded to a remote data center before being

processed. The inability to process the user cookies at the network edge is caused by a common

setting where user profiles, necessary for analytics, are stored deep in the data center backends.

This setting also carries privacy concerns as the user profiles – which are personally identifiable –

are communicated to the Web providers, yet the users are almost blind to what data is associated

with their identities and how the data is analyzed.

In this thesis, I propose to revise the system premises by breaking this arrangement and planting

encrypted semantic cookies at the user end [315]. Without altering any of the existing protocols,

this enables capturing and analytically pre-processing user cookies soon after they are generated,

at edge ISPs or content providers’ off-nets. More importantly, it ensures that user anonymity is

preserved during the analytics. I have demonstrated that it is viable to encode semantic cookies in

the existing application or transport protocols.

I further present Snatch, a system that coordinates all the components involved in online

streaming analytics with semantic cookies. It helps to configure the early forwarding and pre-

processing procedures at the network edge to speed up the online streaming analytics and preserve

user anonymity. Evaluations of Snatch – based on real-world measurements – show that when

processing can be done early in-network, Snatch can speed up user analytics by 10-30x. Given

the growing trend of migrating infrastructure towards the edge, such speedups along with privacy

enhancements are likely to soon become a reality.

To summarize, combining the semantic cookies and PDNS introduced earlier, this thesis builds
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a key step towards a more secure and private Internet.

1.6 Thesis Organization

The remainder of this thesis is arranged as follows. In Chapter 2, I detail the exploration of the

decentralized VPN ecosystem. Then, in Chapter 3, I present my design of PDNS system, which in-

troduces practical security and privacy enhancements to the key infrastructure of the Internet – the

DNS system. Next, I address the issue of privacy leaks from conventional HTTP cookies, propos-

ing a novel architecture designed to improve both performance and privacy in online streaming

analytics in Chapter 4. Finally, the thesis concludes with Chapter 5, where I summarize the key

contributions of my work and offer concluding thoughts.
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CHAPTER 2

A FIRST LOOK INTO DECENTRALIZED VPNS

VPNs offer two major services: (i) encrypted traffic between the user (VPN user) and a VPN node,

and (ii) a new public IP address (the one from the selected VPN node). Users leverage these two

services in different ways. Encryption is beneficial, for example, when connecting to a network

that the user does not trust, e.g., a public WiFi or a potentially sketchy ISP. Obtaining a new IP

address is mostly useful when the user aims at bypassing censorship or geo-location blocks.

Since privacy is a major concern of VPN users, there is one potential flaw with today’s cen-

tralized VPNs. The user needs to inherently trust the VPN provider not to interfere or log any of

their personal traffic. It is to be noted that VPN providers are commercial entities that might offer

their services relying on other commercial entities, e.g., they could use multiple cloud services to

obtain a worldwide footprint. It follows that even trusted and respectable vendors might unknow-

ingly incur in issues with a specific provider ranging from surveillance, misconfiguration, and even

hacking. Either of these issues can compromise the user privacy.

In [206] the authors actively investigate 62 commercial VPN providers and find unclear policies

for no logging, some evidence of tampering with their customer traffic, and a mismatch between

advertised VPN node locations and actual network location. In many cases, this misbehavior was

not purposely performed by the VPN provider but was caused by some misconfigurations. When

contacted by the authors, all providers quickly reacted to fix the reported misconfigurations.

The above issues are key motivations behind a new trend: decentralized Virtual Private Net-

works (DVPN). In a DVPN nodes can be both client and node, in the sense that users have the

option to offer a portion of their upload bandwidth to carry traffic on behalf of DVPN users. For
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example, assuming Alice (France) wants to access some content only available in the US, she can

piggyback on Bob’s residential IP address (US). A client would discover available DVPN nodes

either via a central repository or by using a distributed repository [307].

Since then, a few DVPN networks, such as Hola [11] and VPN Gate [43], have been developed

and gained popularity among users. Hola users either pay a monthly premium or contribute a

portion of their upload bandwidth to other Hola users. VPN Gate, on the other hand, relies solely

on volunteer machines. However, depending on temporary users or volunteer machines cannot

guarantee a reliable service. Furthermore, acting as a proxy and offering services to other users

may result in legal consequences for volunteers, which can lower people’s interest in DVPNs.

Fortunately, two trends are currently aiding the growth of DVPNs while also reshaping them:

(i) the increasing availability of spare bandwidth and (ii) the emergence of blockchain and cryp-

tocurrency [304]. According to Ookla [34], average Internet speeds in American homes grew 20x

in the last 10 years, from 8 Mbps (2010) to 180 Mbps (2021). A similar trend is observable world-

wide [33]. Several recent studies [39, 116, 268, 275] suggest that the added cost for faster Internet

speeds — e.g., $50 monthly to boost from 200 to 300 Mbps with Comcast Xfinity [14] — is not

worth it to most residential users, as only a median of 5% of bandwidth is used. For example, a

family of 4 concurrently streaming HD videos only requires ∼20 Mbps, not to mention unused

bandwidth at night.

Meanwhile, cryptocurrencies on top of blockchain technology provide a convenient payment

method to individuals worldwide. The combination of these two trends has led to the emergence of

several DVPN networks that offer mechanisms for users to monetize their unused bandwidth [17,

21, 24, 25, 32, 35]. Effectively, these DVPNs are building bandwidth marketplaces where spare

bandwidth is auctioned. For example, Alice (France) is willing to pay Bob (US) $1 to tunnel her

video traffic and avoid geo-blocking.
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While such systems are attracting a considerable number of users, both as clients (buyers)

and providers (sellers) of spare bandwidth, little to nothing is known about security and privacy

guarantees of the DVPNs, the properties of such marketplaces, and the dominant factors that affect

them. Understanding the properties of existing marketplaces helps to shed light on the future

market evolution as well as designing more reliable and efficient ones, which is a topic I explore in

this chapter. Further, existing marketplaces can help us understand which value buyers and sellers

associate with (spare) Internet bandwidth today.

The following lists my major contributions:

• I conduct the first comprehensive investigation on the DVPN ecosystem, revealing their se-

curity and privacy characteristics as well as characterizing their footprint, performance, and

pricing schemes.

• I formalize the bandwidth monetization problem by considering a single-vendor bandwidth

marketplace, and analyze the price ranges that create the most efficient marketplace.

• I extend the modeling to a multi-vendor bandwidth marketplace. I further realize such a

marketplace with RING, a software that offers its users fine-grained control on security and

how and where to monetize their spare bandwidth.

2.1 Background

Decentralized VPNs (DVPNs) — a new form of VPN with no central authority — are enhance-

ments to centralized VPNs. DVPNs scatter the user traffic across many parties and hence increase

the difficulty to recentralize the information if needed. DVPNs are also realizations of single-

vendor bandwidth marketplaces. That is because, in essence, a DVPN is a tool that allows users to

sell their (spare) bandwidth.
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DVPN Client DVPN Node
Providers

DVPN Broker

Blockchain

1. Register Offering2. Request Offerings

3. Establish VPN Tunnel

4. Generate Transactions

Figure 2.1: Visualization of functioning of DVPN that adopts cryptocurrency as the payment
method.

DVPN users can have two roles, either concurrently or disjointly: node and client. A user acts

as a node when it forwards traffic on behalf of other users and requests some form of compensation

for this. A user acts as a client when it pays for its traffic to be tunneled via a DVPN node of her

choice.

Over the years, there have been many attempts at building DVPNs. For instance, Hola [11] is

the first DVPN to the best of my knowledge. Hola requires the users to pay a monthly premium

or to contribute a portion of their upload bandwidth to other Hola users before being able to use

its services. VPN Gate [43] is a DVPN originated as a research project [250] to achieve blocking

resistance to censorship firewalls. However, it relies solely on volunteer machines. However, I do

not include Hola or VPN Gate in the exploration because they cannot guarantee reliable services

depending on temporary users or volunteers. They are neither a good approximation of the actual

bandwidth marketplace given their users cannot charge for their bandwidth.

I instead focus on recent DVPNs which originated in conjunction with the rise of blockchain

and cryptocurrency [144, 304]. In particular, DVPN nodes can directly determine their prices
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Table 2.1: Summary of current DVPN solutions.
DVPN Client Platform Node

Platform
Open
Source

Payment
Scheme

Tunneling
Protocol

Comments

Mysterium
Android, Mac,
Windows ARM, x86 Yes

Data transferred,
connection time

OpenVPN,
Wire-
Guard

–

Sentinel
Android, Mac,
Windows, Linux ARM, x86 Yes Data transferred WireGuard –

Tachyon
Android, Mac,
iOS x86 No

Data transferred,
staking reward Tachyon Still in development

Privatix
Android, Mac,
Windows, Linux ARM, x86 Yes Data transferred OpenVPN Cannot join [59]

Orchid
Android, Mac,
iOS ARM, x86 Yes Not yet released

OpenVPN,
Wire-
Guard

Still in development

Lethean X ARM, x86 Yes Data transferred OpenVPN Dead project

and users are granted visibility on information like price charged, e.g., cryptocurrency per GB,

node location, and expected bandwidth (Mbps). Examples of such DVPNs are: Mysterium [21],

Sentinel [32], Privatix [25], Tachyon [35], Orchid [24], and Lethean [17].

Figure 2.1 depicts the working procedure of such dVPNs. First, DVPN nodes register their

“offering” (e.g., location and cost per GB) at the DVPN broker. When a client wants to use the

DVPN service, she requests the currently available offerings from the DVPN broker and selects a

node to establish a VPN tunnel to. The tunnel is established directly between the client and the

node. In the meantime, transactions are generated per the agreement between client and node, and

are executed and recorded on the blockchain. It thus follows that recent DVPNs fit in the category

of decentralized applications (dapps) [96].

Table 2.1 provides an overview of the above DVPNs. The table shows that Android is the

most common client platform. With respect to the node, all DVPNs except Tachyon are open

source and offer executables for both ARM and x86. The payment scheme of most DVPNs is

based on how much data is transferred through the node. Mysterium also charges clients by how

long they connect to a node. In addition, Tachyon pays a staking reward; “staking” refers to the
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fact that the seller needs to put down some amount of cryptos (a stake) before they can receive

rewards. In terms of VPN tunneling, OpenVPN [23] and WireGuard [47] are the most popular

protocols adopted. The only exception is Tachyon, which uses a proprietary protocol also named

“Tachyon” [16].

In green, I have highlighted the DVPNs which I have selected for both my active and passive

monitoring: Mysterium, Sentinel, and Tachyon. These DVPNs were selected since they offer stable

client and node implementations, and a payment scheme which is representative of a bandwidth

marketplace. Privatix (orange) was instead only studied actively, i.e., by leveraging its client to

test its current nodes, since my (multiple) attempts to join the Privatix network as nodes have not

been successful. Finally, Orchid and Lethean (red) could not be studied for the following reasons.

Orchid has not opened node registration to regular users but only to partners; further their client

was quite unreliable during automation. Lethean has no working client and its staking account,

from which users need to acquire funds, is currently unavailable.

2.2 Methodology

I here describe my methodology to explore the DVPNs selected above and collect the data needed

to populate my model of a generic single-vendor bandwidth marketplace. My rationale is to both

actively and passively collect data from a DVPN. Active experiments consist of automating a

DVPN client to send traffic via the available nodes. This is useful to learn about their footprint,

pricing, and performance. Passive experiments consist of contributing bandwidth to such DVPNs

by running several nodes. I are interested in characterizing how much traffic a typical DVPN node

carries, and thus how much revenue (cryptocurrency) it could generate. Further, I want to explore

the traffic characteristics, e.g., presence or lack of harmful traffic, to help asses the risk associated

with running a DVPN node.
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2.2.1 Active Measurement

As per Table 2.1, my active experiments rely on Android DVPN clients because Android is the

common platform among all dVPNs I aim to investigate. I have further confirmed that there are

no significant differences between the information (node locations and prices) available through

the different client platforms. My testbed consists of an Android device (a Samsung S9 running

Android 10) controlled by a Raspberry Pi 4. The Android device is used to run the DVPN apps,

while the Raspberry Pi realizes the automation, e.g., launch a DVPN app and select a node to

connect to. I chose the Raspberry Pi for its convenience and given that its task is simple and

more powerful hardware is not required. The Android device connects to a fast WiFi (80 Mbps

upload/download bandwidth) and is located in North America.

I automate DVPN usage via the Android Debugging Bridge (ADB [52]), a rich Android pro-

tocol which allows to automate app operations like launching, scrolling, and GUI interaction. At a

high level, I use ADB to instrument each DVPN app to automatically iterate through its available

nodes, while attempting a connection. I rely on visual inspection of screen recordings to verify and

learn how to iterate through all states each DVPN app can reach, e.g., connection ready or more

random states like rate the app, which I then translate into automation scripts.

I use several techniques to both gather information about a DVPN and enforce correct crawling

functionalities. For example, I monitor Android network interfaces to verify successful “connect”

and “disconnect” operations. I also rely on Android logging (logcat) where developers often log

information like state changes, node IPs, payments, etc. I further use screenshots, both XML of the

information on screen (via uiautomator) and actual images coupled with OCR processing, to

collect statistics which are only available on screen. When available, I also resort to public APIs,

as in the case of Sentinel [76] which curiously even reports the CPU consumption measured at its

DVPN nodes.
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I use the above automation to build two active measurement campaigns: discovery, and speedtest.

Discovery – The goal of this measurement is to discover nodes offered by a DVPN, along with any

public information like pricing and advertised bandwidth. This implies quickly iterating through

the GUI of each DVPN (or query its public API, if available) logging information about node

counts and locations. Since this method does not require to connect to each node, it is quite

lightweight, and I thus run it daily over 6 months, from December 2020 to May 2021.

Speedtest – The goal of this measurement is to benchmark the connectivity (availability, location,

and download/upload bandwidths) of the nodes offered by a DVPN. This requires connecting to

each node discovered using the above procedure, to then perform a speedtest. Compared to the

discovery measurement, this test is more complex and invasive. I thus resorted to run it monthly;

further, in presence of very large DVPNs I sample a subset of the nodes by selecting a maximum

of 10 nodes per country.

To perform speedtests, I leverage the public service offered by Netflix at https://fast

.com automated via ADB. First, I configure a target dVPN node to be tested. Then, I launch

the Chrome browser and visit the speedtest website. Last, I use uiautomator – which dumps

content on screen in XML format – to retrieve measured bandwidths, latencies, estimated location,

and server used for testing. I also take a screenshot of the page to retrieve the above information

via OCR in case of failure of uiautomator (which can happen in presence of dynamic content

on screen). To avoid very long and expensive tests, I limit the duration of each test to 10 seconds,

which implies a maximum upload/download of 100 MB under my (residential) connectivity.

2.2.2 Passive Measurement

In these measurements, I run nodes for the main DVPN providers while passively collecting their

traffic using Tstat [42], a popular traffic sniffer which automatically analyzes TCP and UDP traffic.

https://fast.com
https://fast.com
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Tstat uses the classic 5-tuples1 to identify TCP sessions and UDP flows. TCP sessions are identified

using TCP connection establishment process. UDP flows are harder to detect since there is no

explicit notion of a session. Tstat defines a UDP flow as the set of packets with same 5-tuples with

inter-arrival times smaller than 200 seconds. I further call DVPN session a collection of TCP/UDP

flows between client and node, and outgoing sessions the TCP/UDP traffic between DVPN node

and destination IPs.

Given HTTPS represents the majority of today’s Internet traffic [12], I rely on DNS – when

not encrypted – and SNI – not yet encrypted even with TLSv1.3 [29] — for coarse traffic charac-

terization, i.e., I identify accessed domains but not, for instance, specific webpages. Next, I adopt

McAfee domain classification service [6] which achieves the highest coverage according to [296],

i.e., 94% over 4.4 million domains. McAfee provides two attributes per domain: reputation and

type. “Reputation” is calculated dynamically by the TrustScore system [27] and maps to four rat-

ings: minimal risk (<15), unverified (15-30), medium risk (30-50), and high risk (>50). “Type”

depends on the content available at a given domain, e.g., facebook.com corresponds to social net-

working. I further use signature matching provided by IPP2P to identify P2P traffic.

2.2.3 Marketplace Formulation

Here, I formalize the bandwidth monetization problem in a single-vendor marketplace. This

will help us to comprehensively analyze the existing marketplaces and quantify if, and how sub-

optimal, they may be. I assume that a seller at location l offers her spare bandwidth to potentially

multiple concurrent buyers. I further assume that the seller’s Internet connection is characterized

by some (spare) speed r, and a data cap D in a period of time T . For example, Comcast Xfinity

offers download speed up to 1,200 Mbps, depending on the monthly price tag, for a maximum

1< IP_SRC, IP_DST,PORT_SRC,PORT_DST,PROTO>
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of 1.2 TB per month [48]. Note that r is the minimum between download and upload speeds,

or r = min{ru, rd}. This is because a seller is not an end-point but a “middle-point”, which is

required to utilize both her upload and download bandwidth. For example, when a buyer down-

loads a 1 MB file from the Internet, for the seller, this translates to 1 MB of download data which

then needs to be uploaded to the buyer. Thus, the seller carries twice as much data as the buyer,

and the actual speed depends on where the bottleneck is between a seller’s download and upload

bandwidth.

I consider a charging scheme defined by the pair (x, y), which represents the amount of data

consumed and duration, e.g., (Gigabytes, seconds). This is reasonable and representative of what

I have observed in several bandwidth marketplaces (see Table 2.1). In addition, the seller may or

may not be willing to carry some “dangerous” traffic, e.g., contacting IP addresses labeled unsafe

by services like the Safebrowsing list [56]. Generally speaking, I assume a seller defines a blocklist

A = {dst1, dst2, . . .}, which includes the set of destination IP addresses which should be blocked.

I call S the set of sellers participating in a marketplace. Each seller sj ∈ S posts her service

in the marketplace defined by a location lj , price settings xj, yj , rate limit rj and blocklist Aj .

Buyers can see seller details sj = (lj, xj, yj, rj, Aj) and decide to buy, hence connect, or not. In

the following, I formalize the optimizations from both a buyer and a seller perspective.

Buyers’ Perspective – Assume a buyer is looking for bandwidth with average speed b for a du-

ration u. The buyer is further looking for bandwidth from sellers within a set of locations L,

and her traffic is directed to a destination set DES. The chosen seller sj ∈ S must satisfy

rj ≥ b,DES ⊆ Aj, lj ∈ L. The price P the buyer needs to pay to seller sj is:

P = xj · b · u+ yj · u (2.1)
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The buyer naturally would like to minimize her cost, given equal performance. Let S(b, L,DES) ⊆

S be a sellers set which matches a buyer’s constraints. To minimize the buyer’s cost, a seller can

be selected by optimizing the following objective function:

min
sj∈S(b,L,DES)

P (S) = min
sj∈S(b,L,DES)

(xj · b · u+ yj · u) (2.2)

Intuitively, the process consists of filtering the sellers by given constraints (b, L,DES). Then,

for a demanded bandwidth b, the buyer should select the seller among the left sellers minimizing

xj · b+ yj .

Sellers’ Perspective – I assume that connection decisions of each buyer are independent events,

and that the number of buyers is large. Under this assumption, the arrival process of bandwidth

buyers would follow the Poisson distribution, i.e., n ∼ Poisson(N), where n is the number of buy-

ers and N is the mean number of buyers within time T . Intuitively, N is a function of (x, y, r, l, A)

since it depends on the service price, quality, location, and seller’s blocklist.

Let B and U be the random variables of bandwidth and duration of incoming traffic sessions, re-

spectively. The expectation of income I of a seller within a period of time T can then be formalized

as follows:

E[I(x, y, r, l, A)] = x · E[n · B · U] + y · E[n · U] (2.3)

The seller would naturally like to maximize her income. I optimize the seller’s income by

adjusting the unit prices x, y and bandwidth speed limit r, i.e., I maximize the following objective

function:

max
x,y,r

(x · E[n · B · U] + y · E[n · U]) s.t. E[n · B · U] ≤ D/2 (2.4)
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2.3 Data Analysis

This section analyzes the data collected via my active and passive experiments. The analysis

provides a detailed view of the DVPN ecosystem with respect to its footprint, performance, and

traffic characteristics. I further investigate whether DVPNs are indeed concrete representations of a

bandwidth marketplace, and the collected data-set can be used to model the variables contributing

to the bandwidth monetization problem discussed in § 2.2.3.

Footprint and Performance – I start by investigating the footprint of the current DVPN ecosys-

tem, i.e., how many nodes compose each DVPN and where they are located. Figure 2.2(a) shows,

for each DVPN, the evolution over the last six months (December 2020 – May 2021) of the total

number of nodes advertised by each DVPN. The figure is further enhanced with data collected

from ProtonVPN [26], a popular centralized VPN, given a basic account ($5 per month).

Figure 2.2(a) shows that, initially, only Tachyon had a footprint comparable with ProtonVPN,

i.e., in the order of one thousand nodes. However, Tachyon has lost 36% of its nodes over time

while Mysterium’s node count has been steadily increasing after February, and it is the largest

DVPN with 1,100 nodes by the end of May. Mysterium has been losing nodes in January/February

(reaching a minimum of 50 nodes), followed by a sudden increase to 530 nodes on 02-17-21.

This behavior was an artifact due to Mysterium’s migration from their version 1.0 to 2.0, which

progressively made part of the network appears to be offline as discussed in [37]. Note also that

ProtonVPN has added 100 news nodes in this time span. While Sentinel has also increased its

footprint, it currently attracts a relatively small number of nodes compared to Mysterium and

Tachyon. Finally, Privatix only counts 8 nodes, which are likely provided by the Privatix team

given they are very stable and, in my experience, it is currently impossible to contribute a node to

this DVPN.
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Figure 2.2: Footprint and performance characterization of the DVPN ecosystem.

Next, I report on where DVPN nodes are located. Each stacked barplot in Figure 2.2(b) shows

the top 5 countries per DVPN, as per 05-17-21. I omit Privatix whose eight nodes are located in:

Toronto, Frankfurt, London, Bangalore, Amsterdam, Singapore, New York, and San Francisco.

Note that Sentinel only distinguishes nodes by continent. The figure shows that, irrespective of the

DVPN, the US (NorthAmerica for Sentinel) is the country where most nodes are located. Germany

(DE) and Great Britain (GB) are two other popular countries among DVPNs. The geolocations of
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DVPN nodes are reported by the DVPNs, and bias may exist [257]. In addition, 75% of the

Mysterium nodes are residential, whereas the percentage of residential node drops to 45% for

Sentinel and 0% for Privatix. I were instead unable to retrieve such statistic for Tachyon.

Finally, I report on the performance – in terms of download speed and availability – when

using such DVPNs. Results for upload bandwidths are omitted since they exhibit a similar trend,

although about half of the bandwidth available, overall. Figure 2.2(c) shows the Cumulative Distri-

bution Function (CDF) of the download speed measured each month per DVPN (plus ProtonVPN);

each VPN was tested independently at night, while making sure no local cross traffic was present.

The figure shows that only Tachyon is overall slower than ProtonVPN. Mysterium has comparable

performance with ProtonVPN while both Sentinel and Privatix significantly improve bandwidth,

by up to 3x and 6x. The legend of Figure 2.2(c) also reports the overall availability of each DVPN

which is, on average, comparable with ProtonVPN. High bandwidth and perfect availability of-

fered by Privatix further confirm that its 8 nodes are likely managed by Privatix itself.

Traffic Characterization – Between February and April 2021, my nodes have served ∼505 thou-

sand distinct buyers, ∼632 thousand DVPN sessions, ∼623 million TCP/UDP flows, accounting

for about 16 TB of data. Download traffic is the highest contributor, about 10x the amount of

upload traffic. Both residential and cloud DVPN nodes have attracted significant traffic over time

(tens of thousands of sessions per DVPN), with the exception of the node located in Alibaba cloud

(China) which has received no session via Sentinel, 604 sessions via Mysterium, and 1,924 ses-

sions via Tachyon (see the bottom of Figure 2.3, CN-Seller). This is due to the interference of the

great firewall [292].

Figure 2.3 visualizes from where DVPN traffic originates and is destined to, using Max-

mind [20] to map ip_src and ip_dst at the country level. The middle of the plot shows the

10 machines – distributed between US, Italy, UK, and China – which were used for passive data
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Figure 2.3: Visualization of DVPN traffic across Mysterium, Sentinel, and Tachyon. Buyer’s
locations are shown on the left, my machines where DVPN nodes are run in the center, and traffic
destinations on the right.

collection. The figure aggregates data across the three DVPNs since no statistically meaningful

difference was observed. The figure shows that the US has the most buyers, followed by Iran (IR),

United Arab Emirates (AE), India (IN), and the UK, to complete the top 5 buyer locations. The

US is also the most popular destination regardless of which node (middle of the plot) is used, ac-

counting for over half of the traffic. Russia (RU) is the second most popular destination, followed

by China (CN), UK, and Netherlands (NL).

It is noteworthy that the traffic destinations (right of Figure 2.3) may be biased because of the
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Figure 2.4: Analysis of DVPN sessions: (a) duration, (b) volume, and (c) throughput. 9 node
locations over 3 months; and (d) traffic percentage (ratio to the maximum observed) over one
month as a function of a DVPN node available bandwidth.

presence of Content Delivery Networks (CDNs), which distribute the content to servers all over

the world and allow users to retrieve the content from the closest location. That is to say, the

destination of the same content may vary depending on the geolocation of the requesters, which

are my nodes in this case. To quantify the impact of CDNs, I i) perform whois to check the

registration of the destination IPs, and ii) validate whether the IP addresses of the destinations fall
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in the range of CDN services when the company provides both cloud and CDN services, including

Amazon [19], Google [9], and Microsoft [28]. I find that, depending on the node, traffic directed

to CDNs ranges between 24 and 32%. Further, the most popular CDN providers, in descending

order, are: Facebook, Akamai, and Cloudflare.

Next, I investigate duration and volume of the 629,156 DVPN sessions handled by my 9 nodes

(see Figure 2.42), omitting the Chinese node due to the lack of traffic discussed above. The figure

shows two main results. First, user sessions are quite similar across nodes, with no significant

difference apart from the tails (outliers in the boxplots). Second, user sessions are instead quite

different among DVPNs, with Mysterium’s sessions being overall shorter (median of 10 min-

utes versus 23 minutes for Tachyon) but carrying more traffic (median of 2 MB versus 1 MB for

Tachyon). The latter result also implies that a large number of sessions (50% or more) are mostly

idle. Nevertheless, many sessions carry a large amount of traffic, even up to multiple GB. Overall,

the average sessions have a volume of 120, 60, and 40 MB for Mysterium, Sentinel, and Tachyon,

respectively.

To further investigate the previous result, I derive the session throughput as the number of bytes

transferred during a session divided by its duration. I further compute the throughput for each of

the TCP/UDP flow within a session and select the maximum (peak) as an approximation of the

bandwidth available to a user. Discounting my nodes upload bandwidth (since they are very well

provisioned), the session throughput depends on two factors: i) user access bandwidth, ii) applica-

tion demand, e.g., if a user is reading an article online for a long time, very little traffic would be

measured. Given that I did not notice significant difference among my nodes, Figure 2.4(c) shows

CDFs of both session and peak throughput (per DVPN) among all my nodes. The figure shows a

large discrepancy between session and peak throughput suggesting that application demand is the

2US-R2 is an ARM-based machine and thus does not support Tachyon, see Table 2.1.
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Figure 2.5: DVPN traffic composition according to McAfee and IPP2P classification.

main bottleneck, i.e., users are mostly downloading from time to time rather than, for instance,

streaming some video.

As a next step, I limit the upload bandwidth of my nodes and investigate the impact on the

number of sessions. To do so, I set up, for one month, 5 additional AWS EC2 machines where I

limit the bandwidth to 1, 5, 10, 15, and 25 Mbps for each DVPN. Note that the available bandwidth

of DVPN nodes is not shown on the buyers’ app. However, the buyers will likely switch to another

node if the bandwidth of a connected node does not satisfy their needs. While it is natural to think

that limiting the bandwidth would result in decreasing the number of sessions, Figure 2.4(d) shows

that buyers from different DVPNs react quite differently. Mysterium buyers are the most sensitive

to the bandwidth limits. For example, the number of Mysterium sessions is more than halved

when implementing a 15 Mbps limit, which has no impact on both Sentinel and Tachyon buyers.

This behavior is likely driven by a more demanding user-base, with overall higher bandwidth

requirements (Figure 2.4(c)). Given all my nodes are equipped with more than 25 Mbps, this result

further corroborates the above assumption that my nodes are not the reason of the trends observed

above with respect to session characteristics.
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Last, I characterize DVPN traffic composition according to classification based on McAfee

and IPP2P (see § 2.2). Figure 2.5 shows, for each DVPN, the amount of traffic belonging to

each category; the dashed vertical lines group traffic in higher level categories (P2P, reputation,

and type). Regardless of the DVPN, P2P traffic is extremely low, accounting for less than 3% of

the overall traffic. With respect to the traffic reputation, the figure shows that the majority of the

traffic carries very low risk: 60-70% minimal risk and 20%-30% unverified, or in between minimal

and medium risk according to McAfee classification. Medium and high risk are quite small and

account for less than 1%.

With respect to content type, no (broad) category dominates the traffic. A big difference among

DVPN arises when considering pornography, which accounts for 27% and 12% of the Mysterium

and Sentinel traffic respectively, while it only accounts for 2% of the Tachyon traffic. Only a mi-

nority of traffic falls into the malicious category (less than 2%). In this category, “illegal software”

is the most popular sub category, followed by “phishing” and “malicious websites”.

2.4 On the Value of Spare Bandwidth

In this section, I first leverage the previous analysis to derive several assumptions which allow us

to solve the optimization problem described in § 2.2.3. Then, I derive optimal buyer’s cost and

seller’s income, and conclude by commenting on the value of spare Internet bandwidth.

2.4.1 Buyer Cost Analysis and Optimization

Methodology – I investigate a buyer’s minimal cost following Equation 2.2 from § 2.2.3. I first

need to filter the sellers based on a buyer’s constraints, and then find the seller asking the lowest

price for her bandwidth. I proceed as follows. For a given marketplace, I obtain the list of sellers

as reported by my active crawler. Next, I remove the sellers which provide less bandwidth than b,
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the bandwidth requested by a user, and are not in the desired locations L. As per Equation 2.2, I

should also filter sellers that block access to the set of domains contacted by a buyer. I skipped this

step because blocklist usage is not publicly available for any of the DVPNs.3 Finally, I choose the

seller with the lowest cost among the remaining sellers. If the payment scheme of the marketplace

is solely based on the amount of data transferred, e.g., Sentinel, then I choose the seller asking

the lowest price. If the payment scheme depends on both the amount of data transferred and the

connection duration, e.g., Mysterium, I need to consider the bandwidth needs b of the buyer as

well. That is, minimizing the objective function (x · b ·u+ y ·u) (Equation 2.2), where x, y are the

prices (of data transferred and connection duration) and u is the connection duration.

With the existing DVPN apps, the buyers first retrieve the list of all nodes and then manually

select a node. By default nodes are ordered by price, i.e., the top of the list shows the cheapest

nodes. Hence the above strategy can partially be realized with the current DVPN apps, i.e., the

buyers can filter nodes by a given country and manually implement such node selection. However,

only “signals” (bad, medium, good) of bandwidth but no exact bandwidth numbers of the DVPN

nodes are available in the existing DVPN apps.

Results – Figure 2.6(a) shows the CDF of the seller’s prices available to buyers across market-

places. Prices refer to a sample collected by the active crawler (05/01/2021) and are normalized

relative to the lowest price allowed by a DVPN, e.g., given the lowest price for Sentinel is 1 SENT

per Gigabyte, then a relative price of 50 indicates 50 SENT per Gigabyte. The figure shows that

40% of Tachyon sellers ask the minimum price (0.22 IPX/GB), and only few (10%) dare to increase

the price to 3x the minimum (up to 0.62 IPX/GB). Conversely, most Mysterium and Sentinel sell-

ers (50-90%, respectively) request the default price (50 SENT and 22 MYST), while the remaining

3While I could actively test whether a DVPN node block some high-risk traffic, I opted to avoid this experiment for
two reasons. First, it would provide a very coarse approximation of existing blocklists. Second, it involves injecting
high-risk traffic, which is unethical and potentially illegal.
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ber of concurrent buyers.

Figure 2.6: Price and buyer’s cost analysis.

sellers equally split between providing much lower or higher prices (70x for Mysterium and 85x for

Sentinel). It is worth noting that Mysterium sellers treat “price per min” differently from “price per

GB”, mostly requesting the minimum price. This behavior is an indication that complex pricing

schemes can be hard to grasp by sellers.

The above result suggests that both Tachyon and Sentinel are not yet realistic bandwidth mar-
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ketplaces, despite their large footprint (see Figure 2.2(a)). In fact, their sellers just ask either the

minimum (Tachyon) or the default (Sentinel) price unmotivated by the lack of payment as well as

cost for the buyers. In the rest of the analysis I only focus on Mysterium since it is currently the

most mature bandwidth marketplace.

I start by analyzing the history of Mysterium’s seller prices. Figure 2.6(b) shows the historical

frequencies (PDF) of MYST per GB over 5 months. Mysterium had a major update in late February

2021 when the default price increased from 0.1 to 0.22 MYST per GB, as indicated by the PDF shift

in Figure 2.6(b). While many sellers (48%) stick to the default price setting, the number of sellers

offering cheaper prices, comprised between 0.01 and 0.22 MYST, grew by 11% and currently

account for 21% of the sellers. Further, the figure shows a new peak around 0.7 (04/2021) and

0.74 MYST (05/2021) which account for about 18% of sellers.

I now investigate the question: what is the minimum buyer cost? I assume Mysterium buyers

with variable bandwidth requirements (between 1 and 20 Mbps, which is mostly an upper-bound

as per Figure 2.4) and interest in several countries. I choose countries whose trend in price setting

is representative of most other countries in their regions, e.g., Germany (DE) for Europe. I assume

a buyer can always select the seller which meets his/her constraints, at the minimum price. I will

relax this constraint later.

Figure 2.6(c) shows the minimal buyer cost as a function of both bandwidth and location. I

express the buyer cost as cost per minute, to incorporate in a single metric both pricing schemes

adopted by Mysterium. The cost per minute is the sum of the cost of the GB transferred in a minute,

given a target bandwidth, and the cost for such duration. The figure shows a significant impact of

the selected country on a buyer’s cost: up to 10x when comparing the cheapest country (US, UK)

with the most expensive one (India). Given that many countries offer high bandwidth, there is

potential of savings for buyers who are not interested in a specific location, i.e., they leverage a
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dVPN mostly for privacy.

When focusing on bandwidth requirements, Figure 2.6(c) shows that the cost mostly grows

linearly as the bandwidth increases. This is simply because higher bandwidth requires more data

per minute. However, I also observe some non-linear “jumps”. For instance, the minimum cost for

acquiring less than 3.7 Mbps in the US is 0.01 MYST/GB + 0.00001 MYST/min. When higher

bandwidth is requested (between 3.7 and 6.6 Mbps) the minimum price available is 5x higher, or

0.05 MYST/GB + 0.00005 MYST/min. Similar patterns apply to other countries, where there are

some cheap sellers with relatively small bandwidth capacity, while it costs more to acquire higher

bandwidth. Some countries have relatively low bandwidth offerings, e.g., the highest bandwidth

provided in India (IN) is only 7.6 Mbps.

Next, I assume N concurrent buyers. Each new buyer consumes a portion of the available

bandwidth at a seller (see Figure 2.2(c)), and will thus eventually impact the decision of future

buyers. For this analysis, I assume each buyer requires 2.2 Mbps (average peak bandwidth from the

distribution described by Figure 2.4(c)). Figure 2.6(d) shows, for several locations, the minimum

cost for the N-th user as a function of N, or the number of concurrent buyers. As the load on the

marketplace increases, new buyers are left with more expensive sellers, and thus with a bill which

grows, overall, by 70x. The cost increases faster in countries with overall less bandwidth for sale.

For example, 100 concurrent buyers are enough to force new buyers to pay 0.7 MYST per GB in

SG and UA. Conversely, the US can support up to 600 concurrent buyers before reaching such a

high price.

2.4.2 Seller Income Analysis and Optimization

Methodology – I investigate a seller’s maximum income following Equation 2.4 (§ 2.2.3). For the

same reason as in § 2.4.1, I ignore the impact of blocklists. It follows that to solve the objective
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(a) Mysterium. (b) Sentinel.

(c) Tachyon

Figure 2.7: Correlation between session throughput and session duration for (a) Mysterium, (b)
Sentinel, and (c) Tachyon.

function I only need to calculate the expectations of the traffic volume E[n·B ·U ] and duration E[n·

U ]. I approximate the distributions of the variables (n, B, U ) by their best fitting functions over the

data I have collected. For example, the distribution of the DVPN session duration (Figure 2.4(a))

is fitted by function y = 1
axb+c

.

I now solve the seller’s optimal income as defined by Equation 2.4 (§ 2.2.3). To solve the

objective function, I need to: a) calculate the expectation E[n · B · U] and duration E[n · U], and

b) quantify the impact of the blocklist on bandwidth demand. I start off by deriving assumptions

based on the measurements.
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First, I observe that the session duration is not correlated to the session throughput in any form

as illustrated in Figure 2.7, where the throughput spans all values for a given session duration. Next,

I notice that the session duration is not affected by implementing a bandwidth limit r as well. The

independence is verified using the Kolmogorov–Smirnov (KS) test [240]. The null hypothesis is

that there is no difference between the two distributions of the session duration. Given the size

of the sampled data (number of sessions), the null hypothesis is accepted when the D-statistics

is below 0.021, 0.011, 0.008 given significance level α = 0.001 for Mysterium, Sentinel, and

Tachyon, respectively. As shown in Figure 2.8, the null hypothesis is accepted in most cases, that

is, the session duration U is independent from the bandwidth limit r and thus the number of buyers

n.

Based on these empirical observations, I make the following assumption: the session duration

U is independent from both the number of buyers n and the buyers’ throughput B, which implies


E[n · B · U] = E[n · B] · E[U]

E[n · U] = E[n] · E[U]

(2.5)

Let f(b) and g(u) be the PDFs of B and U, respectively. Following my assumption that the

duration does not depend on other variables, the expectation of the duration is a constant:

E[U] =

∫ ∞

0

ug(u)du. (2.6)

Given the results from Figure 2.4(d), the fraction of number of sessions can be expressed as

a function of a node’s available bandwidth, which I describe as H(r) and model according to

Figure 2.4(d). Then I have:

E[n] = H(r) ·N(x, y, l, A), (2.7)
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(a) Mysterium. (b) Sentinel.

(c) Tachyon.

Figure 2.8: KS-test statistics of session duration between different bandwidth limits for (a) Mys-
terium, (b) Sentinel, and (c) Tachyon.

Further, the volume expectation is the product of the number of buyers with lower throughput

than the bandwidth limit (b ≤ r) and the mean throughput of these buyers:

E[n · B] = H(r) ·N(x, y, l, A)

∫ r

0

bf(b)db. (2.8)

As discussed in § 2.4.1, I ignore the impact of blocklists since they are not publicly available

for any DVPN. This leaves us with the following objective function for seller’s optimal income:

max
x,y,r

E[U] ·H(r) ·N ′(x, y, l) · (x
∫ r

0

bf(b)db+ y)

s.t. E[U] ·H(r) ·N ′(x, y, l)

∫ r

0

bf(b)db ≤ D/2

(2.9)

Let us fix the location and ignore the blocklist, and denote
∫ r

0
bf(b)db by F (r). Then the
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objective function of the sellers is

max
x,y,r

E[U] ·H(r) ·N”(x, y) · (x · F (r) + y)

s.t. E[U] ·H(r) ·N”(x, y) · F (r) ≤ D/2

(2.10)

The solution is as follows. Let C(x, y, r) be the constraint function

C(x, y, r) = E[U] ·H(r) ·N”(x, y) · F (r)−D/2. (2.11)

And let
L(x, y, r) =

1

E[U]
· [I(x, y, r, l, A)− βC(x, y, r, l, A)]

=H(r) ·N”(x, y) · (x · F (r) + y)

− β(H(r) ·N”(x, y) · F (r)− D

2
)

(2.12)

I have
∇x,y,r,βL =H(r) · {∂N”

∂x
[(x− β)F (r) + y] +N” · F (r)}∂x

+H(r) · {∂N”

∂y
[(x− β)F (r) + y] +N”}∂y

+N” · {∂H(r)

∂r
[(x− β)F (r) + y]

+ rf(r)H(r)(x− β)}∂r

+ {H(r) ·N” · F (r)− D

2
}∂β

, (2.13)

which, in accordance to the Lagrange multiplier theorem, gives the optimal condition for maxi-
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mizing the objective as



∂N”

∂x
[(x− β)F (r) + y] +N” · F (r) = 0

∂N”

∂y
[(x− β)F (r) + y] +N” = 0

∂H(r)

∂r
[(x− β)F (r) + y] + rf(r)H(r)(x− β) = 0

H(r) ·N” · F (r)− D

2
= 0

(2.14)

Results – Figure 2.9 shows the average number of sessions (black markers) and total income

(orange markers) they produce for Mysterium sellers under variable pricing and bandwidth limits.

Each point further shows minimum and maximum value of each metric as errorbars. The dashed

lines represent a fitting function of daily sessions (N(x) = aex−b + c, black) and the theoretical

income expectation (Equation 2.9, orange). These results are derived from a one-month experiment

where I fix the location l to be the US, set no data cap D =∞, and allow all traffic types. To bound

the number of variables, I investigate 6 different prices per GB (0.01, 0.02, 0.05, 0.1, 0.22, and

0.5) MYST but fix the price per minute to the minimum, i.e., the most popular option as suggested

by Figure 2.6(a). For the nodes bandwidth I select 5 and 25Mbps, which are low and average

bandwidth currently offered by Mysterium nodes in the US.

In presence of high bandwidth (Figure 2.9(a)), the figure shows that the number of daily ses-

sions quickly decreases as the price increases. For example, a 10x price increase (from 0.01 to

0.1 MYST per GB) causes the average number of daily sessions to drop from 44 down to about

4 sessions, and then eventually near zero as the price keeps increasing. This behavior causes the

income to be fitted by a non-linear function: the income grows when the price doubles from the

minimal (from 0.01 to 0.02 MYST per GB), then decreases (between 0.02 and 0.22 MYST per

GB), and finally flattens out (between 0.22 and 0.5 MYST per GB). A similar trend is observable
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Figure 2.9: Mysterium’s seller income analysis as a function of price settings assuming a node
bandwidth of: (a) 25Mbps and (b) 5 Mbps. (c) Evolution over six months of default and optimized
monthly income per marketplace.

also when I limit the node bandwidth to just 5Mbps. In this case, the node attracts less than half

of the sessions but it is also less penalized by a price increase, i.e., peaking at 0.05, or twice as

much as before. It follows that, at its peak value, the daily income amounts to 0.28MYST versus

0.45MYST with 25Mbps, or just a 40% reduction in presence of an 80% bandwidth reduction. This
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result can be due to many reasons, but mostly indicates that a small portion of Mysterium buyers

tend not to optimize their costs, either because they purposely pay more for better experience or

they do not optimize their node selections, e.g., filter their nodes by pricing and bandwidth.

I now focus on the accuracy of my theoretical income expectation. The figure shows that when

the price per GB is equal or lower than 0.1 MYST, the theoretical results fit the measurement results

quite well. However, theoretical and actual incomes diverge when x > 0.1, e.g., the theoretical

income overestimates the actual income by 3x, compared to the average, with a price of 0.5 GB per

MYST. This is because at this price point there are mostly no sessions per day, with the exception

of few days which cause high variance, e.g., between 0 and 0.7 MYST with a price of 0.5 GB per

MYST and 25 Mbps (Figure 2.9(a)). Due to such high variance, the fitting function for N(x) is

quite coarse in this range.

When comparing the latter result with the current pricing adopted by Mysterium sellers (Fig-

ure 2.6), I find that most sellers are making suboptimal decisions with respect to their income

optimization. Figure 2.9(c) shows, for each marketplace, the lowest (lower bound) and optimized

(high bound) incomes over 6 months. Each monthly income is derived using the same strategy as

in Figure 2.9(a); I then derive income value in dollars based on the cryptocurrency value during

each day of the month, with the goal to visualize its high volatility. The figure shows that a careful

mechanism to optimize seller’s price offers significant income increases, comprised between 3x

(Mysterium) and 50x (Sentinel). However, even assuming optimal income, the monthly income is

mostly below $10 (both over time and across DVPNs) or the cost of renting an AWS instance to

act as a DVPN node. However, if the increasing trend of cryptocurrency values continue, hosting

a DVPN may become more and more profitable. Similarly, it seems that Mysterium has realized

that the default pricing scheme is currently too low, as suggested by the change in the default price

as observed in Figure 2.6(b). The figure also shows that the volatility of cryptocurrency can make
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Table 2.2: The value of spare Internet bandwidth in the US.

Time (Hr)
Current

MYST ($)
Optimized
MYST ($)

Buyer’s Cost
Average 0.18 (0.11) 0.02 (0.012)

Most Popular - 0.026 (0.016)
Least Popular - 0.015 (0.009)

Seller’s Price Average 0.23 (0.14) 0.028 (0.017)

one marketplace more profitable than another, over time. For example, Mysterium has been filling

the (income) gap with respect to Tachyon over the period of my measurement.

It has to be noted that the above price optimization only applies to a precise period of time. In

reality, the optimal price is not fixed but should be evolving over time, influenced by the instanta-

neous choices of both the buyers and the sellers, as well as the presence of alternative marketplaces.

This motivates me to build a system, in the upcoming section, which is capable of adjusting seller’s

“settings”, e.g., pricing and traffic per marketplace, to optimize their income over time.

2.4.3 Discussion

I finally comment on the value of spare Internet bandwidth leveraging the collected data and pro-

posed modeling. I focus on Mysterium – since it has shown to be a mature bandwidth marketplace

– and the US, which is currently the largest market (see Figure 2.2(b)) and the location where I

conducted my pricing and bandwidth experiments (see § 2.2).

By the end of my measurements, Mysterium counts 302 sellers (Figure 2.2(b)) in the US ask-

ing an average price of 0.23 MYST/GB. Using function N(x) from Figure 2.9(a), i.e., assuming

25 Mbps or the average bandwidth offered by nodes in the US, I estimate that these nodes currently

attract, in total, 629 daily buyers, that spend between 0.01 and 0.74 MYST/GB (0.18 MYST/GB
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on average).4 It follows that the value of spare Internet bandwidth (in the US) lies between 0.18

MYST/GB (average price paid by the buyers) and 0.23 MYST/GB (average price requested by the

sellers), which corresponds to $0.11-0.14 per GB, given the cryptocurrency value then.

Next, I explore the effect of the optimization of buyer’s cost and seller’s income on the value

of spare bandwidth, independently. Figure 2.4(a) shows that the average buyer session lasts about

one hour. Assuming 629 daily buyers, equally distributed throughout the day, then there are, on

average, 25 concurrent buyers interested in a US node at any point in time (629 × 3, 499s/24h ≈

25). I then apply the methodology described in § 2.4.1 (Figure 2.6(d)), where each buyer selects the

cheapest seller who has enough spare bandwidth to satisfy her demand. After this optimization,

the buyers will pay between 0.01 and 0.05 MYST/GB (0.02 MYST/GB, on average), or a 10x

reduction compared to today (0.18 MYST/GB). I then take a closer look at the time of the day. My

measurements indicate that there are 33 and 18 concurrent buyers during the most and least popular

hour, respectively. Table 2.2 shows the optimized buyer’s costs in these scenarios. From the seller’s

perspective, I have previously derived optimal price setting of 0.028 MYST/GB (Figure 2.9(a)),

which is 8x smaller than the average price (0.23 MYST/GB) that the sellers are requesting today.

Note that the table does not show optimal seller’s price at different times of the day since I did

not observe significant shift. These discrepancies suggest that neither the buyers nor the sellers are

optimizing their costs/incomes.

From the above analysis, I conclude that the value of spare US Internet bandwidth lies between

$0.11 and $0.14 per GB. However, both buyers and sellers have room to move this price and

optimize either their cost or income. This result was obtained considering the optimization of a

4More specifically, from the active measurements, I know the number of sellers M given any price x ranging from
0.01 to 0.74 MYST/GB. For instance, M(0.01) = 4 means that there are 4 sellers offering at 0.01 MYST/GB. I also
know the number of buyers N given a price x per day. For instance, N(0.01) = 43 means that a seller with 0.01
MYST/GB attracts 43 buyers per day. Let Ts be the average buyers’ session time. I then can estimate the number of
concurrent buyers in the US by (M(0.01) ∗N(0.01) +M(0.02) ∗N(0.02) + . . .+M(0.74) ∗N(0.74)) ∗ Ts/24h.
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buyer’s cost or seller’s income, in isolation. In reality, one would affect another. For example, the

value of bandwidth would decrease if more sellers optimize their incomes because the bandwidth

demand is currently less than the supply, i.e., I estimate 25 concurrent buyers when the sellers can

support over 600 (Figure 2.6(d)). Further analysis would require many other assumptions, e.g.,

rationality of the buyers and sellers, and is out of the scope of this project.

2.5 RING: One DVPN To Rule Them All

This section translates results from the previous section in a concrete system, RING, which helps

sellers to enhance security protection as well as maximize their income while participating to multi-

ple bandwidth marketplaces. I start with a quick extension of the bandwidth monetization problem

in the context of a multi-vendor marketplace. Next, I detail design and implementation of RING. I

then conclude the section by showing how RING operates.

2.5.1 Multi-Vendor Bandwidth Market Optimization

Consider a seller who joins M marketplaces concurrently. For a marketplace i ∈ [1,M ], I denote

by Bi and Ui the probability density functions of bandwidth and duration characterizing its buyer

sessions. Next, I denote by xi and yi the prices for traffic volume and session duration, per mar-

ketplace i. Finally, I call ri the maximum bandwidth allowed per marketplace and D the total data

cap, i.e., the sum of all data caps Di per marketplace. The objective function from Equation 2.4

becomes a cross optimization of the total income from multiple marketplaces (see Equation 2.15):

max
xi,yi,ri

M∑
i

(xi · E[ni · Bi · Ui] + yi · E[ni · Ui])

s.t.

M∑
i

E[ni · Bi · Ui] ≤ D/2

(2.15)
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Algorithm 1: Sellers’ Income Optimization Heuristic
Input : DV PNs[1,M ]. For i ∈ [1,M ], Rate Limit ri, Price xi, Data Caps D,Di,

Income Ii, Cumulative Consumed Data CCi, Last Consumed Data LCi, Left
Time Tleft.

1 I ←
∑M

i Ii
2 for i ∈ [1,M ] do
3 Di ← Di + α(D Ii

I
−Di) // Adjust the data cap

4 Data demands di ← LCi · Tleft

5 if di > Di − CCi then
6 Decrease ri and/or increase xi // decrease demands
7 else
8 Increase ri and/or decrease xi // increase demands
9 end

10 end
Output : Rate limits ri and price settings xi.

In reality, it is challenging to collect the information needed to solve Equation 2.15. Based on

the insights I have gained from the optimization of the seller’s income in a single marketplace (see

§ 2.4), Algorithm 1 proposes a local heuristic to approximate the solution of the above optimiza-

tion.

First, I calculate total (across marketplaces) income for all DVPNs (L1 of the algorithm) in

a time interval T , e.g., one hour. The interval should be neither too short, since changing the

settings requires rebooting the DVPN (thus interrupting all ongoing sessions), nor too long which

slows down algorithm’s convergence to the optimal settings. I have tested several time intervals

and found that one hour is appropriate. The total data cap D is a user provided constant, which

is initially equally distributed among marketplaces (Di). Each marketplace may generate different

income due to, for instance, the current value of its cryptocurrency. I thus adjust the data cap

for each marketplace to maximize the income. When a marketplace has generated more income

per GB than the average income per GB for all marketplaces ( Ii
Di

> I
D

), this is an indication that

its data cap Di should be increased. Otherwise its data cap should be decreased. I iterate across
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marketplaces and adjust their data cap (L4), where the aggressiveness of data cap reallocation is

determined by coefficient α, i.e., when α = 1, the data cap is adjusted purely based on what

happened in the last hour.

Next, I adjust the bandwidth limits and/or prices to maximize the profit for each marketplace.

§ 2.4 suggests that the key to maximize a seller’s income is to adjust bandwidth limit and price such

that the buyers’ bandwidth demand fulfills the seller’s data cap. I calculate the buyers’ bandwidth

demand based on consumed data in the last hour (L5). Then, I compare the derived bandwidth

demand with the leftover data cap (L6-L10). If the bandwidth demand exceeds the data cap, then

I either increase the price or decrease the rate limit if the marketplace allows charging for session

duration (i.e., yi > 0). In fact, according to § 2.4 this would allow to reduce the bandwidth demand

and increase income. Otherwise, I either decrease the price or increase the rate limit to attract more

buyers, and thus increase income.

2.5.2 Design and Implementation

RING’s design is motivated by four goals. First, allow a seller to concurrently join multiple mar-

ketplaces (DVPNs). Second, provide intelligence to maximize a seller’s income. Third, provide

fine-grained control on permitted traffic to limit the danger of running a DVPN node. Fourth, ease

of use: currently, mostly expert users can deploy DVPN nodes due to lack of executables across

OSes, complex setup, etc.

Figure 2.10 shows RING’s architecture with its three main components: client, manager server,

and crawler. The crawler is the same one described in § 2.2: it periodically crawls the set of

supported DVPNs to fetch information like available nodes, and current pricing. The client controls

and monitors multiple DVPN nodes running at the user machine. It fetches up-to-date information

about the DVPNs and makes decisions for local bandwidth allocation and price settings. Below, I
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Figure 2.10: Visual representation of RING.

provide details on RING’s client and its traffic control.

RING Client – I adopt Docker containers [54] which allow to run DVPN nodes concurrently and

in isolation. I create Docker virtual network interfaces which eases traffic monitoring and rate

limiting per DVPN. I build Docker images from each DVPN up-to-date source code to support

Raspberry Pi (ARM), which I envision as the perfect plaform for RING’s clients – a small and

cheap box to attach to the home router.

RING’s client can be managed by a Web interface. This interface makes it possible to cus-

tomize each DVPN, e.g., by providing crypto-wallet addresses, speed limits, data cap, and al-

lowlists. Further, the interface shows several useful statistics, e.g., bandwidth consumed by each
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DVPN as shown in Figure 2.10. The Web interface (locally) communicates with a controller which

executes user input, e.g., starts/pauses/stops a specific DVPN or updates the price settings. RING’s

client can also set timer and choose specific times of the day to be a part of the marketplace. Other

important user inputs are rate limits, which translate into Linux TC [36] rules, and accesslists,

which translate into iptables. Next, I offer more details on how accesslists are implemented.

Traffic Control – RING’s Web interface allows users to only allow low, medium, high risk traf-

fic [6], or select a set of content categories allowed, e.g., avoid gambling and pornography. An

option to block P2P traffic – identified using IPP2P – is also provided. To generate such ipta-

bles rules, I rely on the domain classification described in § 2.2: SNI + DNS data matched using

McAFee database [6] which achieves, in my data-set, >95% domain coverage. Such rules are

maintained at the manager and updated regularly.

2.5.3 Evaluation

I demonstrate the functioning of RING via controlled experiments (over one week) using two AWS

EC2 machines in the US: one machine running RING’s heuristic and one using default prices and

no control on data cap and bandwidth limit. I assume a 300 GB weekly data-cap, initially equally

divided between the three DVPNs. I derive income for each controlled user based on the amount

of traffic they carried, their price settings (either default or using RING price adjustments), and

the cryptocurrency value. In the case of Mysterium, I also validate such computed income against

the official figures reported by Mysterium. This cannot be done for Sentinel and Tachyon which

are still in development and do not yet release payments to their users. In the following, I first

discuss the decisions made by RING’s heuristic and then compare the income generated by the

two machines.

Figure 2.11(a) shows the evolution over one week of the data cap allocation per DVPN realized
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Figure 2.11: RING’s preliminary evaluation over one week: (a) data cap adjustments, (b) hourly
forecast of expected traffic volume, (c) price decisions, and (d) cumulative income.

by RING, which is automatically adjusted based on the computed income per GB. The figure shows

that Sentinel’s data cap almost doubles over one week, from the starting 100 GB up to 170 GB,

at the expense of Tachyon (down to 90 GB) but mostly Mysterium (down to 40 GB). This implies

that Sentinel is bringing the most income per GB, as previously shown in Figure 2.9(c).

Figure 2.11(b) shows a hourly forecast of the expected traffic volume for the week given the
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rate measured in the last hour. The figure shows that, within two days, both Sentinel and Tachyon

attract significant amounts of traffic which would exceed their weekly data caps. Their prices are

then increased (Figure 2.11(c)) which effectively reduces the demand (Figure 2.11(b)) while in-

creasing income (Figure 2.11(d)). The opposite behavior is observed for Mysterium; as previously

discussed, Mysterium’s default price is too high and a price reduction can attract more traffic (see

Figure 2.9). Because I adjust price and bandwidth limit conservatively, Tachyon runs out of data

cap on the second day. With appropriate price setting, Mysterium and Sentinel show data demands

(50 and 150 GB) that closely approximate their data caps.

To conclude, Figure 2.11(d) shows the cumulative income generated using both default set-

tings for each DVPN, and RING’s heuristic. Because of the high demand shown in Figure 2.11(b),

Sentinel and Tachyon with default settings run out of data cap on the second and third day respec-

tively, generating a total income of $3.7. In contrast, RING allocates a larger data cap to Sentinel

and also increases its price, generating a combined (Sentinel plus Tachyon) income of $10.5. For

Mysterium, RING’s price adjustment allows to double its income compared to the default setting

($0.9 versus $0.4).

This preliminary evaluation shows that RING achieves higher income than default DVPNs set-

tings. It is noteworthy that the evaluation only reveals partial capability of RING. With the flexibil-

ity to deploy more advanced optimization algorithms, e.g., reinforcement learning schemes [129,

130, 131, 203, 305], and the ability to include more DVPNs, RING has a high potential in benefit-

ing the bandwidth sellers. I have released RING [30, 31] to the public.

2.6 Related Work

Several research studies quantify the presence of spare bandwidth. In particular, a measurement

study showed that a typical U.S. household does not use most of its bandwidth while streaming



65

and gets marginal gains from upgrading speeds [39, 116]. Despite such findings, user studies have

shown that reliability and speed are most important for consumers [268, 275]. This inclination

towards high speeds, enhanced by the proliferation of bandwidth-hungry applications, further im-

pacted by the necessary variability in traffic demand, leaves often significant portions of bandwidth

unused. Hence, monetization opportunities, which I analyzed in this project, arise.

Data caps are a method ISPs use to protect against heavy-hitters [48] or to limit user activity

in resource-constrained networks such as cellular networks [124]. There has been research on the

implications of data caps on the user experience. For example, in [138] the authors explored the

effects of data caps on home Internet usage in urban South Africa to show that users have three

uncertainties with regards to their bandwidth usage: invisible balances, mysterious processes, and

multiple users. My project considers a different scenario, the one where dVPN nodes operate under

data caps, yet because these caps are unlikely to be reached, they monetize spare bandwidth. ISPs

are faced with a tradeoff – make their plans less attractive by reducing data caps and negatively

affect users and their own revenues, or enable larger caps to attract users and consequently enable

bandwidth monetization.

There has been research on understanding the users that are willing to pay more for bandwidth.

Necessarily, such a willingness is positively related to income and other technological attributes

and negatively related to socio-demographic attributes such as habitat and age [126]. Another

study found that there exists a significant variability in the sense that certain kinds of users are

willing to pay substantially more than others [297]. Such a variability exists with dVPNs, which

are currently in their “infancy.” Hence, there is a narrow group of consumers involved in the spare

bandwidth market. Nonetheless, this market is likely to grow in the coming years and become

mainstream. In this project, I analyzed the key parameters that affect this emerging market.

There has been work on addressing bandwidth pricing among users and ISPs considering
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single- and multi-class scenarios [283]. Others have analyzed incentives for creating efficient inter-

ISP bandwidth marketplaces [125] or pricing schemes among different to accomplish net neutrality

[180]. My work is distinctive because I effectively have Internet consumers both as buyers and sell-

ers of the spare bandwidth market. A more similar scenario is the P2P system BitTorrent, where

Internet users trade the download resources with upload capacity, i.e., bandwidth for bandwidth.

There has been work on studying the incentives of users in such a P2P system [221, 256]. Yet,

my investigated market is different because the trading resources are not the same, i.e., bandwidth

trading with money, and the latter resource depends on geolocation, i.e., purchasing power is dif-

ferent in different countires, and is potentially unlimited with respect to my investigated market.

Also, unique issues affect such a market, e.g., seller’s location and willingness to serve a particular

type of traffic.

Network censorship, i.e., blocking traffic originated to and from particular applications or re-

gions [108], is one of the main drivers behind the consumer-consumer bandwidth marketplace I

explored in this project. Typically, buyers come from censored regions and sellers reside in the

remainder of the Internet. My data (details omitted) confirm that this is indeed the case.

2.7 Discussion

Ethical Consideration – My work involves human subjects, i.e., users who connect to dVPN

nodes hosted by us. I followed the best community practices when conducting my work to make

my data collection anonymous. Two identifiers are available for DVPN users: IP addresses and

dVPN-specific identifiers. I perform coarse-grain geo-location analysis on the IP addresses which

contact my nodes and then discard them. Further, dVPN-specific identifiers are not exposed to

my nodes for both Sentinel and Tachyon, and in case of Mysterium I do not record them. IRB at

Northwestern University has determined that my work is not considered human research because
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I used non-identifiable private information about living individuals and data collected does not

contain any accompanying information by which I could identify such individuals.

Measuring Bandwidth Marketplace With Cryptocurrency Transactions – This project focuses

on measuring the DVPNs based on network activities, such as the initiation of VPN sessions and

the amount of data transferred. Given that the DVPNs are based on blockchain, this analysis can

be further enriched by examining cryptocurrency transactions recorded on the blockchain. This

would allow us to leverage the unique transparency of blockchain technology to understand the

economic transactions underpinning the service, shedding light on their operational effectiveness

and the economic dynamics driving their usage. I leave such explorations as future work.

Bandwidth Marketplace Dynamics and Cryptocurrency Valuations and Mining – This project

explores the bandwidth marketplace, focusing on modeling aspects under the initial assumption

that marketplace dynamics remain unaffected by fluctuations in cryptocurrency values or min-

ing activities. However, this assumption oversimplifies the complex interplay between the mar-

ketplace and cryptocurrency economics. The reality is that both buyers’ pricing strategies and

sellers’ revenues are intricately linked to cryptocurrency valuations. Moreover, there exists a re-

ciprocal relationship between bandwidth marketplace operations, such as VPN tunnel transactions,

and cryptocurrency mining efforts. Mining processes not only facilitate marketplace activities by

grouping, verifying, and recording transactions on the blockchain but also influence the economic

incentives for miners based on the transaction volumes within the marketplace. Consequently,

the decisions of buyers and sellers regarding which DVPNs to engage with are significantly in-

fluenced by the state of the cryptocurrency market. To achieve a more detailed understanding,

it would be interesting to incorporate the game theoretical dynamics prevalent in cryptocurrency

markets [89, 106, 185, 238, 239, 290, 309, 317] into the analysis, which would shed light on the

nuanced economic interactions at play.
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Security and Privacy Issues – My passive measurement effectively reveals numerous traffic char-

acteristics, including origins, destinations, duration, throughput, and categorization, among others.

It has also helped to model the bandwidth marketplace behind DVPNs. Nevertheless, it has also

brought potential security and privacy issues of DVPN to light.

First, there is no protection for clients’ traffic, leaving it vulnerable to monitoring and inter-

ception by DVPN nodes, particularly for plaintext packets like DNS queries and responses. While

the adoption of HTTPS traffic can reduce this risk, my study (§ 2.3) still demonstrates what in-

formation a DVPN node provider can obtain by analyzing ongoing traffic. Such analysis could

lead to privacy breaches for DVPN clients. It is noteworthy that while I refrained from conducting

individual-level analysis due to ethical concerns, a malicious DVPN node provider could techni-

cally perform such analysis, which could result in serious privacy breaches for DVPN clients. I

have found that there are no feasible solutions to this problem without complete control of the

entire wild-area network. Indeed, even if one can ensure that the DVPN node does not passively

monitor the traffic, it is impossible to guarantee that home routers or other middleboxes along the

route do not.

Second, there are also great risks of joining the DVPN as a node provider. Popular DVPN

networks like Sentinel and Tachyon provide no option for node providers to protect themselves

from dangerous traffic. While Mysterium offers such an option, it does not provide further details

on what traffic will be filtered. RING, which I built, enables this protection for node providers.

Still, I acknowledge that RING relies on third-party databases that may be subject to attacks due to

late updates or false positives. Additionally, a malicious client can locate all IP addresses of DVPN

node providers by accessing APIs provided by DVPN networks, e.g., Mysterium and Sentinel, or

by continuously restarting new connections if such an API is not available, as with Tachyon. This

creates potential privacy breaches and security issues for DVPN node providers.
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Lastly, the existing DVPNs are not truly “decentralized”, as they often rely on a centralized

endpoint at the boot of the service. For instance, Mysterium clients must first access the URL

[testnet-]broker.mysterium.network before connecting to a DVPN node. This makes the DVPN

service vulnerable to attacks at the centralized endpoint and reduces censorship resistance, which

is a primary goal for many DVPN clients (see § 2.3).

2.8 Summary

The decentralized VPN is an enhancement to the centralized VPN with respect to the security and

privacy of Internet users. Given the increasing residential Internet speeds and the rise of cryp-

tocurrencies which allow easy transactions to be made between any individuals on earth, multiple

DVPNs have been proposed and attracted many users. In this chapter, I have presented the first

comprehensive study of the ecosystem of DVPNs. I actively and passively monitored three major

DVPNs (Mysterium, Sentinel, and Tachyon) for 6 months, reporting on their footprint, perfor-

mance, income opportunities, and traffic characteristics. Using this data, I estimated that the value

of spare Internet bandwidth in the US ranges between 11 and 14 cents per GB. Still, I found that

both buyers and sellers utilize ad-hoc “rules-of-thumb” when choosing their prices, resulting in a

sub-optimal marketplace. Indeed, I showed that a seller’s income could be increased by setting a

lower but optimal price which is likely to attract more buyers. I also predict that the value of spare

bandwidth would be reduced when more sellers begin to optimize their income as the current band-

width supply exceeds the demand. Finally, I formalized how a seller’s income could be optimized

in a multi-vendor marketplace. I also realized this abstraction in RING, the first such marketplace

built on top of Mysterium, Sentinel, and Tachyon, which helped increase a node revenue by 63%.

RING also enhances the existing DVPNs on the security guarantees.

However, even with the adoption of multiple hops, as suggested by Mysterium and Sen-
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tinel [22] or Tor [40, 160], I find that DVPNs are still unable to provide adequate security and

privacy guarantees without control of the entire wild-area network and user machines. Ultimately,

any form of VPN is bound to some trust assumptions, making it difficult to obtain complete secu-

rity and privacy guarantees.
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CHAPTER 3

PDNS: ENHANCING DNS PRIVACY WITH PRIVATE INFORMATION RETRIEVAL

The Domain Name Service (DNS) is the phonebook of the Internet [45] which maps IP addresses

like “151.101.195.5” to human-friendly names like “cnn.com”. At the birth of the Web, secu-

rity and privacy were not contemplated, leaving DNS traffic as plaintext. This means that any

(middle)box placed between a DNS client and recursive resolver (ReR) could monitor user activ-

ity, potentially building accurate user profiles [178]. Twenty-eight years later, DNS-over-TLS

(DoT) [157] and DNS-over-HTTPS (DoH) [187] solve this limitation by mean of end-to-end

encryption. DoT and DoH have been gradually supported both by clients (e.g., browsers like

Chromium [84] and Firefox [80]) and ReRs [79, 81].

End-to-end encryption protects a user’s privacy from eavesdroppers but not from a ReR. ODNS [277]

is a recent solution — already deployed by Cloudflare [285] — to address such problem by de-

taching a user identify from a DNS request. This is achieved by adding a proxy between DNS

client and ReR such that: 1) the proxy is blind with respect to an encrypted DNS query, 2) the

ReR is blind with respect to the client’s identity (IP address). Assuming a non-colluding proxy

and ReR, user privacy is enforced. However, non-collusion is hard to enforce and verify in reality.

For example, both proxy and ReR can be subjects of a subpoena, at which point privacy is again

sacrificed. Finally, ODNS still allows the ReR to gather knowledge about the users as a whole,

e.g., answer questions like “what is the most popular online newspaper, and its potential political

affiliation, in a given region?”

The only way to protect users from the above privacy infringement would be either remov-

ing the ReRs from DNS [278], or having ReRs operating in the blind, i.e., by resolving domains
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without knowing what they are. The former option exhibits high performance penalties to users,

amplifies workloads on the ANSes, and raises additional security concerns. The latter option seems

counter-intuitive, but in reality several techniques exist which allow similar operations. These tech-

niques fall in the branch of Private Information Retrieval (PIR), which is achieved by various cryp-

tographic tools such as homomorphic encryption [113, 172, 173, 264, 264]. Indeed, private DNS

is often cited as a motivating example in PIR research, but no practical implementation currently

exists.

The goal of this work is to fill the gap between PIR and DNS research. I do so by introducing

PDNS, a Privacy-Preserving DNS designed to augment rather than replace DNS, in a spirit similar

to DoH and ODoH. To achieve my vision, I had to solve the following challenges.

PIR Selection and Optimization: Out of all the available PIR categories, I suggest utilizing the

single-server stateless PIR schemes for DNS, as they don’t require a non-collusion agreement, bear

low costs for cache updates, and offer satisfactory running times for query processing. I bench-

marked multiple schemes and find that Spiral [241] offers the highest performance. To integrate

Spiral into DNS, I researched the optimal DNS cache configuration for PIR, and implemented

performance enhancements leveraging multi-threading and low-level instruction support.

Cache Population: PIR protocols assume that a database (or cache in DNS context) is either

given or can be privately populated. This is not the case for DNS where the ReR is responsible for

populating its cache based on the user request. Clearly, a blind ReR cannot perform such operation

which should be tackled by the client instead. Still, the client cannot update the ReR cache or

it would invalidate the system privacy. I propose EDNS-PR, our own EDNS(0) [150] extension

which allows a client to communicate the IP address of its ReR in presence of cache misses, so

that an authoritative name server (ANS) can privately populate the ReR’s cache.

Security Challenges: The previous construction imposes new security challenges for DNS. At-
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tackers can either congest ANSes, or launch reflection attacks to congest or poison the cache of

ReRs. I leverage the security properties of Spiral with digital signatures to allow ANSes to validate

cache misses when needed, i.e., when suspecting a potential attack.

I implement a PDNS client and ReR, and extend the popular BIND9 [46] to support EDNS-PR

as my own extension of EDNS(0) at the ANS. In my experiments, PDNS answer queries 2x faster

than DoH over Tor – a privacy-preserving anonymous network – even on a large cache (512MB, up

to 13M DNS records). PDNS is also faster than ODoH (208ms versus 272ms) with a small cache

(64MB, up to 1.6M DNS records), and adds 180ms with a large cache. I envision that the advent of

specialized hardware for PIR would reduce PDNS’ query duration to 70ms (even on much larger

caches), thus making its performance comparable with DoH.

Such competitive performance and strong privacy guarantees do not come for free. PDNS

requires a significant effort to a ReR to handle queries fast. My benchmarking on an 8-core 3.0GHz

AMD EPYC shows that a PDNS ReR can only handle few queries per second, while DoH can

handle hundreds of queries per second. This implies a higher deployment cost for an operator,

which can be absorbed via a subscription model for privacy-oriented customers, as currently done

by Virtual Private Network providers. Indeed, my analysis concludes that a subscription fee of

$5 per user is sufficient to make PDNS financially viable (see § 3.6.3). Further, participating

ANSes need to support DoH, which causes a significant bandwidth increase. Nevertheless, such

DoH adoption is not only meant for PDNS but also beneficial to current DNS, as it amends an

existing user privacy violation [181, 255]. DoH for ANSes has been proposed independently from

PDNS [188].

One final question remains: what are the incentives for the adoption of PDNS? For users,

the extra privacy provided justifies the minor performance penalty. For the ReR, the extra cost is

justified by unprecedented privacy guarantees, which could be offered at a premium. Participating



74

Table 3.1: Comparison of privacy-preserving properties of current DNS solutions versus single
and multi-server PIR.

Solution
Defend

Pervasive
Monitoring

Hide Individual
Access Pattern

Hide
Organizational or
Regional Access

Pattern

Survive
Non-Collusion

Agreement
Violation

DoUDP [49] / DoTCP [157] No No No N/A
DoT [193] / DoH [187] Yes No No N/A
DoT/DoH + Resolver
Rotation [192, 267] Yes Yes* No N/A

ODNS [277] / ODoH [285] Yes Yes No No
ODNS/ODoH + Proxy

Rotation [217] Yes Yes Yes* No

DoHoT [245, 246] Yes Yes Yes* Yes*

ReR-Less + DoUDP [278] No No No N/A
ReR-Less + DoH/DoT Yes Yes Yes N/A

DNS + Multi-Server PIR Yes Yes Yes No
DNS + Single-Server PIR Yes Yes Yes Yes

ANSes also have an incentive to support PDNS, as the additional traffic is offset by the increased

privacy they can provide to their users, a valuable asset for competing domains especially when

offering sensitive content.

3.1 Background and Motivation

In this section, I present the evolution of DNS along with its user privacy properties. Next, I offer

some background on Private Information Retrieval (PIR) and analyze its potential privacy benefits

when applied to DNS. I finally conclude the section discussing the key challenges when applying

PIR to DNS.
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3.1.1 DNS and Privacy

DNS clients send queries to a ReR, either run by an ISP or by public providers such as Google [82]

and Cloudflare [79]. The ReR uses a cache to speed up DNS queries; cache misses trigger iter-

ative DNS lookups to the ANSes for the root, top-level domain, and final zones (“root/TLD/final

ANS” for short), before returning an answer to the user while updating the ReR’s cache. The

DNS RFC [49] specifies to send DNS queries either via UDP (DoUDP) or TCP (DoTCP). UDP

was adopted in most cases because of better performance given due to its absence of connection

handshake [211].

The original DNS protocol does not use encryption, potentially exposing user privacy to in-

network eavesdroppers. DoT [193] and DoH [187] are two recent IETF standards which extend

DNS by requiring the client to establish an encrypted session with the ReR. While DoT/DoH

protects user privacy from in-network eavesdroppers, the ReRs still have full visibility of the DNS

queries from their users. This represents a considerable privacy breach, especially in presence of

public ReR with massive user bases like Google and Cloudflare.

Oblivious-DoH (ODoH) [208, 285] introduces an oblivious proxy between user and ReR. As-

suming the ReR does not collude with the oblivious proxy, user identity and DNS queries are

disjoint. However, non-collusion is hard to enforce and verify. Further, ODoH resolvers still learn

the access pattern, i.e., the frequencies of queried domains, for a particular organization or region

when the DNS client defaults to the “closest” proxy and ODoH resolver, as commonly done for

performance reasons [285]. To hide organizational/regional access patterns, DNS clients need to

rotate their proxy and/or ODoH resolver frequently [192, 217, 267]. This causes performance

degradation, e.g., when a far proxy is selected, and a challenge to extend the non-collusion agree-

ments among multiple ReRs and proxies. Further, simply rotating proxies or ReRs cannot protect

individual user privacy in the long run; the best versions of this approach are capable of offering
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K-anonymity [186, 191, 216], i.e., preventing ReRs from differentiating between individual users,

but not regional access patterns preservation.

In [278], the authors have recently proposed the provocative idea of eliminating all ReRs,

thereby addressing DNS privacy issues associated with them. This approach has several concern-

ing shortcomings. First and foremost, it introduces DNS “flattening”; DNS is hierarchical to pro-

vide speed, as a closeby resolver would respond if it can, scalability, as distributed caching avoids

redundant queries, and reliability, as distributed caching allows to cope with failures at ANSes. As

discussed in [278], such flattening would increase the overall DNS load by a few times, potentially

becoming unsustainable for ANSes of popular or root zones [171]. Second, this approach is cur-

rently impractical as many ANSes, e.g., Akamai [279], adopt complex rate limiting solutions to

prevent traffic from non ReRs. Finally, ANSes currently do not support HTTPS (see § 3.3.3) thus

requiring [278] to rely on DoUDP. This implies that pervasive traffic monitoring is possible under

such approach, which indeed deteriorates the overall DNS privacy. A more robust solution should

involve implementing DoH across all ANSes (“ReR-Less DoH”), which would further increase

the overall DNS load.

3.1.2 Private Information Retrieval

PIR protocols [95, 141, 147, 148, 204, 209, 236] are advanced cryptographic techniques which

allow a client to fetch an item from a remote database, e.g., the ReR cache in the DNS scenario,

without letting the server know which item it is. At a high level, PIR protocols are divided into

single-server and multi-server, referring to how many server-side components they rely on. Over-

all, multi-server PIR provides efficient data transmission between the user and the servers, and

lightweight computation, but it requires at least two non-colluding servers [148, 204, 209, 236]. It

also requires intensive synchronization between servers for the maintenance of identical databases.
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Single-server PIR protocols only require one untrusted server but rely on heavier cryptographic

operations [95, 183, 241], which make them slower than multi-server PIR. Despite the latter, we

argue that a robust privacy-preserving DNS should not rely on a non-collusion agreement, and thus

discard multi-server PIR solutions.

PIR protocols can also be stateful or stateless. Stateful protocols [148, 183, 209] require the

user to maintain a state, which contains information to generate PIR queries. The state is fetched

from the PIR server and expires when the database is altered or the state is used a maximum number

of times. With stateless protocols [95, 204, 241], the user does not store and update any database-

related state except for the query keys. Given that a DNS cache changes frequently, stateless PIR

should be preferred. I offer more details on single-server stateless PIR below.

Prior to delving into PIR, I introduce homomorphic encryption, which is the key component of

PIR schemes within this category [95, 241, 247].

Homomorphic Encryption (HE) – It allows to perform computation on encrypted data [113, 173,

264]. HE relies on a cryptographic computational hard assumption known as learning-with-error

(LWE) [235, 264]. Define an HE scheme HE : {KeyGen,Enc,Dec,Eval} which contains the

following algorithms:

1. KeyGen(1κ) → (sk, pk): Define a security parameter κ, 1κ is a canonical notation to define

the strength of an cryptographic scheme. This algorithm outputs a secret key sk and a public

key pk.

2. Enc(sk, x) → [x]: On input the secret key sk and an integer x, the encryption algorithm

outputs a ciphertext [x], which hides the x. I denote an integer in [] as an encrypted value.

3. Dec(sk, [x]) → x: On input the secret key sk and a ciphertext [x], the decryption algorithm

outputs a plaintext x.
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4. Eval(pk, [x], [y], g) → [z]: On input the public key pk, ciphertexts ([x], [y]), and an operator

g ∈ {Add,Mult}, the evaluation algorithm outputs a ciphertext [z] = g([x], [y]). Depends on

g, it is either z = x+ y or z = x ∗ y.

ForHE to be secure, it is essential that adversaries without access to the secret key are unable to

obtain any information about the encrypted values. Homomorphism requires that for any operation

g ∈ (Add,Mult) and a ciphertext [z] = g([x], [y]), anyone who holds a secret key can compute

Dec(sk, [z]) → z which satisfies z = g(x, y). The significant benefit of this property is that

individuals with the public key can perform addition and multiplication operations directly on

ciphertexts without requiring knowledge of the underlying values. Furthermore, it also supports

a relaxed evaluation algorithm Eval(pk, x, [y], g) → [z] for relation z = g(x, y). This implies the

arithmetic operation between a plaintext and an encrypted value.

Construct PIR from HE – Suppose a PIR server maintains a cache C = (c1, . . . , cN) and a user

generates keys (sk, pk) by invoking KeyGen. The user shares pk with the server. To retrieve the

i-th element ci from the cache, the user encrypts a one-hot vector1 q⃗ = (q1, . . . , qN) in which only

qi = 1 but qj = 0 for any j ̸= i. An encrypted query [q⃗] = ([q1], . . . , [qN ]) is then transmitted to

the server that performs the homomorphic evaluation by utilizing the algorithm Eval. Specifically,

it computes the inner product [r] = C ∗ [q⃗] =
∑

j∈[N ] cj · [qj] by repeatedly invoking Eval with

operators Add and Mult, and then returns the response [r] to the user. The user decrypts the

response by Dec(sk, [r]) → r. Due to the homomorphism, it satisfies that r =
∑

j∈[N ] cj · qj =

ci · qi = ci.

Shrink Query – The concept described earlier enables the implementation of PIR at a cost of high

communication overhead, as the entire encrypted query vector is transmitted. SealPIR [95] and

1A one-hot vector is a binary representation of a categorical variable in which only one element is set to 1 (hot)
and the rest are set to 0 (cold).
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Spiral [241] adopt different techniques for query compression and expansion which that shorten

the query to a constant number of ciphertexts.

Specifically, define an algorithm Expand(pk, [i]) → [q⃗] which takes input an encrypted index

[i] and outputs a length-N query vector q⃗. The knowledge of sk is not needed to perform Expand,

thus the server is able to construct q⃗ by itself given [i]. Based on this, the user only needs to send

one ciphertext instead of N . I refer the readers to [95] (Section 3) and [241] (Section 2.1) for more

details.

Optimize Query Processing – Note that the above approach is not feasible when N is large, e.g.,

N = 4, 096 [95]. The problem is overcome by representing C as a multi-dimension hypercube [95,

241]. Take the two-dimension case as an example. Define parameters m, ℓ such that mℓ = N .

The server constructs its cache C = (c⃗1, . . . , c⃗m) where each row contains c⃗i = (c1i , . . . , c
ℓ
i) for

i ∈ [m]. To fetch cji , the user constructs two ciphertexts ([i], [j]). The server expands the queries

to one-hot vectors ([q⃗1], [q⃗2]), each having the i-th or j-th slot to be 1. The server first performs an

HE evaluation on [C] and [q⃗1] to extract the row [⃗ci], then computes another inner product on [⃗ci]

and [q⃗2] to extract [cji ].

Observe that the first inner product only involves the multiplication between plaintext and

ciphertext, while the second operates purely on ciphertexts. The HE algorithm adopted in SealPIR,

called FV [167], has limited ability to perform the latter one, which results in slow query processing

and large response size. Spiral proposes a combination of Regev [264] and GSW [173] schemes

which provides efficient ciphertext-ciphertext multiplication thus achieving better performance on

query processing.
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3.1.3 Goals and Challenges

Comprehensive Privacy – Table 3.1 summarizes the privacy-preserving properties of state-of-

the-art DNS solutions. No existing solution guarantees comprehensive privacy protections, i.e.,

defending from collusion or passive data collection up to regional access pattern analysis, which

is the main goal of this project. The hypothetical ReR-Less DoH can offer such comprehensive

privacy, but it weakens the overall DNS performance, security, and reliability. Single-server PIR

has the potential to offer the most enhanced privacy to DNS users as of today, but it comes with

several extra challenges I discuss below.

Cache Population – PIR guarantees that the ReR cannot identify the queried domains. This also

implies that PIR prevents a ReR from populating its cache, which invalidates its function. A

strawman solution consists of bypassing PIR in presence of cache misses, e.g., resorting to regular

or ODoH. However, both solutions would relax the privacy constraints and put user privacy at risk.

I propose a slight DNS modification wherein clients directly resolve DNS cache misses, and final

ANSes populate a ReR’s cache (see § 3.3.2).

Performance – The recent DNS evolution in the interest of user privacy has caused a slowdown

in DNS queries. For instance, DoH requires at least three times the query time of DoUDP because

of the handshakes to establish an encrypted channel. The handshake can be avoided if the HTTPS

connection is re-used. However, this does not apply to DoH with proxy rotation which provides

better privacy guarantees (see Table 3.1). In my measurements (see § 3.6.2), the median query

duration for DoH is 69 ms, versus 25 ms for DoUDP, and it grows to about 272 ms for ODoH.

Some previous studies [112, 285] report similar results while others [120, 139] report much higher

values depending on the user location and distance to the ReR.

The introduction of PIR in DNS brings further slowdowns due to its additional complexity.
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Figure 3.1: Visualization of PDNS and its workflow.

On the one hand, this is expected and understood by users as a trade-off for additional privacy,

as commonly experienced in privacy tools like Tor [40] or VPNs [169]. On the other hand, a

key challenge is to conceive a design that minimizes such overhead and achieves query times

competitive with the state of the art. I plan to do so by carefully selecting the PIR scheme, and

potentially modifying its implementation where performance bottlenecks are detected. Similarly,

I will explore optimizations in DNS record storage and transmission.

Compatibility With Existing DNS – My goal is to enhance DNS with comprehensive privacy,

rather than a complete overhaul. Specifically, I envision a design change similar to DoH, with

minimal modifications required for clients and servers (ReR and ANS). While this constrains the

design space, it also reduces the barriers to adoption.
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3.2 PDNS Overview

This section overviews PDNS (a Privacy-Preserving DNS based on PIR), which augments DNS

with PIR to provide query privacy against both eavesdroppers and snoopy ReRs. Figure 3.1 visual-

izes the workflow of PDNS both at a high level (on the left) and reporting its key PIR “primitives”

(on the right).

PDNS replaces regular DNS queries with encrypted queries using a single-server PIR strategy.

In presence of cache misses, the stub resolver (or DNS client, for simplicity) directly queries the

authoritative name server of the domain to be resolved. The authoritative name server answers the

client’s query and forwards a copy of the returned DNS record also to the PDNS ReR, privately

populating its cache. The authoritative name server learns the IP address of the PDNS ReR used

by the client via a slight modification of edns-client-subnet extension of EDNS(0) [150] – a DNS

extension allowing a ReR to share the client’s IP address with an authoritative DNS.

In the remainder of this section, I define the privacy and threat models. Next, I define some

fundamental PIR primitives which I use to formulate PDNS’s workflow.

3.2.1 Privacy and Threat Models

Privacy Model – There are three main actors in the DNS ecosystem which can violate the user

privacy: ReRs, ANSes, and any in-network device capable of intercepting DNS traffic. I assume

untrusted ReRs which may track and inspect DNS queries, or deliberately drop DNS records from

their cache – attempting to infer which user might query such domain when the record is popu-

lated into the cache again. I also assume that DNS traffic can be intercepted by third parties, i.e.,

middleboxes interposing between DNS clients and both ReRs and ANSes. However, I assume that

the attackers cannot break cryptographic primitives.
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With respect to ANSes, their role requires some further discussion. ANSes operate at different

levels in DNS, e.g., from non-final ANSes which are responsible for large domains like .com,

to final ANSes which are responsible for one or just a few domains. Queries to non-final ANSes

are less sensitive as they reveal only partial information – under the assumption that DNS query

minimization [109, 154, 237] is used, e.g., avoid forwarding the full domain at each step. The

privacy leak of a query increases as I approach the final ANS, since the full domain name is

required in each query. However, it has to be noted that such ANSes are either operated by the

same organization as the target domain, or by an organization contracted by the domain provider,

e.g., when leveraging Amazon Route53 [2]. It follows that such DNS queries do not leak any

extra private information about a user than what the subsequent traffic directed to the domain, e.g.,

HTTP(S) in case of a webpage. Unfortunately, protecting users from leaking privacy in IP/HTTP

logs requires synergies from other privacy mechanisms for the Web [90, 152, 179, 182, 254, 315],

and is beyond the scope of DNS and hence the scope of this chapter. Last but not least, ANSes

are not in the position to gain access to a full individual or regional access pattern without a

prohibitively high cost. In conclusion, I assume that ANSes cannot be fully trusted but they are not

a critical DNS actor with respect to user privacy, differently from ReRs.

Threat Model – Many threats exist for DNS today, such as amplification, snooping, and flooding

(or DoS) attacks [94, 101, 263, 279]. Overall, existing solutions to counter such attacks are still

viable in PDNS. However, PDNS departs from the regular DNS workflow requiring its users to

bypass the ReR and directly perform iterative DNS lookups (steps 4⃝ – 7⃝ in Figure 3.1) in

presence of cache misses. While this is not a threat per se, it invalidates a common practice

adopted by large ANS providers like Akamai – serving millions of queries per second [279] –

which limit requests from non-well-known ReRs to protect against potential DoS attacks. Such rate

limitation works in the current DNS where users are supposed to perform their queries recursively
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(see § 3.1.1), but would fail in PDNS when handling cache misses. Note that this applies even

more to solutions like ReR-Less [278], which fully bypass ReRs.

Finally, ANSes in PDNS are tasked to populate a ReR’s cache, and could be misused to DoS

a ReR via “reflection”. This attack can be performed both by a malicious ANS or by an attacker

disguising as an ANS. § 3.4 presents a defense mechanism to handle both reflection and DoS

attacks. This mechanism relies on validating PDNS cache misses, and can thus not be applied to

solutions like ReR-Less [278].

3.2.2 PIR Primitives

PIR schemes assume a key-value database C = (c1, . . . , cN) of size N where the i-th key-value

pair is defined as (i, ci). All entries ci are of the same length. I here define several PIR primitives

which are the founding blocks of most single-server stateless PIR schemes. Assuming that the

database of size N is known to both user and server, they first execute a one-time setup for the

system.

• SetupServer(C, N) → ([C]): Given as input the database and its size, the server executes

the SetupServer primitive which outputs an encoded database [C]. The way a server encodes

the plaintext database is specific to the PIR scheme. Note that PIR schemes generally do

not support dynamic databases where entries can be modified after setup. However, most

single-server stateless PIR schemes [95, 241] allow the server to re-encode the updated entry

without repeating the whole SetupServer procedure.

• SetupUser(N)→ (qk, pk): Given as input the database size, the user executes the SetupUser

primitive which outputs a query key qk and a public key pk. The user stores qk as a private

key and sends pk to the server. This step is only needed the first time a user connects to a
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server, or when the user generates a new pair of keys. § 3.8 discusses how to share pk in a

real world deployment consisting of multiple clusters of ReRs.

After setup, the server can answer PIR queries from the user. The following primitives are associ-

ated with PIR queries.

• Index(keyword)→ idx: Given as input a keyword of the target record, i.e., the domain name

in the DNS scenario, the user or server executes the Index primitive, which outputs an index

such that 1 ≤ idx ≤ N .

• Query(qk, idx) → q: Given as input a query key and an index, the user executes the Query

primitive which outputs a query q. It is a ciphertext that encrypts idx.

• Answer(pk, [C], q)→ r: Given as input the public key of the user, the encoded database, and

a query, the server executes the Answer primitive, which outputs a response r. The response

is a ciphertext encrypting a message that contains cidx.

• Extract(qk, r) → cidx: Given as input the query key and a response, the user executes the

Extract primitive which outputs the idx-th database record cidx.

3.2.3 Workflow

PDNS workflow consists of three main parts: initialization, query, and cache update (see Fig-

ure 3.1).

Initialization – Given as input X0 initial DNS records, the PDNS ReR constructs a PIR DNS

cache C := (c1, . . . , cN) and executes the SetupServer primitive to obtain an encoded cache [C].

Upon registering to a PDNS ReR, the user executes SetupUser(N)→ (qk, pk) to derive the query

key qk and public key pk. The user sends pk to the ReR, which needs it to answer private DNS
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queries. This is a per-user key that can be shared across multiple ReRs, e.g., in the case of a cloud

DNS with multiple machines for load balancing (see § 3.8).

Query – A DNS query in PDNS implies the following steps:

1. A user who wants to visit a domain d executes Index(d) → idx. idx is a hash result of the

domain d and it points to a specific slot in ReR’s cache, where the DNS record for d might be

located. User executes Query(qk, idx)→ [q] and sends the encrypted query [q] to the PDNS

ReR ( 2⃝).

2. The PDNS ReR executes Answer(pk, [C], [q]) → [r]. The output [r] is a ciphertext that en-

crypts the corresponding cache slot, and is kept secret from ReR. The ReR sends [r] to user

( 3⃝).

3. User executes Extract(qk, [r]) → cidx. If cidx contains a valid DNS record for the domain d,

the DNS query is terminated. Otherwise, the user performs an iterative DNS lookup ( 4⃝ –

7⃝). Note that PDNS attempts to speed up such iterative DNS lookup by providing in cidx

the NS-record of d, or the IP address of the ANS for d (thereby skipping 4⃝ and 5⃝, see

§ 3.3.2). The ANS could optionally invoke an authenticity request which asks the user to

prove the existence of cache miss (see § 3.4).

Cache Update – The cache update happens after a cache miss is triggered and the user finishes an

iterative DNS lookup for a domain d. The final ANS for d populates the PDNS ReR’s cache by

sending its most recent DNS record for d ( 9⃝). PDNS ReR constructs a new entry cj that contains

the new record, and executes SetupServer([C], j, cj) → ([C ′]) to obtain a new encoded cache. As

long as the final ANS does not “collude” with the ReR, the user’s privacy is maintained. This is not

a violation of my privacy model; in fact, rather than being a case of collusion, it is more accurately
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0x0000 DNS Record DNS Record DNS Record

Index

Padding......

0x0001 DNS Record DNS Record DNS Record Padding......

...... ......

0xffff DNS Record DNS Record DNS Record Padding......

512 Byte

Hash of Domain Name (16)

Expiration Timestamp (8)

Authoritative NS IP Address (4-16)

Type
(2)

IP Address (4-16)

Class
(2)

RdLen
(2) ......

216

Figure 3.2: PDNS cache construction as a hash table with 216 slots (i.e., index range from 0x0000
to 0xffff). Each slot holds colliding DNS records in a priority queue ordered by expiration time.
The size of a record is 38 Bytes (IPv4) or 62 Bytes (IPv6), assuming one IP per domain and its
authoritative name server (NS).

described as a unidirectional information transfer from the final ANS to the ReR, as discussed in

§ 3.2.1.

3.3 PDNS Deep Dive

This section dives into the design details of PDNS.

3.3.1 DNS Cache Construction

PIR schemes assume a key-value cache C = (c1, . . . , cN), i.e., a hash table where a standard hash

function H – known by both server and users – realizes Index(·) (see § 3.2.2). A hash table is

similar to the data structure used by current ReRs for their cache, e.g., the popular BIND9 [3]. Yet,



88

one critical difference is that, with PIR, the capacity of the hash table is determined beforehand

and all slots – no matter if occupied by DNS records or placeholders – have to be encoded into [C]

via the SetupServer primitive (see § 3.2.2). At run time, DNS records are inserted by re-encoding

a placeholder content at the slot indicated by the hash function.

Generally speaking, the query time of PIR increases as the capacity of the hash table increases.

There is thus an incentive on reducing its size which in turn triggers more hash collisions, i.e.,

multiple entries hashing to the same slot. Previous PIR schemes use Cuckoo hashing – where

colliding entries are hashed with a second function – to minimize the hash collision rate [92, 248].

The drawback of Cuckoo hashing is that the users need to send multiple queries, one per hash

function used, which can increase the query time by at least 2x.

Recent PIR schemes such as Spiral [241] offer faster query time in presence of larger cache

slots. Accordingly, instead of reducing hash collisions via Cuckoo hashing, I leverage hash col-

lisions to purposely build large cache slots, which reduces the query time at the expense of more

data to be returned to the user since the entire slot is returned (even if only containing placeholder

data and no actual DNS records). To do so, I adopt a slight modification of chaining [243] (see

Figure 3.2), where colliding entries in a slot are stored in a priority queue instead of the classic

linked list. I order each priority queue using DNS record expiration times such that, once the queue

overflows, the record that is most likely to expire is evicted.

3.3.2 Handling Cache Misses

In presence of cache misses, the user performs the iterative DNS lookup – although minimizing

traffic to non-final ANSes as discussed next. After answering the DNS query from the user, the

final ANS forwards the response to the PDNS ReR (whose IP was provided by the user) to populate

its cache without leaking the IP address of the requesting user. This traffic is randomly delayed to
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avoid the ReR correlating a previous query with a record update. Note that the final ANS might

return a different response to the ReR occasionally when the client and ReR are geographically

distant.

Minimizing Iterative Traffic – To shortcut the iterative lookup, and mitigate the privacy leak to

root and TLD ANSes, I merge NS and A/AAAA records by appending the IP address of the final

ANS at the end of the A/AAAA record (see Figure 3.2). The main drawback of this approach is that

it consumes precious cache space (e.g., 4 extra bytes per IPv4 address of the ANS added) which

negatively affects the query time (see § 3.5.2). To regain some cache space, I replace the domain

name field (variable length of maximum 256 bytes) with a hash value of the domain name – a fixed

length of 16 bytes digest (from SHA-1 [103]). For simplicity, I only consider A/AAAA/NS DNS

records in this project. However, PDNS is compatible with other types of DNS records since they

are essentially strings with different lengths of up to 512B, which can be easily fit in large slots

(tens of KBs, see § 3.5.2) of PDNS cache.

It is noteworthy that the above shortcut only applies to expired cached domains and will not

work with uncached domains, which instead require full iterative DNS lookup at the client. I adopt

this approach in PDNS because DNS record expiration is the main cause of the cache miss [119].

To identify cache misses at the client, another modification of the DNS record is required.

Currently, an A/AAAA record contains: domain name, type, class, time-to-live (TTL), rdlength,

and rdata [49]. The TTL field indicates for how long the received DNS record is valid. DNS

records stored at the ReR also contain a timestamp of when the record was resolved. Each time

a DNS query is matched in the cache, the ReR checks whether this record is expired. To allow

the client to perform this operation, I replace the TTL field with a timestamp indicating when the

record expires, i.e., timestamp at insertion plus TTL, as illustrated in Figure 3.2.

The client communicates the IP address of its PDNS ReR to the ANS using a solution à la
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Figure 3.3: Illustration of the modeling for delayed response forwarding.

EDNS-PR, my own extension of EDNS(0) [150] similar to EDNS Client Subnet (ECS) [143] but

with a different EDNS(0) OPTION-CODE. ECS is a DNS extension that allows a ReR to share the

subnet of a client’s IP address to an ANS for improved geolocation, enabling the ReR to resolve a

domain to the closest available IP to the client. In PDNS, EDNS-PR includes the IP address of the

ReR so that the ANS knows where to send the copied response to populate the ReR’s cache.

Note that I use the full IP address for the PDNS ReR in EDNS-PR, instead of the subnet as

suggested in ECS RFC [143]. The ECS RFC suggested using a subnet to protect the privacy of

the user’s IP address being communicated (and unfortunately mostly in plaintext with DoUDP

today [49]), whereas in my proposal I send the IP address of the PDNS ReR (using encryption, see

next section), which is not violating user’s privacy.

Delayed Response Forwarding – PDNS ReR may perform a timing attack to correlate the user

who finished the DNS query right before it receives the populated cache entry from the authori-

tative server. To mitigate this attack, the cache population traffic from the authoritative server to

PDNS ReR should be randomly delayed.

Assume an infinite series of queries with descending subscripts . . . , Qn, Qn−1, . . . , Q1, Q0 ar-

rive at the PDNS ReR, as shown in Figure 3.3. Each pair of adjacent queries is made by different

users. I assume that these queries finish with an equal interval ∆, and each query has a probability

of m to trigger the cache miss. Let Yi be the random variable to denote whether a query Qi has
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triggered a cache miss. Then I have ∀i ≥ 0,Prob(Yi = 1) = m,Prob(Yi = 0) = 1−m. I further

assume when a cache miss occurs, the response can be forwarded to PDNS ReR instantaneously.

However, to defend against timing attacks from PDNS ReR, i.e., correlating the forwarded re-

sponse from ANSes and the queries where user identity is known to PDNS ReR, the ANS should

delay the response forwarding by a random duration. Let Xi be the random variable of the delay

of the response for query Qi, sampled from distribution D. For the sake of simplicity, I assume all

ANSes have the same delay distribution.

Consider a response R arriving at time s after Q0. The probability that this response is for Qi

is Prob(Yi = 1 ∩Xi = s + i ·∆). Given that Xi and Yi are two independent random variables, I

have
Prob(Yi = 1 ∩Xi = s+ i ·∆)

= Prob(Yi = 1) · Prob(Xi = s+ i ·∆)

= m · Prob(X = s+ i ·∆).

(3.1)

When Prob(X > ∆) > 0, meaning that the delay may be longer than ∆, there are multiple

possible queries for which R might correlate to. It thus poses difficulty for the PDNS ReR to

perform the timing attack. To quantify the difficulty, I use Shannon entropy as the metric. Specifi-

cally, the entropy of a response arriving s ms after Q0 is the sum of the entropy of every past query
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correlating to the response, i.e.,

Entropy(s) = lim
n→∞

n∑
i=0

− Prob(Yi = 1 ∩Xi = s+ i ·∆)∑n
j=0 Prob(Yj = 1 ∩Xj = s+ i ·∆)

· log Prob(Yi = 1 ∩Xi = s+ i ·∆)∑n
j=0 Prob(Yj = 1 ∩Xj = s+ i ·∆)

= lim
n→∞

n∑
i=0

− Prob(Xi = s+ i ·∆)∑n
j=0 Prob(Xj = s+ i ·∆)

· log Prob(Xi = s+ i ·∆)∑n
j=0 Prob(Xj = s+ i ·∆)

(3.2)

Equation 3.2 reveals a noteworthy point: the efficacy of the timing attack defense is not contin-

gent upon the cache miss rate. This might seem counterintuitive. Nevertheless, the independence

from the cache miss rate is rooted in the inherent inability of PDNS ReR – as guaranteed by the

PIR – to determine whether a query will indeed result in a cache miss.

Gradual Deployment – PDNS can be gradually deployed using the following strategy. First, a

PDNS ReR can still act as a regular resolver depending on the incoming queries, e.g., queries not

using PDNS encryption. Second, it can support PDNS for domains without participating ANSes

by frequently querying such domains and building its local private DNS cache. This allows to

quickly bootstrap adoption having the PDNS ReR provider bear some extra cost. Finally, ANSes

supporting EDNS-PR will acknowledge this in their responses. This information can be used to

inform the users, e.g., via a browser icon similar to the security lock for HTTPS.

3.3.3 Communication Encryption

DoT or DoH are rarely supported by ANSes, e.g., I tested 100 popular ANSes for different zones

and found no support. Given that PDNS relies on iterative DNS lookups performed by its clients

to handle cache misses (see § 3.3.2), the lack of encryption on this communication channel fails to
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protect against in-network eavesdroppers, thus violating my privacy model (see § 3.2.1). It follows

that ANSes participating in PDNS should adopt DoT/DoH to satisfy my privacy requirements.

On the path between user and PDNS ReR, PIR offers chosen-plaintext attack (CPA) secu-

rity [205], meaning that, although the query content is kept secret from an attacker, integrity and

authentication are not provided. It follows that an attacker can disrupt the service or even imper-

sonate the ReR and attempt other attacks like phishing.

PDNS adopts HTTPS between client and ReR to guarantee integrity and authentication. I

favor HTTPS over TLS since it makes it hard for third parties to distinguish between DNS and

HTTP traffic given they both use port 443 [149]. It is also important to note that in proxy-based

mechanisms (like ODoH), HTTPS connection reuse requires no correlation between client-proxy

and proxy-ReR connections in order not to affect user privacy [285]. This constraint does not apply

to PDNS as PDNS ReR is blind to DNS query contents.

3.4 System Security

Defend DoS and Reflection Attacks – PDNS’s mechanism to handle cache misses is susceptible

to (i) DoS on ANSes, and (ii) a “reflection” attack towards the ReR (see § 3.2.1). I here present a

solution to protect against both attacks.

ANSes should only accept direct queries for a domain d from users who can prove an actual

cache miss occurred at the ReR. In order to prove the existence of a cache miss, the user forwards

to the ANS the encrypted query and its response (q, r) along with its secret key qk. To prevent

a malicious user from counterfeiting (q, r), I require the PDNS ReR to sign an additional mes-

sage containing the user IP, query timestamp, and the pair (q, r). With this information, the ANS

can check whether q encrypts a query for d, and r indeed refers to a recent cache miss from the

contacting IP.
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The above solution has two major limitations though. First, sharing the secret key qk can be

dangerous, as a misbehaving ANS could collude with PDNS ReR causing a privacy violation.

Second, according to my performance evaluation (see § 3.5.2), this approach would bloat direct

DNS queries with about 39KB extra traffic: 36.5KB from (q, r), about 2KB from the certificate,

and few bytes for timestamp and IP address.

I solve both issues by asking for cache misses proofs only for frequent requests, i.e., within a

domain’s TTL, which might indicate a potential attack. To do so, the ANS keeps track of the time

at which it populated a domain record at a given PDNS ReR. Further, in presence of such (rare)

proof request the user would send a new query for the same domain to the ReR using backup key

pairs; this query is needed to generate a proof without leaking the user’s main private key. After

a successful proof, the user runs the SetupUser primitive (<0.15 sec, see § 3.5.2) to generate new

backup key pairs. The ANS answers the direct DNS query right away regardless of whether the

proof was requested, unless a pending proof for this IP already exists. However, it holds on the

reception of the proof to update the PDNS ReR.

Validate ANSes – An attacker may impersonate an ANS and either DoS a PDNS ReR or pollute

its cache. However, in PDNS, only ANSes should populate the cache of a ReR, which allows

for simple access control. A PDNS ReR should only accept DNS records from IPs belonging

to ANSes which can be verified via a regular DNS lookup or more strictly, a DNS lookup with

DNSSEC [98] to avoid DNS hijacking [212], i.e., confirming with top-level ANSes that the IP

address of a sender matches that of the final ANS of the domain name contained in a DNS record.
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Table 3.2: Summary and performance analysis of state-of-the-art single-server PIR solutions.

Solution
When Cache

Updates Performance
# Number of Slots

(S=64B)
Slot Size

(NumSlots=220)
216 218 220 128B 512B 2,048B

SimplePIR [183]
Update required for

server and every user

Update (MB/user) 7.4 14.7 29.5 42.4 86.8 178.1
Query Duration (ms) 4.04 8.51 19.07 30.29 80.87 256.38
Query Comm. (KB) 7 14 28 41 84 173

SealPIR [95] Server update only
Update (µs/slot) 2.21 2.19 2.19 4.22 16.36 78.1

Query Duration (ms) 117 301 902 1,636 5,831 25,338
Query Comm. (KB) 278 278 278 278 278 278

Spiral [241] Server update only
Update (µs/slot) 37.62 62.28 31.36 31.34 63.63 298.31

Query Duration (ms) 249 501 794 797 1,423 3,882
Query Comm. (KB) 30 30 36 36 36 36

3.5 Implementation

3.5.1 Implementation Details

PIR Scheme Selection – Table 3.2 lists three state-of-the-art single-server PIR solutions I have

benchmarked, without optimization, for different cache and slot sizes over a single-core 3.0 GHz

AMD EPYC CPU. SimplePIR [183] achieves, overall, the fastest query processing time but it is

stateful, meaning that a user has to download a state (with size comparable to the square root of

the database size) from the ReR whenever its DNS cache is updated. Given that a ReR’s cache

updates frequently, I discard this solution.

I instead favor single-server stateless PIRs: SealPIR [95] and Spiral [241]. SealPIR is slightly

faster than Spiral when considering smaller cache and slot sizes, while Spiral outperforms SealPIR

when assuming slots with large sizes. This is because Spiral does not provide optimal parameters

for caches with small slot size; each slot with a size smaller than 256B simply gets padded to

256B. Spiral also requires less traffic than SealPIR (0.1x to 0.12x) for both the Query and Answer

primitives. Though Spiral has a slightly longer update time than SealPIR, this is a server-only
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operation requiring less than < 1 ms, and is thus not a decisive factor. Based on these observations,

I select Spiral as the underlying PIR protocol for PDNS.

Spiral Code Optimizations – Table 3.2 shows that Spiral requires several hundreds or even thou-

sands of milliseconds to complete a query, which is unacceptable for DNS. I here discuss two

optimizations I have implemented to speed up Spiral.

First, Spiral’s Answer primitive operates on 4 chunks of ciphertext for slots smaller than 215

bytes; as the slot size increases, the number of chunks grows as a factor of 4. It follows that (at

least) 4 concurrent threads can be used to parallelize and thus speed up the operations on each

chunk. I leverage this observation to extend the current Spiral implementation to support increased

multi-threading.

Second, Spiral’s high CPU cost at the ReR is mostly due to the computation of the fast Fourier

transformation, which can be optimized by pre-compiled single-instruction multiple-data opera-

tions that are already supported by x86 instruction set architecture. In my implementation, I enable

Intel Advanced Vector Extensions 2 [15] which is already implemented by the Spiral library [5].

Such change shows a 2x speedup of the Answer primitive in my benchmark.

PDNS ReR and Client – I develop a custom PDNS ReR using the Rust-based Spiral PIR repos-

itory [5]. I opt for this approach, instead of extending an existing resolver, since PDNS ReR’s

workflow departs from a regular ReR, mainly due to the lack of iterative lookup to handle cache

misses. I also leverage the Spiral repository to develop the PDNS client. While integrating the

PDNS client into the OS would provide better performance, I opt for a DNS proxy for better flexi-

bility and ease of adoption. The proxy intercepts outgoing DNS queries, transforms them into PIR

queries, receives responses from PDNS ReR, and decodes the results. In presence of a cache miss,

the proxy also performs (shortcut) iterative DNS lookups. In the end, the proxy constructs DNS

responses itself using answers from either ReR or ANS, in presence of a cache miss, and returns
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them to the OS.

Authoritative Name Server – PDNS requires three main changes at a participating ANS. First,

support for EDNS-PR, my small extension of EDNS(0) to share the IP address of the ReR when

a cache miss has occurred. Second, a routine to forward a DNS record to the ReR indicated in

EDNS-PR. Third, a mechanism to challenge clients for proof of cache misses when needed (see

§ 3.4). I implement the above features as a patch (about 200 lines of code) of the popular Berkeley

Internet Name Domain (BIND9) [3], a fully-fledged open-source resolver used by many ANSes

worldwide [46].

3.5.2 Benchmarking

I benchmark all three components of PDNS: client, ReR, and ANS on machines equipped with an

8-core 3.0GHz AMD EPYC CPU and 8 GB RAM. This is an upgrade setup from [285] because

PDNS is more computationally intensive compared to ODoH. I need at least 4 cores to speed up

Spiral (see “Spiral Code Optimizations” in § 3.5.1) and at least 8GB memory to test a plaintext

cache size of 512 MB (see “Query Resource Usage” below). Note that while PIR operations

happen on the encoded cache, I use the size of the plaintext cache as a reference since it directly

relates to the number of DNS records it can store. I ignore network latency in this benchmarking;

I will instead introduce realistic latencies in the evaluation (§ 3.6).

System Initialization – As described in § 3.2.2, PDNS ReR and client execute SetupServer and

SetupUser, respectively, at each reboot. Further, the client re-runs SetupUser when challenged

by an ANS (see § 3.4) to regenerate its backup key pairs. Figure 3.4(a) shows the duration of each

initialization phase (at client and server) as a function of the cache size. The figure shows that, with

a cache size of 0.5MB, the server initialization takes 10 seconds, while it takes over 50 seconds

with a cache size of 512MB. While long, this duration is acceptable since it is only required during
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Figure 3.4: Benchmarking results for PDNS. Network latency is negligible.

a reboot of the ReR. Conversely, the client initialization is not a significant burden for the user as

it only takes up to 150ms, irrespective of the cache size.

SetupUser also requires some traffic between PDNS client and ReR to share a public key pk.

Figure 3.4(b) shows that this traffic increases as the cache size increases, e.g., from 10.7MB with

a small cache (0.5MB) up to 16MB when the cache size is larger than 128MB. An exception is

observed when the cache size is 4MB where the traffic jumps to 15.5MB. This result is due to the

selection of underlying cryptographic parameters by Spiral.

For the rest of the benchmarking, I assume PDNS was previously set up and ready to use, i.e.,

I ignore the one-time cost of SetupServer and SetupClient.

Query Duration – Each PDNS query involves four PIR primitives: Index, Query and Extract at

the user, and Answer at the PDNS ReR. Figure 3.5(a) shows the query duration for each primitive

assuming (plaintext) caches composed of between 210 (1K) and 220 (1M) 512-Bytes slots, i.e.,

total cache sizes ranging between 0.5 MB and 512 MB. These values are chosen because Spiral’s

authors selected optimal low-level cryptographic parameters for this range based on a heuristic
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Figure 3.5: More benchmarking results for PDNS. Network latency is negligible.

algorithm. It follows that each 512B-slot can hold about 13 DNS records with average size of

38 Bytes (see Figure 3.2). The PIR primitives at the user (Index, Query, and Extract) require

sub-millisecond durations and, as expected, are independent from the cache size. The total query

duration is dominated by the Answer PIR (at the server side) which requires between 80 ms – on

a small cache with about 1,000 slots and up to about 13K DNS records – and up to 500 ms – on a

large cache which might contain several million DNS records.

Next, I fix the cache size to 512 MB and investigate query duration as the number of slots

increases, i.e., the size of each slot decreases. For example, a 512 MB cache can be composed of

either 210 slots with a size S = 512KB, or 220 slots with S = 512B. Figure 3.5(b) shows that the

duration of the Index and Query primitives (at the user) are unaffected by the slot size. Conversely,

the duration of the Extract primitive, also at the user, decreases as the slot size decreases, although

non-linearly, e.g., from 266 ms (S = 512KB) down to 21 ms (S = 128KB). This nonlinearity

comes from the better optimizations of Spiral for large slot sizes.

For Answer (server side), the impact of the slot size is non-trivial due to the conflicts and
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Figure 3.6: More benchmarking results for PDNS.

compromises between multiple underlying cryptographic primitives. Its performance is best when

S = 64KB and worsens when the slot size either increases or decreases. Given the Answer prim-

itive has an overall much higher duration than all other primitives, the total duration of the PIR

query is the fastest (362 ms) for S = 64KB to which it corresponds 213 slots in a large 512 MB

cache. This is a ∼40% drop from 539 ms when assuming a small slot (S = 512B) and a ∼55%

drop from 819 ms with a large slot (S = 512KB).

Query and Answer Traffic – First, I focus on the traffic between PDNS client and ReR. Fig-

ure 3.6(a) shows the traffic for both queries (PDNS client) and answers (ReR), assuming a slot size

of 16KB and increasing cache sizes. I find that the query traffic is bound to 32KB since the query

is the encryption of an index and hence independent from the cache size. The query and answer

traffic only increases when the cache size grows from 4 to 8MB and from 64 to 128MB, but is

constant otherwise. This is attributed to the selection of underlying cryptographic parameters by

Spiral.

Figure 3.6(b) instead fixes the cache size to be 512 MB and shows traffic for both queries and
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answers assuming increasing slot sizes (and hence decreasing numbers of slots). At the client, each

query consumes a constant 32 KB independently of the slot size, again, due to that the query is the

encryption of an index. At the ReR, the traffic increases as the slot size increases since a full slot is

returned. For example, the answer to a query contains 20KB when there are 216 slots (S = 8KB),

versus nearly 800KB when there are 210 slots (S = 512KB). Considering both query duration

(Figure 3.5(b)) and traffic (Figure 3.6(b)), I select a cache shape for PDNS of 215 slots with a size

of 16KB, for a total cache size of 512MB.

Next, I focus on the traffic between PDNS client and an ANS in presence of cache misses.

Since PDNS require DoH, this increases the traffic from around 200B, i.e., a DoUDP query from

ReR to an ANS, to about ∼7KB [112, 298] because of the TLS handshake – ∼1KB is needed

instead if HTTPS connection is reused. Next, the ANS also needs to duplicate the query response

to the PDNS ReR. In this case, there is no strict privacy requirement and thus DoUDP can be

used (∼100B). Overall, this is a significant bandwidth increase for an ANS mostly due to DoH.

However, the current adoption of DoUDP between ReRs and ANSes is yet-another violation of user

privacy when EDNS(0) is adopted [181, 255]. Proposals have been made to encrypt the channel

between ReR and the ANS [188]. If this proposal is adopted, then PDNS only adds∼100B, or less

than 1.5% of extra traffic.

Resource Usage – Next, I benchmark CPU and RAM usage for PDNS. Figure 3.7(a) shows the

RAM required by the plaintext cache, the encoded cache, and the runtime ReR, as a function of

the (plaintext) cache size. The figure shows that the encoded cache requires 8x the memory used

by the plaintext cache, and that runtime memory usage is comprised between 60 and 100MB. As a

result, the memory usage of PDNS at a ReR ranges between 68MB and 4.3GB, assuming caches

which can hold about 13K (512KB) and 13M (512MB) DNS records using IPv4 (i.e., 38B as in
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Figure 3.7: More benchmarking results for PDNS. Network latency is negligible.

Figure 3.2). With respect to CPU usage2, Figure 3.7(a) shows that it ranges between 360% and

460%. This is a result of the multi-threading implementation of the Answer primitive, and the

usage of 4 concurrent threads (see § 3.5.1).

Scalability – PDNS intensive CPU usage is expected to limit its query rate, i.e., the concurrent

number of queries per second (QPS) it can handle. I compare the query rate of PDNS with both

2All numbers for CPU usage are concerning one core of a single CPU.
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DoUDP and DoH provided by BIND9 [3]. I do not report numbers for ODoH since equivalent to

DoH for the ReR. For each protocol, I increase the query rate until the query duration increases by

50%, and then report the previous CPU usage and rate. Figure 3.7(b) shows that DoUDP and DoH

scale much better as they can serve roughly 1,000 QPS (CPU usage of 32%) and 500 QPS (CPU

usage of 200%) before significantly delaying their respective query response times. In comparison,

PDNS ReR reaches a query rate of 4 and 8 QPS for respectively a large (512 MB) and small cache

(64 MB). While the ReR’s CPU is not fully utilized (500-600%), adding even one extra query

would increase the query duration by more than 50%.

Despite the current large performance discrepancy, the uprising specialized hardware would

substantially improve the scalability of PDNS. For example, if the computation duration would

decrease by 1,000x to within 1 ms [271], then PDNS would be able to reach at least 1,000 QPS

without HTTPS or hundreds of QPS with HTTPS, similar to DoH in Figure 3.7(b). The figure also

differentiates between queries triggering a cache hit or a miss. At their maximum query rate, the

iterative process associated with a cache miss costs an extra 33% CPU usage for both DoUDP and

DoH. No impact is observed for PDNS as cache misses are resolved at the client and not the ReR.

Finally, I also benchmark the CPU usage at the ANS, using the same methodology adopted for

the ReR. Figure 3.7(c) shows that the CPU usage at ANS associated with DoUDP is negligible:

only 7% with a rate of 1,000 QPS. DoH is instead much more challenging, but still reaches a rate

of 500 QPS with a CPU usage of 240%. Note that the combination of extra bandwidth and CPU

might explain the current lack of adoption of DoH among ANSes (see § 3.3.3), but is a requirement

for PDNS. In addition to DoH, PDNS further adds 50% CPU usage to support EDNS-PR queries,

i.e., privately populate DNS records at a ReR, and another 50% to validate proof of cache miss for

suspicious queries.
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3.6 PDNS Evaluation

This section evaluates PDNS. Given that an actual PDNS deployment is challenging, e.g., it re-

quires participating ANSes and users, I resort to the next most realistic setup. I set up a test-bed

consisting of a PDNS client, ReR, and a participating final ANS. Next, I simulate real network

latencies and DNS queries I have collected in the wild. I then evaluate PDNS from four perspec-

tives: query duration, privacy guarantees, resilience to attacks, and impact on Web performance.

When possible, I compare PDNS performance against state-of-the-art DNS solutions: DoUDP,

DoH, ODOH, and DoHoT. I further include in my evaluation a hypothetical ReR-Less DNS as-

suming both DoUDP and DoH. Before diving into the analysis of my evaluation, I first describe

my test-bed setup and data collection in more details.

3.6.1 Methodology

I evaluate existing DNS solutions (DoUDP, DoH, ODOH, and DoHoT) using experiments in the

wild. I select Google DNS [82] and Cloudflare DNS [79] as target ReRs for both DoUDP and DoH.

To emulate a realistic access network of a DNS client, I resort to Mysterium [21], the most popular

DVPN (see chapter 2) which provided 1,415 Internet residential dVPN nodes from 62 countries

at the time of conducting this measurement. To derive the duration of a DNS query between a

Mysterium node and ReRs, I subtract the latency between my machine and the node for each RTT

needed, e.g., 1 RTT for DoUDP and 3 RTT for DoH given TLSv1.3 [266] and no connection reuse.

I preferred Mysterium over academic platforms like the popular RIPE Atlas [287] since it offers

higher flexibility, e.g., allowing to send DoH and ODoH queries.

I use instead a single location (our lab) for DoHoT since I cannot force a Tor circuit between

Mysterium nodes and a ReR. However, I restart Tor after each experiment which gives us 522
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unique exit nodes over 24 hrs. For ODoH, I still rely on Mysterium but also iterate the three

oblivious proxies provided by DNSCrypt Proxy [8], a popular and cross-platform local proxy

which supports many DNS protocols. Finally, I perform iterative DNS lookups on my machine

for 122K domains collected in Mysterium (see § 3.6.4), and estimate the duration of direct queries

towards authoritative DNS servers, as used by ReR-Less DNS. This procedure was confined to my

own machine due to the impracticality of executing all 122,000 iterative DNS lookups across each

of the 1,415 dVPN nodes. It is crucial to mention that my machine, located in the United States,

benefits from relatively high bandwidth and short latencies to ANSes. Additionally, my focus was

exclusively on top-ranked sites. Consequently, my evaluation of the ReR-Less DNS performance

should be viewed as a conservative estimation. Users with lower bandwidth and/or in developing

countries might experience less favorable performance.

When experimenting with DNS in the wild, there is no control over whether queried domain

names are cached or not at a ReR. To study the effect of cache hit or miss at a ReR, I query for my

own domain names – registered at AWS Route 53 [2] – with TTLs of one second and one hour,

respectively. The one-hour interval guarantees cache hits as long as my queries happen within such

an interval. The one-second interval guarantees a cache miss as long as I perform queries slower

than once a second. While many public ReRs would ignore such low TTL value, I have verified

that Google and Cloudflare DNS both support it.

To evaluate PDNS, I instead set up a test-bed composed of PDNS client, ReR, and a participat-

ing final ANS. Each machine is equipped with the same hardware used in the benchmarking (see

§ 3.5.2). I then apply network delays between the machines using the Linux Traffic Con-

trol (tc) module [18] driven by the real latencies collected in the above experiments. I test a

large (512MB) and small (64MB) cache using the best performing shape as from my benchmark-

ing experiments, e.g., 215 slots with size S = 16KB for the 512MB cache.
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Figure 3.8: Analysis of active DNS measurements.

Ethical Considerations. My methodology uses synthetic DNS traffic via a publicly available

service (Mysterium), avoiding ethical concerns. However, in § 3.6.4 I rely on DoUDP traces

collected with a passive Mysterium node. To protect the privacy of Mysterium users, I discard

user-related information such as their IP addresses. IRB at Northwestern University has deemed

this data collection as non-human research, as I only collect non-identifiable private information

without any accompanying data that could reveal individuals’ identities.
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DNS Measurement Result. I here present high-level results from my DNS measurement study.

I first analyze the network delay towards popular ReRs. To do so, I connect to 1,415 residential

dVPN (Mysterium) nodes and send ping (ICMP packets) to both Google and Cloudflare public

DNS ReRs, measuring the round trip time (RTT) of the path <client, dVPN node, ReR >. Then,

I derive the latency of the path <dVPN node, ReR > by subtracting the latency from the path

<client, dVPN node> which I also obtain via ping. Figure 3.8(a) shows the CDF of the RTTs

between 1,415 residential dVPN nodes and Google and Cloudflare DNS ReRs. Overall, faster

RTTs are measured for Cloudflare, e.g., a median RTT of 19.9ms compared to Google’s median

RTT of 24.0ms.

Next, I analyze the iterative DNS lookups (DoUDP) I performed for 122K domains (40K

SLDs) collected with a passive Mysterium node. Figure 3.8(b) shows the CDF of DoUDP query

duration per domain distinguishing between each step of the iterative lookup: root, TLD, and final

ANSes. The figure shows similar results across ANSes, with a median duration of 16ms for both

root and TLD ANSes, and 12ms for final ANSes. Further analysis shows that the highly variable

query duration observed for both root and TLD ANSes is primarily due to dig [4, 7] which iter-

ates through different root and TLD ANSes. In fact, the closest root ANSes to my test-bed (c.root

and d.root) consistently respond in less than 1ms, versus over 100ms for the furthest one (k.root)

as shown in Figure 3.8(c). Similar results apply to TLD.

3.6.2 Performance

Query Performance. Figure 3.9(a) shows boxplots of query duration per DNS protocol. For

PDNS, I differentiate between small (64MB, up to 1.6M entries) and large (512MB, up to 13M

entries) caches, as well as a futuristic implementation relying on F1 hardware [271] with large

cache, which provides at least 1,000x speedups to CPU. While I cannot obtain such hardware yet,
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Figure 3.9: Performance evaluation of PDNS.

I simulate its performance assuming that the Answer primitive would only require 1 ms. I further

distinguish between queries which triggered cache misses or not, and whether HTTPS connection

reuse was adopted, when applicable.

Figure 3.9(a) shows that DoUDP, i.e., DNS without any security or privacy guarantees, achieves

the best performance with a median query time of 25 ms, which is slightly longer than the median

RTT of 22 ms between my emulated users (via Mysterium as detailed in § 3.6.1) and the ReR–

thus confirming negligible time spent at both client and ReR to handle a DNS query. DoH almost

triples the query duration from DoUDP (median of 69 ms) due to the two additional RTTs (∼

45ms) required by TLSv1.3; as expected, the query duration in DoH drops to 28 ms in presence

of connection reuse. ODoH – which further enhances user privacy while sacrificing performance

– achieves a median query duration of 272 ms, which reduces to 63 ms with connection reuse.

In the case of ReR-Less DNS, when utilizing DoUDP, the median latency is around 84 ms with

considerable variability. When emulating3 ReR-Less DoH, which is necessary to protect from

3Emulation is required since ANSes currently do not support DoH.
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pervasive DNS monitoring, latency significantly increases, with median exceeding 250 ms and

the third-quarter latency reaching above 450 ms. My analysis is based on the assumption of no

HTTPS connection re-use, as ReR-Less DoH necessitates establishing new HTTPS connections

with various ANSes, reducing the likelihood of benefiting from persistent HTTPS connections,

except perhaps with root/TLD ANSes.

It is noteworthy that these results represent the performance of ReR-Less DoH from the per-

spective of a single user with relatively good bandwidth and location, and are limited to top-ranked

domains. The performance for average users worldwide is likely to be substantially lower than

what I have observed, due to an inflated network path to an ANS. Further, these results do not take

into account of the extra load incurred on ANSes if ReRs are bypassed globally. Such loads can

only be amortized via more hardware or by slowing down user queries.

PDNS achieves median query durations of 208 ms and 450 ms for cache sizes of 64MB and

512MB, respectively. This means that PDNS is slightly faster than DoH and ReR-Less DoH as-

suming a small cache, and no connection reuse. While HTTPS connection reuse is also beneficial

to PDNS, the benefit is less evident compared to DoH and ODoH because CPU processing is the

main bottleneck of PDNS. When considering a much bigger cache, PDNS pay a penalty of 180ms

when compared with ODoH. Still, the median query latency is 2x faster than DoHoT. This shows

that the performance of PDNS is already acceptable today, especially to the many people who care

about their privacy.

It is important to highlight that the prospects for improving ReR-Less DNS or DoHoT are

limited, as their performance is primarily constrained by network latencies, leaving little space for

optimization. In contrast, there is significant potential for enhancing the performance of PDNS,

as its latency is primarily due to computational delays. For example, when combining PDNS with

specialized hardware (e.g., the F1 accelerator [271]), its performance are comparable to DoH and
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better than ODoH, while offering much stronger privacy guarantees (see Table 3.2). PDNS with

F1 will also outperform ReR-Less DoUDP. Finally, the cache misses add∼20ms to the query time

for all DNS protocols except the ReR-Less DNS.

Web Performance. I use WebPageTest [44] to automate Chrome (on Linux) and both perform

web page loads and collect telemetry, e.g., classic web performance metrics: FirstContentful Paint

(FCP), Time To Interactive (TTI), and PageLoadTime (PLT). I target the top 1,000 websites from

Tranco [41] which are loaded 5 times per configuration (and then report the median of each metric).

I test each website using all DNS solutions studied so far except ReR-Less DNS since no DoH is

supported by ANSes today, and assuming HTTPS connection reuse, since it is a realistic behavior

of different OSes and browsers [120]. I use Cloudflare as a public ReR for existing DNS protocols,

and my ReR for PDNS while injecting the latency measured between testing client and Cloudflare

(2-3ms). Note that my testing machine connects to the Internet with a symmetric upload/download

bandwidth of about 100 Mbps.

Overall, the Web performance tests (Figure 3.9(b)) confirm the results of the query duration

(Figure 3.9(a)), with DoUDP being the fastest protocol and DoHoT being the slowest. When

assuming a small cache, PDNS has performance comparable with ODoH, within 100 ms per metric

which can hardly be perceived by the user. Still, ODoH outperforms PDNS when using a large

cache, saving ∼900 ms for FCP/TTI which would indeed be perceived by the user.

3.6.3 Deployment Cost Analysis

I here estimate the deployment costs of PDNS and discuss whether it is viable to be provided as

a subscription-based service as of today. My analysis is based upon a comprehensive study [280]

that models the DNS client behavior with a dataset collected from a university campus network.

I assume that PDNS is deployed using a public cloud service. Upon consulting the pricing
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calculators provided by AWS [1] and Google Cloud [10], I determine that the costs associated

with configuring an 8-core CPU machine – similar to the one used in the benchmarking (§ 3.5.2)

and evaluation (§ 3.6) sections – are comparable across two cloud providers. Specifically, the

estimated computing costs amount to approximately $148.92 on AWS and $148.37 on Google

Cloud, per month. For simplicity, I will consider the rounded value of $149 for the subsequent

calculations. It is worth noting that both costs scale linearly with the number of CPU cores. As

shown in Figure 3.7(b)), PDNS running on a machine equipped with an 8-core CPU can handle

8 QPS (assuming a small cache) or 4 QPS (assuming a large cache). In addition, the cloud also

charges for data transfer from cloud machines to the Internet (the reverse is free). AWS and Google

Cloud charge for at most $0.09 per GB and $0.085 per GB, respectively. I take the upper bound of

$0.09 per GB for the subsequent calculations.

According to the findings in [280], users perform on average between 2,600 and 3,724 DNS

queries every day. It follows that a PDNS using the configuration above can serve at least between

93 (large cache) and 186 users (small cache) in a day, i.e., 3600 × 24 × 8/3, 724 = 186. As a

result, the computing cost per user amounts to approximately $0.8 with a small cache or $1.6 with

a large cache. In addition, the data transfer will cost 3, 724× 30× 40KB× $0.09/GB = $0.4 per

user. This means that if a user is willing to pay more than $2 per month to safeguard their privacy,

PDNS could be a viable business proposition.

The above analysis ignores potentially concurrent users as well as the bursty nature of DNS

requests. In the study by [280], the bursty behavior of DNS queries is measured using “clusters”,

where each cluster consists of a minimum number of 3 queries and is separated from other clusters

by an idle period of 2.5 seconds. In their research, they report the CDFs of the number of queries

per cluster and cluster duration. Although direct ratios between the number of queries and duration

within each cluster were not reported, I sample these values at various percentiles and approximate
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Figure 3.10: Privacy and security evaluation of PDNS.

the bursty demand by calculating the ratios ourselves. Based on my analysis, I find that the bursty

queries generated by up to 1,033 users reach a maximum of 126 QPS. Another study has reported

similar peak QPS with many more users [171]. To support such capacity, machine(s) with 128

CPU cores are required with a small cache, or 256 CPU cores are needed with a large cache.

Consequently, the monthly computing costs to serve one user would amount to approximately

128/8 × 149/1, 033 = $2.3 with a small cache, or $4.6 with a large cache. Besides the data

transfer cost of $0.4 per user, I conclude that offering PDNS as a service would be financially

viable if the monthly subscription fee is set at $5 or higher.

3.6.4 Privacy and Security

Regional Access Pattern – § 3.1 concludes that PDNS provides the highest privacy guarantees.

In particular, it does not require a non-collusion agreement and can hide regional access patterns

from the ReR. The former is guaranteed by its cryptographic theorems [173, 264], while the latter

is not obvious given that a PDNS ReR can still learn some information from the analysis of cache
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misses.

Figure 3.10(a) shows the CDF of domain (hostname or SLD) popularity rank difference (abso-

lute value) obtained with and without PIR (ground truth). For instance, “cnn.com” has a ranking

difference of 23,270 since it is ranked 104,614th without PDNS but 81,344th assuming PDNS. This

figure relies on a trace of 20 million DNS queries of 122K unique domains I collected. Overall, the

figure confirms the privacy protection offered by PDNS as the overall ranking has been disrupted.

For example, 99% of the 122K hostnames in my traces have an absolute ranking difference larger

than 100 (and 40% larger than 10K). Similar results apply to SLD.

Information Exposure to ANSes – In addition to protecting user privacy from ReRs, PDNS also

utilizes the presence of ReRs to decrease the frequency of iterative DNS lookups, thereby reducing

information exposure to ANSes. In my simulation, I observed a cache miss rate of less than 10%.

Within this rate, 90% was caused by expired entries, and 10% by uncached entries. While my

cache miss rate is lower than some previous studies (30% was reported [119]), the pattern of cache

misses being primarily due to expired entries is consistent with these findings. Therefore, in 90%

of cache miss cases in PDNS, users only need to contact the final ANSes directly, significantly

limiting exposure to non-final ANSes.

In short, PDNS cuts down 70 to 90% of the ANS queries required by ReR-Less DNS. For

the remaining traffic directed to ANSes, only roughly 10% require interactions with non-final

ANSes. Such limited exposure will likely disrupt the frequencies of sub-domains observed at non-

final ANSes, similar to Figure 3.10(a). This achievement aligns with my goal to minimize user

interactions with ANSes and reduce privacy risks, even though I consider these risks acceptable

today. In contrast, ReR-Less DNS leads to the exposure of all user information to ANSes and, on

average, causes a 4 to 16 times increase in their workload compared to the current norms [171].

The impact is even more pronounced at ANSes for popular domains, where the workload can be
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hundreds of times greater. Moreover, ReR-Less DNS introduces security vulnerabilities to ANSes.

Resilience to Reflection Attacks – Next, I evaluate PDNS resilience to reflection attacks. I use my

DNS traces, including 42K ANSes involved and 122K unique domains, to drive the distribution of

the number of domains per ANS. Note that few ANSes control over 600 sub-domains, while over

90% of the ANSes manage less than 4 sub-domains. I select the top N% domains to be cached by

PDNS ReR and simulate attackers launching reflection attacks by pretending to experience cache

misses for each domain. I assume an attacker has the list of domains supported by PDNS and a

maximum upload bandwidth of 1Gbps.

Figure 3.10(b) shows that, without the security feature introduced in § 3.4, a single attacker

can generate over 100MB of traffic per second, and the traffic grows linearly as the number of

attackers grows. The limit on the “reflection traffic”, i.e., from ANS to ReR, is dependent on the

total bandwidth of all attackers and of all ANSes. When considering my security mechanism,

Figure 3.10(b) shows that the reflection traffic reduces to less than 12MB per TTL, i.e., for how

long a record stays in the ReR’s cache, with little impact of the number of attackers and the amount

of domains found in the cache. This is because my security mechanism ensures that each domain

can only be populated once in the PDNS ReR within its TTL, thus putting a deterministic cap on

the reflection traffic. Having more attackers or fewer domains cached only allows to consume that

cap faster within a TTL.

Resilience to Timing Attacks – Last, I investigate the efficacy of employing random response

delays as a strategic defense mechanism against timing attacks. According to the findings in [280],

1,000 users will perform queries at an average rate of 32 QPS, which translates to ∆ = 31ms.

The cache miss chance for each query is 0.33, i.e., m = 0.33. Below, I calculate the entropy for a

response arriving at s ms after Q0, where s is an integer and 0 ≤ s < ∆.

To render the outcomes more comprehensible, I introduce a threshold denoted as Te, which
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Figure 3.11: The effectiveness of delayed response forwarding to PDNS ReR.

signifies the point at which the timing attack defense is considered effective. This effectiveness

manifests when PDNS ReR fails to differentiate between a response originating from two separate

queries, both of which have an equal likelihood. In precise terms, I set Te = −1
2
log 1

2
− 1

2
log 1

2
≈

0.69, delineating a criterion for the defense mechanism’s adequacy.

I consider two distributions in my evaluation: the uniform distribution U and geometric distri-
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bution G. When X ∼ U(0, d), I have

Prob(Xi = k) =


1

d
, k ≤ d

0, otherwise
, (3.3)

where the average delay time is E[X] = d
2
. When X ∼ G(p), I have

Prob(Xi = k) = (1− p)k−1 · p, (3.4)

where the average delay time is E[X] = 1
p
. I leave other potential distributions as future work.

First, I explore the entropy across different s ranging within the interval [0,∆). In this exper-

iment, I fix the ∆ = 31ms. For both the uniform and geometric distributions where the delay is

sampled from, I adjust the parameters so that E[X] = ∆. Figure 3.11(a) shows that the entropy of

geometric distribution is much higher than my threshold Te, whereas that of uniform distribution

is equal to Te. It further shows that the entropy for both distributions is barely changed given dif-

ferent s. This means that the PDNS ReR will have roughly the same difficulty in correlating the

response to the queries whenever the response arrives, illustrating the stable effectiveness of the

delayed response.

Next, I investigate the relationship between the average delayed duration E[X] and the entropy.

I fix the ∆ = 31ms, and calculate the average entropy across all s ∈ [0,∆) for each E[X] value.

Figure 3.11(b) illustrates that the entropy for both distributions increases as the E[X] increases,

where the geometric distribution is overall better than the uniform distribution. When E[X] ≥ ∆,

the entropy for both distributions is greater than or equal to Te, demonstrating the effectiveness of

the defense.

Finally, I investigate how ∆ affects the defense effectiveness of delayed response forwarding.
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I adjust E[X] = ∆ and calculate the average entropy across all s ∈ [0,∆) for each ∆ value.

Figure 3.11(c) shows that the entropy is relatively stable regardless of the value of ∆. This means

that the efficacy of the defense mechanism is not notably impacted by the variation in ∆. Instead,

the crux lies in the proper selection of the average delayed duration. Remarkably, the frequency

at which queries are made does not exert a substantial influence on the defense’s effectiveness,

provided that the average delay duration is thoughtfully determined. Consequently, the query

frequency primarily functions as a determinant for determining the average delay duration itself.

While my model simplifies the intricacies inherent in real-world PDNS scenarios, it undeni-

ably underscores the potency of incorporating delayed response forwarding to PDNS ReR as a

robust mechanism to counter timing attacks. In actual deployments, ANSes would opt for di-

verse delay-sampling distributions. Moreover, the response delay would naturally incorporate ran-

dom network-related delays. This layered complexity would invariably heighten the challenge for

PDNS ReR attempting timing attacks, thereby reinforcing the efficacy of the defense strategy. I

leave further explorations as future work.

3.7 Related Work

DNS – In addition to the mainstream DNS systems discussed in § 3.1 and evaluated in § 3.6,

privacy-aimed amendments to these proposals exist. For example, µODNS enhances the privacy

guarantees of ODNS by extending the number of relays to be greater than one [217]. Di Bella et

al. [156] propose a secret-sharing scheme for anonymous DNS queries which relies on a peer-to-

peer proxy network. Such an approach, however, is not robust when there are too many malicious

users in the system. EncDNS [184] has a similar system design to ODNS but it is less flexible in

terms of the key distribution mechanism, deployability, and compatibility with the current DNS

architecture. Recently, PINOT [301] proposes to obfuscate IPv4 packets in DNS traffic to random
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IPv6 packets with addresses owned by the network. It manages to preserve the anonymity of

users from any attackers outside of the trusted network, without modifying the DNS infrastructure.

However this solution only works for users in organizational networks but not individual users.

Overall, none of these solutions satisfy the privacy requirements specified in this chapter.

PIR-Based DNS Systems – Few previous works consider adopting PIR into DNS. Differently

from PDNS, they require significant modifications of the modern DNS architecture. A recent effi-

cient stateful PIR benchmarks its performance on private DNS queries [325]. However, it assumes

a single PIR server storing all the DNS records, ignoring the self-governing nature of the current

DNS system across all ANSes. It is also not practical from the performance perspective. Specif-

ically, it incurs massive communication and computation overheads for all the domain owners to

update their DNS records, not to mention the extra client-server communication needed whenever

the cache is updated. Lu and Tsudik [229] propose a novel DNS system based on distributed hash

tables and single-server PIR, where DNS records are stored in a table split into chunks which are

assigned to different ReRs. A DNS client first identifies the chunk associated with a DNS record

via hash indexing, and then initiates a PIR query to retrieve the record from the ReR responsible

for this chunk. The main drawback of this approach is that a query reveals the “chunk” of potential

DNS records it is contained in, which can be used to analyze user preferences. Previous works

also consider DNS systems based on two-server PIR [284, 324], which does not offer satisfactory

privacy to DNS users as discussed in § 3.1.2.

3.8 Discussion and Limitations

Limitation on Anycast – PDNS does not support anycast [88, 253], a network addressing and

routing methodology which allows a single IP address to be shared by multiple ReRs around the

world [79, 82]. This is because a ReR’s cache is populated by participating final ANSes. If anycast
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were to be implemented for PDNS ReR, an ANS located in a different area than the user would

route the DNS response to a different ReR than the original one queried by the user. Therefore,

anycast cannot be used to automatically redirect queries to the closest location, instead a unique IP

address per location is needed.

Cluster of PDNS ReR – In a realistic deployment, a PDNS ReR consists of potentially multiple

clusters of resolvers located at different locations. The user would select the closest location either

manually or by using some self-configuring software. As this selection occurs, the user would

register to a ReR which implies learning about the cache size N and compute and share pk (see

§ 3.2.3). I assume that servers within the same cluster (i.e., one single IP) share a synchronized

cache, i.e., having same size and content. This implies that pk can be shared among such servers,

and load balancing of both queries and DNS record updates is straightforward.

ReR In a Trusted Execution Environment (TEE) – This approach allows to verify, through a

hardware vendor, that the ReR’s code corresponds to an open-source non-logging implementation.

Relying on TEEs [270] inherently introduces a reliance on hardware vendors, which contradicts

my objective of eliminating non-collusion agreements. It also adds another point of failure, as

TEEs are not free from bugs and security breaches [86]. Further, TEEs often have limited mem-

ory [13], constraining the ReR functionality. Finally, it imposes a great burden on TEE vendors

while negatively impacting user experience, as every ReR attestation requires communication with

an attestation server at TEE vendor.

Multi-Service Internet Companies. In some cases, companies operate diverse businesses. For

instance, Google and Cloudflare simultaneously provide ReR and (final) ANS services. This po-

sitions them as critical junctions in the Internet, aggregating a wealth of information from these

different operations. PDNS stands out in offering optimal joint privacy protection to users in such

scenarios. Notably, only ReR-Less DoH and PDNS can effectively shield the ReR sector from
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accessing both individual and regional access patterns, without the need to rely on non-collusion

assumptions. The trade-off here is that ANSes receive direct queries from users, potentially re-

vealing their identities. As discussed earlier, I deem this acceptable since this information would

be accessible to final ANSes through other means. Still, I aim to minimize information expo-

sure. ReR-Less DoH exposes 100% of the DNS queries to all ANSes. In contrast, PDNS limits

this by directing only 3% of the queries to non-final ANSes and 30% to final ANSes (§ 3.6.4).

Additionally, PDNS provides security guarantees to ANSes thanks to its query validation scheme

(§ 3.4), which is instead not viable in ReR-Less DNS. I therefore conclude that PDNS is the prefer-

able choice here, minimizing information exposure jointly at both ReR and ANS for multi-service

companies.

Third-Party Final ANSes. Many small/medium businesses rely on third-party final ANS services

such as Route 53 [2]. In this case, PDNS direct ANSes queries – in presence of cache misses –

would leak some information to a third party which does not already have access to this information

via direct traffic, e.g., HTTP(S) in case of a webpage. The only solution to handle such privacy

leak is for Route 53 to implement support for the PIR protocol used by PDNS ReR. In this setup,

the PDNS ReR’s cache record for a domain name would include only the IP address of the final

ANS and a distinct flag, signaling users to communicate directly with the final ANS using the PIR

protocol. I leave this as future work.

For small businesses, the incentive to rely on a PIR-enabled ANS is to enhance privacy assur-

ances for their users. Such assurances could be visibly acknowledged by users through an added

security icon in their browsers, providing a competitive edge over similar websites with lesser pri-

vacy protections. This model also presents an incentive for public final ANSes like Route 53, as

they can put an extra charge to offset their operational expenses, thereby aligning improved user

privacy with their financial objectives.



121

3.9 Summary

The Domain Name Service (DNS) is a fundamental component of the Internet which still suffers

from privacy infringements [38] despite the recent adoption of encryption (DNS over HTTPS or

DoH), and new proposals to de-associate a user identity with her query (oblivious DoH or ODoH).

The main culprit of such privacy violation is the recursive resolver (ReR) whose role is to provide

distributed caching to DNS enabling its scalability and fast speed. While some recent provocative

proposals [171, 278] argue for its removal – which would naturally address such privacy concern

– such approaches are unfeasible, as I have largely evaluated in this chapter. Motivated by these

observations, I have proposed PDNS, to my knowledge the first practical solution to allow ReRs

to operate privately thanks to the adoption of single-server Private Information Retrieval [241].

PDNS is designed to augment rather than replace DNS, similarly to DoH and ODoH, but with

higher privacy, i.e., also defending from collusion and regional access pattern analysis.



122

CHAPTER 4

SEMANTIC COOKIES FOR ANONYMOUS ONLINE STREAMING ANALYTICS

The ability to extract user analytics in a timely manner is of critical importance for numerous online

applications [210]. An ad provider can more promptly adjust its ad layout to capture more clicks

based on the user analytics extracted over short time scales. Many online services are utilizing

machine learning systems to “learn on the fly” and either adjust content presentation (e.g., return

search results tailored towards a given user profile) or optimize system performance. Still, such

machine learning systems fundamentally depend on analytics “triggers,” which again, if available

sooner or over short timescales, are more valuable.

Currently, the streaming analytics “machinery” typically resides in data centers. On the one

hand, the analytics servers are fed by streams from web server clusters, which typically serve

tens of thousands of clicks arriving per second, on average. On the other hand, given that user web

requests alone are semantic-oblivious, i.e., carrying only a personal identifier but no direct informa-

tion about users, such information first needs to be obtained from associated user-profile databases.

The analytics servers thus aggregate data streams from the web servers and user databases to pro-

vide advanced analytics.

This approach, however, suffers from two main drawbacks. The first drawback comes from

the trend of infrastructure migration towards the network edge. In particular, content and service

providers have been continuously pushing their systems and content to the users, from the content

delivery networks (CDNs) to the off-nets – servers outside their own autonomous systems (ASes)

– which have become a common approach to expanding the footprint of content hypergiants [175].

Nevertheless, the semantic-oblivious requests cannot be analyzed before they reach the data centers
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that are distant from these edge systems/contents.

The second drawback is disrespect for user privacy, which has raised increasing attention and

concerns in recent years [107, 145, 308]. More concretely, the semantic-oblivious requests, while

simple in design and hence commonly adopted, carry personally identifiable information, e.g.,

user IDs. The user IDs have allowed the service providers to record any information about the

individual users as much as they can for an indefinite duration as long as the users do not actively

clean up – and most users are not aware of it at all.

In this project, I explore the potential of catching and pre-processing user clicks early, much

sooner than when they reach the data centers while preserving user privacy to the largest extent. In

particular, I look at the content providers’ network and off-nets, as well as edge ISPs. My goal is

to design a system to make early click catching, in-network processing, and anonymity preserving

analytics possible, and to quantify the achievable performance benefits.

To enable this approach, I propose semantic cookies, encrypted data structures set by the server

and then kept at the user. Contrary to widely-used state-of-the-art HTTP cookies, which are ef-

fectively pointers to semantic user databases (typically hosted at data center back-ends), I plant

semantic user information that is not personally identifiable directly into the cookies themselves.

This enables collaborating edge components, mostly edge servers but also switches, to analyti-

cally process the user requests. Importantly, semantic cookies can be seamlessly deployed without

altering any of the existing protocols.

I design and implement Snatch, the first prototype of my edge-network analytics system. I

explore two designs. The first one places semantic cookies at the application layer, HTTPS, and

processes them at the off-net’s or CDNs’ edge servers. The second one places semantic cookies at

the transport layer, QUIC, which enables processing them at ISP switches. The underlying trade-

off is that application-layer semantic cookies provide a high flexibility in terms of the number of
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user features, while transport-layer cookies provide faster analytics. Luckily, both types of cookies

could be utilized simultaneously, when needed.

Snatch is a two-tier analytics system. The first tier consists of either edge servers, which han-

dle application-layer semantic cookies, or LarkSwitches, which handle transport-layer semantic

cookies. The second tier consists of AggSwitches, which inspects all the incoming packets to the

analytics server. The first-tier devices early re-direct semantic data to the state-of-the-art analytics

servers. Optionally, the two tiers coordinate to enable in-network analytics. The number of sup-

ported operations available at switches is considerable; hence, it provides a valuable in-network

analytics support. Snatch augments existing analytics systems in a fully cooperative manner.

I implement Snatch and evaluate it in a testbed. To fully understand the performance gains

that Snatch can achieve on the Internet, I conduct a large-scale measurement study. In particular,

Snatch involves several components: the edge server, ISP switch, web server, and analytics server.

To study the performance of these entities in practice, I host HTTPS websites using AWS EC2

instances. In addition, I purchase CDN services from Cloudflare and AWS CloudFront. Finally, I

utilize over 2,000 residential nodes from the Mysterium VPN, spread around the world, as users.

These measurements enable us to accurately estimate network latencies among users, edge ISPs,

off-nets and CDNs, and data centers, and evaluate performance gains achievable by Snatch.

4.1 Background And Motivation

4.1.1 Streaming Analytics

Data streaming analytics targets enormous data that arrive continuously in time. Efficient data

streaming analytics is essential to many important real-time applications, e.g., social networks [128],

ad campaigns [140], and beyond [153]. Early streaming analytics systems use dataflow mod-

els [100, 123, 127]. With the increasing demand for streaming analytics, the last decade has
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witnessed a thrive of proposals: MillWheel [91], Storm [294], Heron [215], Puma [128], Spark

Streaming [65, 99, 322], Apache Flink [62], and more. Among them, Spark Streaming [322]

started to aggregate the streaming data over a short interval and performs batch analytics in a Map-

Reduce fashion [155]. The state-of-the-art streaming analytics produce results at a timescale of∼1

to ∼10 seconds [73, 140, 322].

The above-mentioned work focuses on streaming analytics in a single cluster environment,

leaving the arrival of data out of scope. In this project, I make the arrival of data a central topic

of my research. For example, message queues [63, 64, 68, 75] are usually adopted in real-world

production to link the data ingestion pipeline and the streaming analytics systems [140].I include

the message queues when discussing the streaming analytics systems in this project.

Yet, the message queues and the streaming analytics systems do not depict the whole picture.

While some applications analyze only internal data, i.e., stored or generated inside the data center,

many applications analyze data from outside the data center, e.g., the users’ requests, generated

from end-user networks scattered around the world. Further, in online applications scenarios, the

application-level streaming data is typically sent to the analytics servers only after it reaches web

server endpoints in data centers. Hence, rather significant latency can be added to the user requests

after they are generated by end users.

The time cost incurred before data arrives at the analytics server is nontrivial (see § 4.1.3),

however, it is often disregarded. To depict a comprehensive picture, I consider an entire online

streaming analytics cycle. The cycle includes the streaming data generation and transmission,

i.e., users send requests to the servers and the servers process the requests, data processing, i.e.,

by message queues and event processors [73]. Finally, the cycle terminates with a traditionally-

defined streaming analytics system, e.g., Spark Streaming [65].
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4.1.2 Anonymity Preserving Analytics

Anonymity preserving analytics refers to computational analytics over aggregated results from

the users without revealing the individual identities, and hence provides strong privacy guaran-

tees [163, 319]. Unfortunately, widely-adopted Web cookies present a significant privacy-leaking

vertical, even at the network level [308]. A single identity leak in one application opens up unfore-

seen tracking opportunities.

With the growing public attention and concerns about individual privacy, anonymity preserving

analytics has been supported by legislators [51]. The related studies have also become a hot topic in

the security and privacy academic community [145, 165]. Complying with the trend, hyper-giants

have also introduced their own data collection and analytics systems that preserve user anonymity,

for instance, Google [107, 166], Apple [293], Microsoft [159], and more.

4.1.3 Opportunities

Migrating infrastructure towards the edge. Content and service providers are continuously

pushing their systems closer to the users. Content delivery networks (CDNs) allow the content

providers to place static content at servers nearby users, and thus improve their experience. CDNs

have thus become one of the most crucial components of the Internet today, serving billions of users

across the world. In fact, more than half of the Internet traffic originates from several top CDN

providers [175]. In addition to building their own data centers and backbone networks [190, 214],

the major content providers also deployed off-net servers [175]. Such servers are placed in the

eyeball, end-user, networks. The deployment of these edge servers further reduces the latency

between the user and the content, thereby improving the user experience.

In parallel with this trend, the service providers are also pushing computation closer to the

users. Hence, many distributed streaming analytics systems are proposed, aiming at working with
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Figure 4.1: Breakdown of time cost in a simple application of advertisement campaign.
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limited resources available at the edge [121, 122, 174, 244, 260]. While helpful in certain special-

ized scenarios, most applications still require centralized streaming analytics with data from users

scattered all around the globe. In this project, I focus on centralized streaming analytics.

Importantly, with the introduction of edge servers, the overall architecture of online streaming

analytics systems has changed. The streaming analytics server (cluster) is usually not placed in

the same region as the edge servers, which is where the users are directed first. This results in

complication of the security and privacy issues, e.g., a third entity has access to the cookie content,

as well as a rather substantial increment of delay between the components of the online streaming

analytics systems, as I will demonstrate below.

Case Study. The above infrastructure migration to the edge affects many online applications.

A first example is that an advertisement provider may want to receive aggregated results of its

ongoing advertisement campaign in real-time to make decisions, e.g., the offering in the following

advertisement auctions, based on them [140]. A second example is that real-time crowd analytics,

a technique crucial to many businesses [83], needs to aggregate results about information in a

particular region. A third example is the needs for faster response to users’ resource demands.

Today, cloud platforms have become the go-to solutions for many companies because of their

capability to scale up/down in a timely manner. Nevertheless, the service scaling (where containers

are usually used) needs to deploy before they become available. Hence, faster response to the

demand and hence earlier provoking service deployment changes are crucial to the user experience

for various online applications [50].

Below, I analyze the first example of the advertisement campaign in detail. Here, the data is

generated when a user clicks on an ad link. It follows that a request is sent to an edge server, e.g.,

in the case of a CDN, with the user ID embedded in the HTTPS cookie and the ad ID included

in the HTTPS URL. The edge server then passes the cookie to the web server in the closest data
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center. Next, the web server processes the cookie and delivers the data to the (centralized) analytics

system which is potentially at another data center. Message queues are usually adopted to deliver

the data. If the user semantic information is needed, e.g., demographic or other information, the

analytics server needs to first fetch this data from a database before being able to perform further

analytics operations.

In this example, I assume that the application developer, who owns the web server, has control

over all the cookies, meaning that they are all first-party cookies. As a result, the cookies are

initially sent to the web server, and any ad broker either resides at the analytics server or receives

information from it. It is important to note that in the current Web, this assumption may not

hold true, as users may send separate requests to ad broker URLs along with third-party cookies.

However, the use of these third-party cookies contradicts the prevailing trend of enhancing privacy

and has already been banned by some major browsers [55, 57, 85] and is expected to be banned by

the remaining browsers in the near future [53]. Consequently, I focus on first-party cookies in this

study.

Drawbacks and Opportunities. I conduct a large-scale measurement study to comprehensively

quantify the latency inflation cost (details are provided in § 4.4). Figure 4.1(a) illustrates an exam-

ple of the analytics time cost breakdown of one data point. It starts from the request generated by

the user in New York1. The closest edge server, which caches static content, is selected and is in

New York. The web server that provides dynamic content and handles cookies is hosted at AWS’s

us-east-1 region. The server for global streaming analytics is, however, located in California. All

QUIC connection handshakes take 97.8 ms in total. Adding up to the processing time costs at both

the edge and web servers, which take 378.2 ms in total, as well as the delay of 32.3 ms from the

1Here I assume QUIC is adopted as it is becoming popular, and its handshake is simpler than TCP+TLS. With
TCP+TLS handshakes, the time cost of communication in Figure 4.1(a) will be more than doubled as it is now.
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web server to the analytics server2, the time cost before the cookie arrives at the analytics server is

508.3 ms, which occupies more than 50% of the total time cost assuming 500 ms is needed for the

analytics itself3.

Besides the latency inflation highlighted above, I also notice that in the current online streaming

analytics systems, the analytics operations are performed only after they arrive at the analytics

server. For instance, traversing through the path of the data in Figure 4.1(a), I find that the data

is held by the edge server and web server for more than 300 ms in total while they respectively

handle the static and dynamic web request – unrelated operations to the data analytics – and is left

untouched before it arrives at the analytics server.

I now move to privacy issues. In short, the above request submits a user activity, i.e., clicking an

ad, along with the user ID to both the edge server controlled by a CDN provider, and the analytics

server controlled by the ad provider. After that, the ad provider can perform any analytics as it

wishes, or save this event associated with the user ID in its database for further analysis. Yet, this

might lead to potentially serious privacy violations. This is because as long as the user does not

clean up the cookie, all her activities will be logged among potentially other individual information

that is obtained through other sources, as illustrated by the tables in Figure 4.1(a). An attacker, e.g.,

a malicious data owner or a third-party attacker who gets access to the database of the ad provider,

or network traffic, might then be able to impose danger to such individual users by splicing all the

information pieces [308].

2I assume no handshake is needed because a persistent connection is established by the message queues, or other-
wise the time cost will be greater.

3The default computing time interval of Spark is 1s [78]. If the data arrives evenly, the average time of analytics is
500 ms.
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4.2 System Design

In this section, I first present the overview of Snatch design and illustrate the benefits using the

same example as in § 4.1.3. Next, I present my security and privacy threat model. I then present

more design details and benefit quantification of the semantic cookie as well as in-network stream-

ing analytics. Later, I touch on the functionalities of Snatch’s controller. Finally, I detail the

security and privacy guarantees of Snatch.

4.2.1 Overview

At a high level, I propose to forward and (pre-)process the data much earlier than the current

online streaming analytics systems do – at the edge server, or even at the ISP switch, thanks

to the programmable data plane [110]. One critical obstacle for the early data forwarding and

pre-processing is that the cookies are semantic-oblivious, i.e., no information about the user but

only a reference to the information is included. This is because at the time when the cookies are

assigned, the server knows nothing about users. I instead propose semantic cookies. Like regular

application-level cookies, they are generated by servers, and kept by users. The difference is that

semantic cookies hold encrypted application-level user data, and more importantly, include no

personally identifiable information. Typically, once the information about the user is collected,

e.g., when a user clicks a specific web page, the web server should push semantic information into

the user cookie itself. To the best of my knowledge, I am the first to seize this opportunity, given

the nature of Snatch.

The procedure of Snatch is illustrated in Figure 4.1(b), focusing on the same application as the

case study in § 4.1. A previous benchmark study [140] evaluated the streaming analytics engines

by operating a join operation to obtain the number of users who viewed the ads. But in practice,
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more advanced analysis of the composition of the users may be needed to allow the ad providers to

make decisions based on the results. Thus, I assume that the analytics server wants to analyze the

composition (by their demographic categories) of users who viewed a particular ad in an instant

windowed time. This can be achieved with three operations as shown in Figure 4.1(a): (i) filtering

the arriving cookie streams by event type, e.g., a user viewed an ad (L1); (ii) then requesting the

database for the user features (demographic information) by the user ID embedded in the cookies

(L2); and (iii) counting the number of users for every user feature (L3-4).

In Snatch, the web servers should set the semantic cookies as a replacement of the user ID,

as shown in Figure 4.1(b), after the first connection with the user and the information of the user

becomes available. It is noteworthy that the first connection cannot be accelerated and is not

depicted in Figure 4.1; all the results I present in this project focus on subsequent connections after

the initial one. The semantic cookies should be kept by the user, similar to the current design.

What is different is that the ad provider should not store any user information. From then on,

the user sends requests with the semantic cookies. The semantic cookies can be recognized and

processed by the edge server. As shown in Figure 4.1(b), the edge server filters the cookies by

the event type (right L1). It also counts locally the number of users who viewed a particular ad

for every user feature (right L2-3). The processed data can be forwarded directly to the analytics

server. Before it arrives at the analytics server, a programmable switch close to the analytics server

named AggSwitch aggregates the local counts from all the edge servers (left L1) before delivering

it to the analytics server.

As there are many devices and parties involved in Snatch, a controller (not shown in Figure 4.1)

is present to coordinate all the participants. As shown in Figure 4.3, Snatch controller is run by a

trusted party. It accepts analytics tasks from application developers and distributes the associated

instructions to different devices held by different parties.
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In this example, all the analytics have been completed on the way to the analytics server while

no user ID is present. The time costs on analytics operations (∼500 ms) are reduced to <1 ms given

that (i) each web server only handles a small number of requests and hence has minimal costs and

(ii) the line-rate processing ability of the programmable switches. It follows that the total latency

from when the data is generated to when the decision can be made based on the data is reduced by

∼80% from 1008.3 ms to 228.6 ms. This demonstrates the feasibility and benefits of processing

the data early.

Moreover, the semantic cookies in many scenarios are constant. For instance, in the second

example of real-time crowd analytics, what needs to be aggregated and analyzed is the user’s in-

formation, e.g., demographic or interests; in the third example of faster response to users’ resource

demands, what needs to be aggregated and analyzed is the typical demand of the users. These

information can be kept at the user’s side and sent without knowing what the user’s requests are.

Thus, I further propose to encode encrypted semantic cookies in the transport layer. With the

programmable switch’s capability to read and parse packet headers, the semantic transport-layer

cookies can be acted upon as soon as the user requests reach the edge ISPs, as the dashed lines in

Figure 4.1(b) illustrate. In particular, semantic cookies could (optionally) be pre-processed, and

forwarded by the LarkSwitch, as shown in the figure. This further cuts analytics latency to around

48 ms – a ∼95% reduction in the total delay.

4.2.2 Threat Model

I assume a third-party attacker who can monitor and collect network packets from a limited geolo-

cation range. I also assume an attacker who may join the system as a user to receive the semantic

cookies from the web servers. The attacker may try to decode the format of either the application-

layer or transport-layer semantic cookies by examining the collected packets. Nevertheless, the
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attacker should be computationally bounded and not be capable of decrypting ciphertexts that are

encrypted using advanced cryptography algorithms, such as AES and TLS.

In general, being able to decode the semantic cookie would allow the third-party attacker to

intercept user information from network eavesdropping, or send fake data [137, 176, 231, 234] to

distort the application developers’ analytics results.

Moreover, I assume an honest-but-curious edge node, i.e., edge server or LarkSwitch in Fig-

ure 4.1(b), who follows the protocol but may try to understand the application-layer purposes of

the semantic cookies, and hence steal the user information for commercial purposes. On the other

hand, I assume a malicious application developer who may try to insert personally identifiable

information into semantic cookies while using Snatch.

4.2.3 Semantic Cookie

Contrary to "traditional" cookies, which are used as pointers to a back-end database of user at-

tributes, semantic cookies enable web servers to directly encode user attributes and push them to

the end-users. The semantic cookies cannot be in plaintext but need to be encoded and encrypted

because they will be stored on the users’ side.

Application-Layer Semantic Cookie. Because the edge server is the endpoint of the users’ TLS

connections, it has the access to all the application-level information in the users’ requests, in-

cluding the application-level cookies as required by Snatch. For instance, if users are sending an

HTTPS request, then the edge server is able to access the headers, cookies, and payload of the

HTTPS request.

Therefore, leveraging edge servers for early forwarding the application-layer cookies is straight-

forward to implement. Most current edge services, e.g., Cloudflare’s CDN, allow the user to set

custom page rules to adjust caching levels, forward requests, modify headers, etc [66, 67]. What
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is needed in Snatch is to decrypt the cookies, match semantic cookies’ names and values, and send

the extracted data to a custom destination (analytics server) – if possible – in a custom format. The

additional computational cost is minimal as it is similar to existing header-related operations.

The benefits of application-layer cookies are three-fold: First, they can support semantic cook-

ies with as many sub-cookies (user features) as needed by the applications. Second, they do not

require any modification on the user’s side. Third, they are fully compatible with the current

HTTPS request design and simply need to include semantic cookies. In addition, the cookies can

be easily kept across different connections between the user and the server over time, regardless of

the underlying protocol, e.g., TCP, UDP, QUIC, TLS, etc.

To better quantify the benefits of using semantic versus non-semantic application-layer cookies,

I aim to quantify the speedup. It is defined as the ratio of the expected latency in two scenarios,

i.e., non-semantic vs semantic. Hence, speedup is ≥1. Denote user by C, edge server by E, web

server by W , and analytics server by A. Then, dCE is the delay between the user and the edge

server, and so on. Let Ttrans be the transmission duration of the request.

I further denote by TE , TW , and TA the time costs for processing requests at the edge server,

web server (including database communication), and analytics server (including message queues),

respectively. Then, for HTTPS request on top of QUIC 1-RTT, the speedup is

Sapp−https =
3dCE + 3dEW + dWA + Ttrans + TE + TW + TA

3dCE + dEA + T ′
E + T ′

A

, (4.1)

where T ′
E and T ′

A are the time costs when Snatch is involved. Because of the minimal additional

cost from processing application-layer cookies at the edge server, I consider T ′
E = TE . Further,

coefficient 3 in the equation comes from the QUIC 1-RTT handshake process.
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As far as QUIC 0-RTT is concerned, because it sends data at the very beginning, I have

Sapp−https−0rtt =
dCE + dEW + dWA + Ttrans + TE + TW + TA

dCE + dEA + T ′
E + T ′

A

. (4.2)

I further look into the speedup for application-layer semantic cookies when TCP connections

are adopted. For an unencrypted HTTP request, on top of TCP, the speedup Sapp of the streaming

analytics is

Sapp−http−tcp =
3dCE + 3dEW + dWA + Ttrans + TE + TW + TA

3dCE + dEA + T ′
E + T ′

A

, (4.3)

where the coefficient 3 in 3dCE and 3dEW comes from the 1-RTT TCP handshake process during

the connection establishment.

For HTTPS requests, TCP + TLS 1.2 handshakes need at least 3 RTTs to set up. Thus, the

speedup is

Sapp−https−tcp =
7dCE + 7dEW + dWA + Ttrans + TE + TW + TA

7dCE + dEA + T ′
E + T ′

A

. (4.4)

For example, 3 RTTs needed to establish an HTTPS connection between a client and an edge server

implies 7 one-way delays, i.e., 7 dCE .

Transport-Layer Semantic Cookie. Transport-layer cookies are semantic cookies that are en-

coded in the transport-layer protocol. As identified in a previous study [102], there are three ways

to encode cookies in the transport layer without requiring any modifications on the users’ ma-

chines: (1) encode the cookie into the least significant bits of IPv6 addresses with a maximum of

64 bits, (2) encode the cookie into the timestamp option of TCP with a maximum of 32 bits,

and (3) encode the cookie into the conneciton ID of QUIC with a maximum of 160 bits.
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....
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(a) QUIC 1-RTT.
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Data (DstConnID**)
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ACK (SrcConnID), 200

....
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(b) QUIC 0-RTT.

Figure 4.2: QUIC handshake procedure and the time cost for the server to receive data.

IPv6 – The use of IPv6 addresses requires the assumption that the MAC address is associated

with the least significant bits of the IPv6 address, and thus is not appropriate in my case. I consider

the other two options: via the TCP timestamp and via the QUIC conneciton ID.

TCP – When the TCP timestamp option TSP is set and used in one direction (e.g., from server

to client), all the packets in the reverse direction (from client to server) will attach the same TSP

value automatically. However, there are several issues with this approach. First, the TSP value

cannot be reused in the next TCP connection. Second, if the client wants to send the cookie in

the next TCP connection proactively, it requires non-negligible modification on the client’s side –

access to the root privilege and modifying the outgoing packets accordingly. This breaks my vision

of minimal to no client modification.

QUIC – QUIC is a transport-layer protocol implemented in the userspace on top of UDP. The

QUIC connection establishment procedure is illustrated in Figure 4.2 (left for the 1-RTT hand-

shake, right for the 0-RTT handshake). For QUIC 1-RTT, a long QUIC header will be used during

the handshake phase. The client will send two randomly generated connection IDs SrcConnID and
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DstConnID. Then the server will copy SrcConnID but set a new DstConnID* and return them to

the client. In the following communication, a short QUIC header will be used where the client

sends packets with DstConnID* and the server sends packets with SrcConnID. Further, the server

can reset the connection ID with version negotiation packets at any time. For QUIC 0-RTT, it is

only applicable when there was a previous connection between the same end-points. The client will

send the same DstConnID* as in the last connection. An IETF proposal [162] has also suggested

the potential of QUIC conneciton ID other than identification for the connection.

I find that the conneciton ID field, in particular DstConnID*, allows the encoding of

transport-layer cookies. In addition, it takes minimal effort to modify the conneciton ID field

because QUIC is implemented in the userspace. Thus, it fits my vision of minimal (QUIC-1RTT)

to no (QUIC-0RTT) client modification.

Snatch fully utilizes the features of QUIC. I consider all the connections between a user and

an edge server except the first one – at least one connection is needed before semantic cookies are

available. If the user uses QUIC 0-RTT, she repeats the connection ID from the last connection

where transport-layer cookies are encoded. LarkSwitch then will be able to decode the transport-

layer cookies and forward them to the analytics server. This requires no modification on the user’s

side. If the user uses QUIC 1-RTT, a slight modification of the code in userspace is needed to

allow the QUIC 1-RTT to keep the transport-layer cookie in the new connection, i.e., QUIC should

remember the connection ID from last connection but re-generate a subset of the bits without

tweaking the transport-layer cookies. In summary, both QUIC 0-RTT and 1-RTT fit my vision and

work for Snatch.

I further quantify the benefits of transport-layer semantic cookies. Let I denote ISP. Hence dCI

is the delay from user to ISP. Similar to the analysis for application-layer cookies, the speedup of
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the streaming analytics for QUIC 0-RTT is

Strans−0rtt =
dCE + dEW + dWA + Ttrans + TE + TW + TA

dCI + dIA + T ′
A

. (4.5)

For QUIC 1-RTT, its handshake needs 1 RTT and hence the coefficients for dCE and dEW become

3, while the denominator keeps the same as the transport-layer cookie is included in the first packet

header. The speedup is

Strans−1rtt =
3dCE + 3dEW + dWA + Ttrans + TE + TW + TA

dCI + dIA + T ′
A

. (4.6)

4.2.4 In-Network Streaming Analytics

Snatch further seizes the opportunity to accelerate streaming analytics by leveraging the in-network

computation: the programmable switch performs computation at line rate, much faster than the

servers [259]. For transport-layer cookies, streaming analytics can be completed in the data plane

– via the cooperation of LarkSwitches and the AggSwitch. The LarkSwitch decodes the transport-

layer cookies, pre-processes the data, and send them to the analytics server. On the last hop to the

analytics server, an AggSwitch extracts and aggregates the data from all LarkSwitches. Note that

for application-layer cookies, the analytics can be done in the network as well. It only requires

the edge server to forward the application-level data in a format agreed in advance, which allows

AggSwitch to decode and aggregate the data.

The modern programmable switch is able to perform AES encryption/decryption [136] and

calculate most of the common statistics [195, 226]. I limit the pre-processing to the supported

operations, and leave more complex ones to the analytics servers. When all the operations of a

target analysis are supported by the switches, Snatch reduces all the time costs of Pub/Sub services
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Figure 4.3: Snatch controller workflow.

and the analytics process.

I consider two types of forwarding schemes: per-packet and periodical forwarding. Per-packet

forwarding satisfies the needs of applications that require very low latency and immediate knowl-

edge of the streaming data. When all the operations of a target analysis are supported, Snatch

provides a huge speedup, i.e., T ′
A < 1 ms because the programmable switch operates at line rate.

On the other hand, periodical forwarding targets applications that have slightly loose requirements

on latency. During each period, the programmable switches updates the statistics based on incom-

ing packets. By the end of each period, LarkSwitch and AggSwitch cooperate to calculate statistics

and forward them to the analytics server. Compared to per-packet forwarding, periodical forward-

ing saves bandwidth resources while sacrificing latency. I explore this trade-off experimentally in

§ 4.4.2.
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4.2.5 Controller

Snatch includes many components that spread across the current Internet infrastructure. It is not

practical for any single party to possess or control all Snatch components. Instead, Snatch should

leverage the existing Internet infrastructure to the largest extent and builds on top of it. To realize

that, Snatch needs a controller to coordinate all the other system components. Snatch controller

should be run by a trusted party that builds up commercial relationships with the application devel-

opers, edge ISPs, content providers, and optionally cloud providers. As illustrated in Figure 4.3,

the application developer submits the analytics tasks to the Snatch controller, which then parses

the tasks and distributes the instructions to different devices controlled by different parties, in-

cluding the LarkSwitch by ISPs, edge servers by content providers, AggSwitch by ISP or cloud

providers, and analytics server by the application developer or ad broker. It also returns the format

of processed cookies to the analytics server which is controlled by the application developer.

At a high level, Snatch controller provides the following APIs to the application developers: (1)

Add or remove applications. In my design, the system supports multiple applications at the same

time. Different applications are distinguished by application ID in the cookies (either at transport

or application layer). (2) Add or remove cookies. For each application, Snatch supports multiple

user features, or sub-cookies. A transport-layer cookie is preferred if there is enough space. When

the space is scarce for all the sub-cookies, the developer should decide which sub-cookies are

encoded at the application layer based on the needs. (3) Change feature type and valid ranges.

Snatch supports two types of data: class and number. For a different feature type, Snatch supports

different pre-processing functions. Any data that is not in the valid feature range will be aborted.

(4) Change the forwarding scheme, either per-packet or periodically.
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4.2.6 Security and Privacy

Snatch provides security and privacy guarantees. Following my threat model, this guarantee needs

to hold against three potential attackers as detailed below.

Malicious Third-Party Attackers. First, I need to protect the cookies from being understood

or tempered by third-party attackers who monitor and collect network packets. To achieve this, I

propose to encrypt the transport-layer semantic cookies with AES-128 (see § 4.3), and use HTTPS

when accessing the Web protecting the application-layer semantic cookies with secure commu-

nication. In this way, third-party attackers cannot decrypt or learn the format or the content of

the semantic cookies. The AES encryption keys should be set differently in different regions and

changed regularly to strengthen security protection. It is noteworthy that these protections are not

in conflict with existing methods for mitigating data pollution [230, 232, 233, 261], which can be

still applied to safeguard the integrity and accuracy of analytical outcomes.

Honest-But-Curious Edge. Next, I need to prevent the edge nodes from being able to understand

the application-layer purposes of the semantic cookies – unfortunately, they can do so now. To

achieve that, the app developer should avoid using semantic names and, if possible, add transfor-

mations to the values, e.g., performing reversible mathematical operations before pushing semantic

cookies to the users and recovering them after receiving aggregated results from Snatch. This pro-

cess renders plaintext semantic cookies semantically incomprehensible. Further, app developers

can set multiple correlated cookies to substantially raise the bar for interpreting them. For exam-

ple, they can set two cookies to represent the same purpose, but each time only update either one

of them, hence confusing the edge nodes.

More importantly, full protection can be achieved using differential privacy (DP) [164], which

secures data privacy by introducing noise to it. A naive example is that if the app developer intends
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to increase a cookie value by 1, they could instead increase it by 2 with a probability of 75% and

decrease it by 2 with a probability of 25%. Such noises can also be applied to all fields – including

those that are not undergoing actual changes – as well as their initial values, to better disguise

the sensitive data changes from specific user groups or operations. Consequently, while individual

data may not be entirely precise, the aggregated analytical results such as calculated statistics from

all users remain accurate.

Note that the actual DP model will be adaptive and more complex than the above example.

Striking the right balance between accuracy and the level of added noise is crucial when imple-

menting DP. But deriving specific DP models is beyond the scope of this study as they depend on

the specific user data range and analytics accuracy requirements following business models.

In general, Snatch may require the app developer to redesign cookies mostly because of the dis-

carding of personally identifiable information. Further, the app developer should leverage cookie

encodings, correlation, and potentially DP, and maybe employ multiple edge providers to prevent

them from learning the semantic cookies. Beyond cookie redesigns, it does not rely on any partic-

ular constraints on app developers or ad brokers.

Malicious Application Developer. The last concern is that it is possible for the application de-

veloper to include personally identifiable information in a non-semantic cookie, i.e., not processed

by Snatch, during the communication between the web server and the users. This is prohibited by

Snatch’s policy and penalties will be applied once discovered. I leave the technical enforcement

of excluding personally identifiable information in this scenario as future work. It is noteworthy

that while such technical enforcement is not included in this project, Snatch has made it possible

to regulate the usage of individual identifiers in the cookies by providing an alternative system that

works well – or even better – without such identifiers.
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Figure 4.4: Transport-layer cookie and custom aggregation packet design.

4.3 Implementation

I have implemented a prototype of Snatch, and I will share the details of my implementation in this

section.
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4.3.1 Cookies and Programmable Switch

I implemented a prototype of LarkSwitch and AggSwitch based on an Intel Tofino switch. I first

present the cookie and packet design. Then, I introduce the switch logic. Further, I introduce my

implementation and discuss the scope of analytics with programmable switches.

Transport Cookie Design. I choose QUIC protocol as the carrier of transport-layer cookies be-

cause it fully meets the requirement of Snatch (see § 4.2.3). I encode the transport-layer cook-

ies in the up-to-160-bit connection-ID field of QUIC headers. As shown in Figure 4.4(a),

I split the connection-ID into four parts: (1) 8-bit destination connection ID (DCID), (2) 8-bit

application-ID, (3) bitmap of variable length, and (4) cookie-stack of variable length.

DCID is randomly generated for connection identification. The application-ID is used for distin-

guishing from normal QUIC packets and specifying the format of the remaining bits. Because of

the limited space, the format of bitmap and cookie-stack are not fixed but application-dependent.

Assuming there are N sub-cookies used by an application, corresponding to N features, then the

bitmap has N bits where each bit denotes whether this sub-cookie is present. The cookie-stack

includes N sub-cookies and the length of each sub-cookie is pre-defined by the controller. N is

bounded by the memory and stage limitation of the switch. The remaining bits (if any), unoccupied

by the bitmap and cookie-stack, marked as DCID-R2 in the figure, are also randomly generated

for connection identification.

I create a custom packet header on top of UDP to carry early-forwarded cookies or pre-

processed data (either by LarkSwitch or edge server) for AggSwitch. Figure 4.4(b) shows that

the custom packet header includes three parts: 1) a 16-bit special string SID, a custom identifier

for distinguishing from regular UDP packets; 2) a 16-bit summary that contains application-ID

and the number of sub-cookies/data for either per-packet forwarding or periodical forwarding, re-
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spectively; 3) data-stack that contains N sub-cookies and data. All data after the application

ID are encrypted using the AES-128 algorithm.

The extracted cookies and data encoded in the custom aggregation packet from LarkSwitch

and edge server to AggSwitch may be lost because UDP is used. I argue that the benefits of using

UDP overtake the loss. The loss here is that less than 0.01%, i.e., the packet drop rate in today’s

WAN [70, 71, 77], of the cookies or data will be lost. In comparison, there are two major benefits.

First, for short-term analysis, which is the target for Snatch, the value of the data is much higher

when the data is available sooner. Dropping one data point out of tens or hundreds of thousands

will not make a large difference to the distribution of the data, and thus to the results. At the

same time, the data is not lost forever. For a long-term analysis, full and accurate results can be

obtained by syncing up the records at the web servers or related databases. Second, implementing

a retransmission mechanism on programmable switches is non-trivial and consumes scarce DRAM

resources to keep the status. Instead, the resources can be used to offload more computation and

thus provide better speedup or support more applications. In conclusion, it is the best choice for

Snatch to adopt UDP for the custom aggregation packet.

To prevent the cookies and data from being hacked or tempered by the users or attackers, the

transport-layer cookies after application-ID is encrypted using AES-128. The AES-128 key is only

known to the application developer and the edge nodes, i.e., edge server or LarkSwitch/AggSwitch.

It is noteworthy that encrypting or decrypting the up-to-160-bit transport-layer semantic cookies

using AES-128 only adds ∼0.1 ms delay with a modern Tofino switch [136].

Switch Logic. When a new application is registered at a LarkSwitch or AggSwitch, its parameters

– including the application-ID, the format of bitmap and cookie-stack, and the AES key – are

stored in the switches’ match-action table entries. LarkSwitch will try to match the application-ID

for all the incoming QUIC packets. When a packet is matched, the switch decrypts and decodes
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the available cookies/data following the parameters of the corresponding application. the switch

then performs counting or other statistical operations on the decoded cookies/data. For per-packet

forwarding cookies or for periodical forwarding cookies when the period ends, the switch creates

a new custom packet and sends it and associated statistics to the analytics server. To do so, I make

the switch clone the original packet. The original packet is still forwarded to the web server to

keep the original communication. Meanwhile, the cloned packet header will be rewritten and its

payload will be removed before being sent to the analytics server.

Statistics Calculation. Both the LarkSwitch and the AggSwitch involve statistics calculation

when they process the cookies and data. The match-action pipeline design makes programmable

switches naturally classifiers and counters. In my prototype, I have implemented the basic statistics

which satisfy the (partial) needs of most streaming applications. For data type class, I implement

counting by matching value. For data type number, I implement sum, min, max, and average

calculations.

I further discuss the scope of applications supported by Snatch’s in-network streaming analyt-

ics. P4 switches support most of the streaming analytics operations. Here, I take Spark Streaming

as a comparison to illustrate what can be done for the in-network streaming analytics (INSA). In-

deed, INSA is not as flexible as Spark Streaming because of the constraint on the programming

model and computational and storage resources. My goal for INSA is to assist with the streaming

analytics and potentially complete relatively simple tasks alone, but not to entirely replace Spark

Streaming.

While Snatch handles multiple tasks, here I focus on the “depth” of each task and hence assume

to support only one task. In the discussion of the feasibility to achieve a function, I consider that

modifications can be made at either the compiling phase, i.e., modifying the P4 code, or Snatch

application submission phase, i.e., the application developer encodes the cookies and sets up the



148

Table 4.1: Supported operations and related application with in-network streaming analytics. N/A
for not applicable, N for not supported, Y for supported, and Y∗ for supported with limitation.

DStream Method INSA Category

cache() N/A DStream-specific
checkpoint(interval) N/A DStream-specific
cogroup(other[, numPartitions]) Y∗ partition, table-join
combineByKey(createCombiner, mergeValue, . . . ) Y∗ foreach
context() N/A DStream-specific
count() Y reduce
countByValue() Y reduce
countByValueAndWindow(windowDuration, . . . [, . . . ]) Y window, reduce
countByWindow(windowDuration, slideDuration) Y window, reduce
filter(func) Y∗ foreach
flatMap(func[, preservesPartitioning]) Y∗ partition, foreach
flatMapValues(func) Y∗ foreach,
foreachRDD(func) Y∗ foreach
fullOuterJoin(other[, numPartitions]) Y∗ partition, table-join
glom() N/A DStream-specific
groupByKey([numPartitions]) Y partition, reduce
groupByKeyAndWindow(windowDuration, . . . [, . . . ]) Y partition, window, reduce
join(other[, numPartitions]) Y∗ partition, table-join
leftOuterJoin(other[, numPartitions]) Y∗ partition, table-join
map(func[, preservesPartitioning]) Y∗ partition, foreach
mapPartitions(func[, preservesPartitioning]) Y∗ partition, foreach
mapPartitionsWithIndex(func[, . . . ]) Y∗ partition, foreach
mapValues(func) Y∗ foreach
partitionBy(numPartitions[, partitionFunc]) N partition
persist(storageLevel) N/A DStream-specific
pprint([num]) N/A DStream-specific
reduce(func) Y∗ reduce
reduceByKey(func[, numPartitions]) Y∗ partition, reduce
reduceByKeyAndWindow(func, invFunc, . . . [, . . . ]) Y∗ partition, window, reduce
reduceByWindow(reduceFunc, invReduceFunc, . . . ) Y∗ window, reduce
repartition(numPartitions) N partition
rightOuterJoin(other[, numPartitions]) Y∗ partition, table-join
saveAsTextFiles(prefix[, suffix]) N/A DStream-specific
slice(begin, end) Y window
transform(func) Y∗ foreach
transformWith(func, other[, keepSerializer]) Y∗ foreach
union(other) Y∗ table-join
updateStateByKey(updateFunc[, . . . ]) Y∗ foreach
window(windowDuration[, slideDuration]) Y window
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corresponding receiver at the analytics server.

In addition, because today’s P4 model only supports partial integer operation (see “Statistics

Calculation” in § 4.3.1), I limit the following discussion in the scope of integer operations. Yet,

it is noteworthy that it is possible to perform counting operations for strings: The application

developer can either encode the string to integer or use a dictionary when the value possibility

is limited. In this way, counting can be done by matching the hash value or the keyword. Still,

other string functions such as concatenate are not supported. It is also noteworthy that the latest

study has demonstrated that it is viable to perform float operation with programmable switches by

carefully rescheduling the computation procedure [321]. An alternative is to leverage float number

quantization [177].

A Spark Streaming program often executes a series of DStream methods [74], e.g., map, re-

duce, etc, to a DStream object, i.e., the data within an interval. For the sake of convenience of

discussion, I classify the DStream methods into several categories: DStream-specific, partition,

foreach, window, table-join, and reduce. A method may belong to multiple categories at the same

time. For instance, reduceByKeyAndWindow belongs to three categories: partition, window,

and reduce. Table 4.1 lists all the DStream methods, whether they can be done with INSA, and

their categories. Indeed, the complexity of some DStream methods heavily depend on the input

functions, and whether INSA supports such a DStream method depends on the input function, i.e.,

when the operands in the input function are supported by programmable switches, the DStream

method is supported by P4, and vice versa. Moreover, the total number of DStream methods that

are operated on a DStream object is restricted by the limited number of pipeline stages of the

programmable switches [87]. Below, I discuss the methods in detail by category.

DStream-specific methods include cache, checkpoint, context, glom, persist, pprint,

and saveAsText-Files. They are not applicable to INSA because they are specific for assist-
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ing the Spark programming model but not computation-related operations.

Direct partition methods include partitionBy and re-partition, whereas indirect par-

tition methods, i.e., where partition number is an optional input parameter, include methods in

foreach, window, table join, and reduce categories. To investigate these methods, I first need to un-

derstand more about the underlying data model of Spark Streaming. Resilient Distributed Dataset

(RDD) includes all the streaming data within a batch interval from all partitions, which refers to

the data stored at one Spark node and is the basic operable unit in Spark. In Snatch, each edge

node, i.e., ISP switch or edge server, can be regarded as a partition where data is stored. But unlike

Spark, the data in each partition depends on client location and activities, and cannot be moved or

reassigned in Snatch. Therefore, partitionBy and repartition are not supported by INSA. However,

operations on the partition are possible: AggSwitch can set up a match table for each edge node

and perform different actions accordingly. The modifications should be made at the compiling

phase.

Foreach methods include combineByKey, filter, foreachRDD, map, flatMap, flat-

MapValues, mapPartitions, mapValues, mapPartitionsWithIndex, transform,

transform-With, and updateStateByKey. The main purpose of these methods is to allow

operations at a finer granularity, i.e., at per data point level. In INSA, the programmable switch is

processing at per-packet granularity. Therefore, foreach methods are naturally supported by INSA

while subjected to input function, i.e., as long as the input function is supported by INSA, the

foreach methods are supported by INSA.

Direct window methods include slice and window whereas indirect window methods, i.e.,

where window settings are optional input parameters, include methods in reduce categories. Method

window provides flexibility by allowing the user to extract a new windowed DStream based on the

existing DStream but with a different interval. Method slice is similar but only needs aggregated



151

data within one interval. The periodical forwarding in Snatch is similar to window methods as

it returns data on windowed packets. In the same spirit, Snatch is able to realize both direct and

indirect window methods by achieving another periodical forwarding with a second time counter

registers. The modifications should be made at the compiling phase.

Reduce methods include count, countByValue, countByValueAndWindow, count-

ByWindow, groupByKey, groupByKeyAndWindow, reduce, reduceByKey, reduce-

ByKeyAndWindow, and reduceByWindow. Among them, count and groupByKey and their

associated methods can be regarded as special cases for reduce and associated methods, and they

have been implemented in my Snatch prototype. Reduce and associated methods fit in the match

and action programming model, and thus should be supported by INSA as long as the input func-

tion is supported by INSA. The modifications should be made at the compiling phase.

Finally, table-join methods include cogroup, join, fullOuterJoin, leftOuterJoin,

rightOuterJoin, and union. These methods correspond to SQL join clauses which combine

the columns from one or more tables. Snatch’s cookie/data-stack has very similar data structure

from tables, and technically it is possible to perform the join method at AggSwitch by storing

all the cookie/data from periodical aggregation packets (representing DStreams) in the switch and

then construct another custom packet as a result of join and deliver it to the analytics server. For in-

stance, I take the fullOuterJoin as an example. Stream 1 has cookies A, B, C whereas Stream

2 has cookies A, D, E. AggSwitch reserves a register space for a table with columns A, B, C, D,

E. When collecting periodical aggregation packets from LarkSwitches, what AggSwitch needs to

do is simply fill in the registers according to the value in cookie A. Thus, when all the periodical

aggregation packets are received, AggSwitch has a full table of the result of fullOuterJoin on

Stream 1 and 2. Other table-join operations can be done in a similar spirit. Here, the modifications

should be made at both the compiling phase and the application submission phase.
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Note that table-join methods might be beneficial when applying to two separate applications

per the developers’ agreement, which is a topic I plan to explore in future work. Otherwise, it is

a bad practice since it costs too much of the switch storage resources and a better design of the

cookie/data-stack will remove the necessity for the join operation.

One limitation is that complex operands, e.g., modulo and logarithm, are not supported by most

P4 devices. Nevertheless, this can be resolved by using FPGA-based devices [300], redesigning

the algorithms [321], or using P4’s digest to complete the operations with the help of the control

plane [72]. Further, machine learning algorithms or their pre-processing can also be completed in

the programmable data plane [274, 316].

To sum up, despite the limitations, programmable switches’ ability to process data at a high

speed and low power cost is a great asset to boost up the performance of Snatch.

4.3.2 Clients and Servers

I target minimal client modification. For QUIC 0-RTT, the client does not need any modification.

For QUIC 1-RTT, a minor change in userspace is needed so that the transport-layer cookies from

the last connection are stored and repeated in the next connection, while the rest of the connection

ID is randomly re-generated. I implement a Snatch client based on quic-go [60]. I realize the

transport-layer cookie support for QUIC 1-RTT by modifying only <50 lines of code. I further

implement the Snatch-enabled edge- and web-server, also based on the quic-go repository.

4.3.3 Controller

Functionality. Snatch controller takes inputs from the application developers. It then generates

a random byte as the application ID and a random AES-128 key for semantic cookie encryp-

tion. Then, it updates the components in the following order: AggSwitch, LarkSwitches, and the
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edge servers. With corresponding programs pre-installed at all the rest components, Snatch con-

troller only needs to update the parameters, e.g., altering the table entries in LarkSwitches and

AggSwitches so they can recognize new applications and send results to new destinations, through

RPCs to the corresponding control plane. The update frequency is overall low, e.g., days or weeks,

because updates only happen when new applications are added or AES keys need to be updated.

Consistency. When a controller updates an application, inconsistency issues might arise because

of the delay between the controller and other components. For instance, some edge servers might

change the format of transport-layer cookies before a LarkSwitch, or a LarkSwitch changes the

recognition of the cookie-stack before changes are made. They may result in missing or incorrect

results being reported.

I solve the inconsistency issue by adopting a version control scheme. When an update instruc-

tion is received by the controller, it generates a new application version with a new application

identifier, i.e., the same application has different application IDs for different versions. It then

updates the components in order: AggSwitch, LarkSwitches, and the edge servers. After a period

of time (possibly days), the controller deletes the old application ID and associated rules, i.e., re-

vokes the corresponding rules on the AggSwitch and LarkSwitches. In this way, Snatch ensures

that consistency is preserved when updating the applications.

4.4 Evaluation

In this section, I first present results from my global measurement study on understanding the

performance of data streaming from normal Internet users. I then simulate and evaluate the benefits

of my approach with my testbed that simulates real-world environments.
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Figure 4.5: Overview of measurement sites.

4.4.1 Measurement and Estimation

Methodology. Snatch involves multiple Internet components: the ISP switch, edge server, web

server, and analytics server. To study the performance of these subjects in practice, I set up exper-

iments as follows. First, I host HTTPS websites using AWS EC2 instances [61], which represent

the web servers in Figure 4.1(b). Then, I purchase CDN services from Cloudflare [66] and AWS

Cloud Front [67]. This allows me to set up the edge servers on a global scale.

Next, I need to measure the performance of regular Internet users on a global scale. I choose

the decentralized VPNs (dVPNs), which have gained much popularity recently (see chapter 2), as

my means of measurement over academic measurement platforms [142, 161, 272, 288] for better

flexibility. In dVPNs, regular Internet users from all over the world monetize their spare bandwidth

by hosting a VPN proxy at their homes, providing a VPN service to the public. Thus, it provides

a desirable measurement platform for this study. I select Mysterium [21] among various dVPNs

since it has the largest footprint (see chapter 2) – at the time of this project, Mysterium currently

holds over 5,000 dVPN nodes (proxies), among which over 2,000 are recognized as "residential,"



155

i.e., hosted in regular Internet users’ home networks.

I iteratively connect to all the available residential dVPN nodes as measurement sites. During

each dVPN connection, I send out various packets and derive delays between Snatch components.

For all the per-site operations, I iterate 10 times and take the median for further analysis to avoid

outliers resulting from unstable network conditions.

Measurement Results. I conduct my measurement over 14 days, during which I tested 2,253

sites (dVPN nodes) around the world. Figure 4.5 shows the per-country site counts. Among 87

countries I have investigated, the US has the most sites, followed by the UK and Germany. It is

noteworthy that while the measured sites are not representative of billions of Internet users, they

allow us to capture a glimpse of the current global WAN practice and provide a meaningful basis

to estimate the potential benefits of Snatch. Also, the number of sites is not entirely proportional

to the total number of Internet users per country, but they represent the user engagement to a large

extent. Thus, I utilize such collected statistics to evaluate Snatch.

Figure 4.6(a) shows the delays between client, ISP, edge (server), and cloud (web server and

analytics server), respectively. The delay from client to ISP is the smallest as expected, with a

median of 1.4 ms. The delay from the client to the edge is slightly larger, with a median of 6.7 ms.

This shows the success of CDN services as a means to improve Internet performance, and also

Snatch’s potentials from the semantic cookie early forwarding. For each site, I take the minimal

delay from the off-net servers, Cloudflare CDN, and AWS Cloud Front.

Next, I look at cloud performance. Figure 4.6(a) shows that the delays from client to the cloud

(dashed red area) vary a lot – from 13.1 ms to 150.3 ms in the median – depending on the relative

geolocation. Further, the median delays from the client and from the edge to my hosted EC2

machines are 60.1 ms and 43.6 ms (red and green lines), respectively. Note that the sum delays

from the client to the edge and from the edge to the cloud are not always equal to the delay from
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Figure 4.6: Measurement results.

the client to the cloud, because of the complex routing policies across ASes which may not assign

the same path [118].

Moreover, Figure 4.6(b) shows the matrix of intra- and inter-data center delays of the AWS

cloud. The delays range from 0.8 ms (within the same data center) to 206 ms (from ap-southeast-2

region to the af-south-1 region). The inter-data center median delay is 75.5 ms. The inter-data

center delays represent the communication cost from the web server to the analytics server, which



157

may reside in different data centers as explained in § 4.1.

Last, I comment on the delays from client to different edge servers. Figure 4.6(c) shows that the

off-net servers are much closer to the clients compared to regular CDN services, though they cover

only 57.9% clients in my measurement. Moreover, Amazon CloudFront outperforms Cloudflare

CDN in my measurement. In my analysis in § 4.4, I take the minimal delay among all the edge

servers for each client, i.e., if the off-net servers are present and outperform Amazon CloudFront

and Cloudflare CDN, then the delay is for the off-net server; otherwise, the delay is the minimum

between Amazon CloudFront and Cloudflare CDN.

Quantifying Snatch Benefits. Here, I estimate the speedup that Snatch brings. In particular,

I utilize the speedup Equations for different protocols, i.e., Equations (4.1), (4.5), and (4.6),

combined with the above measurement results. If not otherwise indicated, I estimate based on

medians: 1.4 ms for the delay between client and ISP (dCI), 6.7 ms for the delay between client

and edge server (dCE), 43.6 ms for the delay between edge and web server (dEW ), 0.8 ms for

transmission time cost (Ttrans), 136.6 ms for time cost at the edge (TE), 241.6 ms for time cost

at the web server (TW ), and 500 ms for time cost at the analytics server (TA) – assuming default

Spark parameters [78].

I first investigate the expected Snatch speedup as a function of the median delay between the

web server and the analytics server, (dWA). I adopt the “best practice” assumption: the client

will always choose the closest edge and web servers. In particular, the delay from the edge to the

web server (dEW ) is approximated by taking the difference between the delays from the client to

the closest cloud and from the client to the edge server, whereas the delay from the edge to the

analytics server (dEA) is represented by the “Edge-Cloud” curve in Figure 4.6(a). I further assume

that dCA and dEA grow proportionally as the delay dWA, within their own range respectively.

Figure 4.7(a) shows Snatch’s speedup as a function of the delay from the web server to the
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Figure 4.7: Speedup estimation.

analytics server (dWA). The solid line represents the case when only early forwarding is enabled

(T ′
A = TA = 500 ms) whereas the dashed line represents when in-network streaming analytics

(INSA for abbreviation) is also enabled (T ′
A = 1 ms). The figure shows that enabling Snatch’s

INSA feature improves the performance by a great margin, by up to two orders of magnitude,

versus when INSA is disabled. Looking at various protocols, I see that the scenarios where Snatch
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benefits the most to least are Trans-1RTT, Trans-0RTT, and APP-HTTPS. This is expected as

transport-layer cookies provide better performance than application-layer cookies.

Figure 4.7(a) further shows that as dWA increases, hence dCA and dEA increase following best

practice assumption, the Snatch benefits necessarily decrease. Indeed, the more distributed the

users are, the network latency more significantly affects Snatch’s performance. Next, I focus on

two scenarios: (1) US, where end-users are located in the US and the median inter-data-center

delay is 26.3 ms, and (2) worldwide, where users are dispersed around the world and the median

inter-data-center delay is 75.5 ms (see Figure 4.6(b)). Figure 4.7(a) shows that QUIC 1-RTT INSA

speedup is 31x in US and 12x worldwide, while App-HTTPS INSA speedup is 5.5x in US and

4.4x worldwide.

Figure 4.7(b) shows the speedup as a function of analytics time cost, TA. In practice, the

analytics time cost depends on many factors, including the analytics algorithms, workload, the

Pub/Sub queuing delays, the settings of traditionally defined analytics systems, etc. The time cost

thus ranges from negligible to ∼10 seconds at the hyper-giants [73]. Here I consider general tasks

and hence vary TA from 1 ms to 10s. When TA is negligible, INSA naturally does not play an

important role. But as TA grows, the speedups diverge: they decrease when INSA is disabled but

increase when INSA is enabled. Overall, Snatch always boosts up the performance of streaming

analytics. For reference, when TA is 10s, and INSA is enabled, the speedup for Trans-1RTT is

183x, for Trans-0RTT is 181x, and for App-HTTPS is 53x.

Figure 4.7(c) shows the speedup in the case of periodical forwarding, as a function of the period

(interval) ranging from 5 ms to 200 ms. When the interval is 5 ms, the speedup is naturally closer

to per-packet forwarding. As expected, the speedup decreases when the interval increases because

the data takes more time to the analytics server. For reference, for interval of 5 ms, the speedup for

Trans-1RTT is 18x, while for interval of 200 ms, the speedup for Trans-1RTT is 4.3x.
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4.4.2 Testbed Experiments

Environment Setup. I set up a testbed consisting of 6 host machines and one Tofino programmable

switch. Among them, three host machines represent the client (request generator), the edge server,

and the web server, respectively. The analytics server is represented by a cluster of three machines,

which consist of two slave nodes and one master node. The Tofino switch represents both Lark-

Switch and AggSwitch. The topology follows Figure 4.3 where the Tofino switch connects to the

client, the master node of the analytics server, and the edge server (with two different ports con-

necting to two different network interfaces, respectively). Each host machine is equipped with an

8-core AMD EPYC CPU with 16GB RAM. The delays between the machines are controlled via

Linux Traffic Control module [36].

I adopt QUIC 1-RTT in my evaluation below. Once the analytics server (master node) receives

an aggregation packet, meaning that INSA is enabled, it will log the timestamp; otherwise, it will

submit the data to Spark Streaming which processes the data and logs the finishing timestamp.

I select the advertisement campaign analytics as the target application. Different from Yahoo

Streaming Benchmark [140], which correlates the user ID and the ad campaign ID, I go further

to count the user demographic information (I randomly generate gender, age, and geolocation for

each user) for each ad campaign. In addition, I set the interval of Spark Streaming to be 150 ms as

it is suitable for most of my tasks and environment, i.e., it minimizes the time cost.

Performance Evaluation. I first evaluate the impact of delays between the components for per-

packet forwarding. I adopt different delays—taking N th percentile of delays from Figure 4.6(a)—

in my testbed and perform 10,000 requests from the client for each experiment. I send 10 requests

per second (RPS), a relatively low rate, to exclude the impact of workloads (which I explore later

in the text). I adopt the same “best practice” assumption as in § 4.4.1.



161

0 20 40 60 80 100
Percentile of Measured Delay CDF (0-100)

101

102

103

To
ta

l T
im

e 
Co

st
 (m

s)

Normal
App-HTTPS
Trans-1RTT
App-HTTPS+INSA
Trans-1RTT+INSA

(a) Delays.

0 100 200 300 400 500
Workload (# Request / Second)

102

103

To
ta

l T
im

e 
Co

st
 (m

s)

Normal
App-HTTPS
Trans-1RTT
App-HTTPS+INSA
Trans-1RTT+INSA

(b) Workload.

0 100 200 300 400 500
Periodical Interval (ms)

102

To
ta

l T
im

e 
Co

st
 (m

s)

0

20

40

60

80

100

120

Ba
nd

wi
dt

h 
(K

bp
s)

Normal
App-HTTPS
Trans-1RTT
App-HTTPS+INSA
Trans-1RTT+INSA

(c) Periodical interval.

Figure 4.8: Testbed evaluations. Total time cost as functions of (a) delays, (b) workload, and (c)
periodical interval.

Figure 4.8(a) shows the total time costs given different delay percentiles in my measurement.

The total time costs are measured from when clients send requests until the results are obtained,

either from Spark Streaming (solid lines and hollow markers) or from AggSwitch if INSA is en-

abled (dashed lines and filled markers). Overall, the results show that the total time cost increases

as the delay percentile increases, i.e., the clients experience worse Internet infrastructure. Still,

Snatch is beneficial at all times. The shortest to longest total time cost are between Trans-1RTT
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and App-HTTPS with INSA, and between Trans-1RTT and App-HTTPS without INSA. One ex-

ception occurs at the 100th delay percentile where the performance of Trans-1RTT without INSA

exceeds App-HTTPS with INSA because dCE drastically increases.

In terms of speedups, APP-HTTPS and Trans-1RTT reduce the time cost at most by a factor

of 2.1x and 5.4x without INSA (at 95th delay percentile), or by 24.5x and 31.2x with INSA (at

1st delay percentile). When INSA is enabled, the speedups slowly decrease as the delay percentile

increase, i.e., the clients experience worse Internet infrastructure. Yet, the speedup of Trans-1RTT

with INSA is at least 3.8x at the 100th delay percentile, which brings the total time from 2,807 ms

down to 735 ms. In the median case, the speedups for APP-HTTPS and Trans-1RTT are 1.9x and

2.0x without INSA, or 6.3x and 8.3x with INSA. Compared to Figure 4.7(a), Trans-1RTT under-

performs the results from § 4.4.1, yet App-HTTPS over-performs the corresponding results. This

is because the processing time costs at the edge server and at the analytics server in my testbed are

both smaller than in § 4.4.1.

Next, I evaluate the impact of the workload. I take the median delays from the measurement,

and adjust the workload, which I quantify as the number of requests that the clients send per

second. I consider per-packet forwarding here because it consumes more bandwidth and is thus

more sensitive to workload compared to periodical forwarding. Figure 4.8(b) shows that the total

time costs are stable with the same rank as in Figure 4.8(a) when the workload is relatively low

(<100). Later, i.e., when workload >100, the total time costs increase as the workload increases

for all scenarios except Trans-1RTT with INSA, demonstrating the power of in-network transport-

layer switch-based processing. When the workload is equal to or greater than 300, the time costs

for no-Snatch and App-HTTPS start to increase sharply (note that the y-axis of Figure 4.8(b) is

in log scale). Likewise, App-HTTPS with INSA is less effective than Trans-1RTT without INSA.

This suggests that congestion happens at the edge server and the web servers because they are
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overwhelmed by the high request rate.

Meanwhile, however, Trans-1RTT with INSA keeps a very stable performance – it takes 61 ms

regardless of the workload. This reveals a property of Snatch: no parallelism inflation. The stable

performance is expected because of the nature of line-rate processing of programmable switches

and the design of Snatch: Trans-1RTT skips all the computation on the edge and web servers (and

the analytics server if INSA is enabled) where congestion may happen at a high workload. In fact,

Trans-1RTT and Trans-0RTT are able to keep the best performance as long as the throughput does

not exceed the capacity of the switches, which is over 10 Tbps [69].

Finally, I evaluate the periodical forwarding. I adopt the median delays and a workload of

200 RPS. Figure 4.8(c) shows that as the periodical interval increases, the total time cost increases

while the bandwidth consumption (grey line) between LarkSwitch/the edge server and AggSwitch

decreases. Nevertheless, when the periodical interval is 500 ms, Trans-1RTT and App-HTTPS

still speed up the total time cost by 1.2x and 1.1x without INSA, or 1.8x and 1.7x with INSA. The

bandwidth consumption linearly decreases from ∼112 Kbps to ∼1 Kbps as the periodical interval

increases from less than 5 ms to 500 ms.

4.5 Related Work

Streaming Analytics. In addition to streaming analytics systems discussed in § 4.1, JetStream [262]

and AWStream [323] explore the wide-area streaming analytics whose data sources are widely dis-

tributed and propose to reduce the data rate to cope with the limited WAN bandwidth. In addition,

Iridium [260] optimizes the data placement before the arrivals of queries. Sana [202] applies

WAN-aware multi-query optimization. The wide-area streaming analytics assumes that the data

is heading directly to the analytics server after it is generated. This is however different from my

concerned scenarios where the data accompanies the user requests and thus makes a detour. Snatch
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removes this detour and enables in-network analytics via semantic cookies.

In-Network Computation. With the advent of programmable networking hardware and program-

ming languages [110, 111, 286], researchers have proposed to leverage in-network computation to

handle network management [224], caching [200], load balancers [242], replicated storage [199],

lock management [320], deep neural network training [220, 274], etc. Ports et al. [259] summa-

rizes a general guide of what and when to offload the computation to the network. While most

work targets scenarios within data centers, Jagen targets ISP-centric defense [227]. Snatch aims to

speed up online streaming analytics by leveraging the in-network computation and in cooperation

with both the ISPs and the cloud.

QUIC Protocol. QUIC [219] has become an official IETF recognized transport-layer protocol in

2021 [196], and has been supported by multiple major browsers including Chrome and Firefox.

QUIC is based on UDP and is implemented at userspace rather than kernel space like other trans-

port protocols, which enables it to be more flexible and to adapt to new algorithms. Researchers

have started to investigate and leverage the features of QUIC. Connection ID, for instance, is

exploited for encoding information, which enables to assist load balancer and hardware acceler-

ators [102, 162]. In this project, I leverage the QUIC Connection ID to encode application-level

information and achieve early processing and forwarding for the online streaming analytics.

Anonymity Preservation. The anonymity preservation research spans across different fields in-

cluding social networks [170, 269], crowd-sourcing [194], recommendations [318], etc. One ap-

proach is differential privacy, i.e., adding structural noise to its data to report [163], and thus prevent

the attackers from inspecting what each user actually sends while ensuring that the aggregated re-

sults are statistically correct. It is noteworthy that in differential privacy, there exists a trade-off

between too little noise, such that not enough privacy guarantee is provided, and too much noise,

such that some data is lost in the noise [166]. Another approach is using secure multi-party com-
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putation protocols, where a set of non-colluding servers privately perform computation over the

user data [145]. However, MPC methods often come with significant overhead [117, 225, 249]. In

general, the common challenges for all privacy-preserving analytics include a high cost and robust-

ness towards malicious users and servers. A third approach is to make the users send data through

an anonymizing network, e.g., mix-net [115, 218] or Tor [189, 258], where the data and individ-

ual identities are decoupled. However, these methods incur a high cost [146, 306]. My proposal

instead prevents the user from sending personally identifiable information by design. To defend

against the honest but curious edge, my proposal also leverages differential privacy to protect user

information.

4.6 Discussion

Semantic Cookie Related Issues. One question may raise on how the application developers can

derive the semantic information without a user ID. In fact, we can regard the semantic cookie as

a state machine: the developers have the state from the last request, update it based on the current

request, and save it on the users’ side for the next request.

Another issue may be the additional overhead from adopting semantic cookies. Transport-layer

semantic cookies do not incur any overhead as an existing header field of QUIC with limited length

is used. Application-layer semantic cookies inherit the current cookie design but ideally only dis-

card the individual identifiers, which brings no overhead. Still, overhead may be introduced by the

way that the developers design the application-layer semantic cookies. Currently, the developers

build their own database and store as much user information as they want, e.g., the complete visit

history per user [295]. With the semantic cookies, the developers can only collect the visit history

by appending the new visit to the semantic cookies every time the user visits the website. This

will indeed bring non-trivial overhead. Nevertheless, while no hard restriction on the size of se-



166

mantic cookies is applied, I argue that this is a feature rather than a defect: the semantic cookies

are meant to prevent the developers from logging everything about the user, e.g., complete visit

history. Hence, it forces the developers to carefully re-design the cookies and only ask for the

least; otherwise, they may lose customers because of bad experiences.

Alternative to Latency Inflation. One alternative to reduce latency inflation introduced in § 4.1.3

is to ask the users to send duplicate requests to both the web servers and the analytics servers. Yet,

there are many drawbacks from this approach. First and most importantly, it does not enhance user

privacy as Snatch does because individual identifiers are still present. Second, it cannot benefit

from in-network computation, which may be a larger factor in performance improvement than

latency inflation (see § 4.4). Third, it requires the users to double their bandwidth consumption

and leads to a worse web experience, yet without offering any incentives to the users. In addition,

exposing the analytics server to public may open the door to attacks.

View From Application Developers. With Snatch, application developers can benefit from faster

online streaming analytics and hence obtain more valuable results. Meanwhile, they lose the free-

dom to store whatever they want from the users’ activities and may fail to perform certain analytics,

e.g., individual profiling [295]. Nevertheless, more studies are looking into how to effectively per-

form anonymity-preserving analytics [107, 159, 293]. It is thus questionable how much the cost

really is from discarding individual-level analytics. Moreover, developers may lose the freedom

anyway as stricter privacy policies may be enforced given the public’s rising privacy concerns. In

addition, the developers can actually benefit from respecting user privacy: users who care about

their privacy may be more inclined to websites that adopt semantic cookies compared to other

competing websites. This may become an important incentive for more developers to adopt the

semantic cookies, and (hopefully) eventually lead to widespread adoption of semantic cookies,

similar to the history of HTTPS adoption.
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Generality of Analytics. In my implementation, I pre-install programs at the edge devices and

have them accept RPCs from Snatch controller to update certain parameters (§ 4.3.3). This would

allow edge devices to recognize new applications and perform analytics accordingly. Yet, I ac-

knowledge that my implementation only supports fixed types of aggregation analytics. While the

edge servers should be able to conduct any streaming analytics, I have analyzed the capabilities

as well as the limitations of the programmable switches (§ 4.3.1). In an ideal implementation, the

controller should generate efficient and on-demand codes and push them to the edge devices. I

leave this as future work.

Fault Tolerance. Snatch might fail due to various issues. For example, inconsistency might occur

when the controller tries to update other components (see § 4.3.3). Other examples include failing

to update AES keys at edge servers, or packet drops, etc. All these issues will result in the same

outcome: the aggregated results become inaccurate. Fortunately, I can detect such failures by

running the same analytics on data that is collected from the web servers and arrives at a later time.

Application developers should report the result difference to the Snatch controller, which would

then check and update the other components through RPCs. I leave the real-time detection and

correction for future work.

In-Network Streaming Analytics Trade-offs. In the evaluation, I consider that either INSA is en-

abled or disabled. In practice, and for most real-world scenarios, the speedup is in between because

of the complexity of queries. When more computation is offloaded to the network, the speedup is

higher given the negligible time cost for the processing at the switches. Still, more computation

also incurs more switch resources, i.e., fewer applications can utilize the switches’ support. Thus,

there exists a trade-off for the ISPs: support more applications with a smaller speedup for each,

or support fewer applications with a larger speedup for each. Independently, Snatch provides a

considerable speedup compared to the state-of-the-art even when INSA is disabled.
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UDP for the custom aggregation packet. The extracted cookies and data encoded in the custom

aggregation packet from LarkSwitch and edge server to AggSwitch may be lost because UDP is

used. I argue that the benefits of using UDP overtake the loss. The loss here is that less than

0.01%, i.e., the packet drop rate in today’s WAN [70, 71, 77], of the cookies or data will be lost.

In comparison, there are two major benefits. First, for short-term analysis, which is the target for

Snatch, the value of the data is much higher when the data is available sooner. Dropping one data

point out of tens or hundreds of thousands will not make a large difference to the distribution of

the data, and thus to the results. At the same time, the data is not lost forever. For a long-term

analysis, full and accurate results can be obtained by syncing up the records at the web servers or

related databases. Second, implementing a retransmission mechanism on programmable switches

is non-trivial and consumes scarce DRAM resources to keep the status. Instead, the resources can

be used to offload more computation and thus provide better speedup or support more applications.

In conclusion, it is the best choice for Snatch to adopt UDP for the custom aggregation packet.

Ethical Consideration. My measurement in § 4.4.1 involves sending requests through proxies

located at Internet users’ home networks. However, these Internet users are selling their Internet

access, and the dVPN service is publicly available. Therefore, this is no different than connecting

to traditional VPNs. Further, I did not send any malicious requests or had any operations which

might endanger the proxies. Thus, this work does not have any ethical concerns.

4.7 Summary

This chapter presented Snatch, a system that early forwards and pre-processes the online streaming

data at the network edge to speed up the online streaming analytics and preserve user anonymity.

The key to enabling Snatch is the introduction of semantic cookies, which carry encrypted user

information that is personally unidentifiable and directly available for analytics. I demonstrated
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that it is viable to encode semantic cookies in the existing application or transport protocols. My

evaluation of Snatch – based on real-world measurements – showed that when processing can be

done early in-network, Snatch can speed up user analytics by 10-30x. Given the growing trend

of migrating infrastructure towards the edge, such speedups along with privacy enhancements are

likely to soon become a reality.
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CHAPTER 5

CONCLUSION

Given the interconnected, multi-layered, and continuously evolving nature of the Internet, ensuring

security and preserving user privacy demand comprehensive, cross-layer, and adaptive improve-

ments across all facets of Internet components. This thesis undertakes a comprehensive exploration

of network security and privacy, with a concentrated effort on improving key components of the

Internet: proxy-based Internet access, Domain Name Service (DNS), and HTTP for Web traffic.

• The first contribution of this thesis is a comprehensive study of the decentralized VPN

(DVPN) ecosystem, actively and passively monitoring major DVPNs – Mysterium, Sentinel,

and Tachyon – over six months. This extensive data collection and analysis provide invalu-

able insights into the footprint, performance, income opportunities, and traffic characteristics

of these networks.

Through passive measurement, I have effectively highlighted several security and privacy

issues inherent to DVPNs. Notably, the lack of protection for clients’ traffic makes it sus-

ceptible to monitoring and interception by DVPN nodes, especially for plaintext packets like

(current) unencrypted DNS queries and responses. This vulnerability, even when HTTPS

traffic is adopted, underscores the potential for privacy breaches.

Further, DVPNs, despite their decentralized nature, are not entirely free from centralization

issues, particularly with the reliance on centralized endpoints for service initiation. This

centralization presents a significant risk of attack and undermines the censorship resistance

that many DVPN clients seek.
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• The second contribution of this thesis is the development of PDNS, which introduces a novel

approach to DNS queries that significantly enhances user privacy. PDNS revises a key sys-

tem premise of DNS by altering the role of recursive resolvers. More concretely, by lever-

aging Private Information Retrieval (PIR) techniques, PDNS allows recursive resolvers to

operate in a manner where they can resolve domain names without actually knowing what

those domains are. This design minimizes privacy risks associated with DNS queries, repre-

senting a fundamental shift from traditional DNS query mechanisms.

Nevertheless, incorporating PIR into DNS is not straightforward; as DNS has a hierarchical

structure and the DNS resolvers, where PIR is supposed to be implemented, need to refresh

their cache by contacting authoritative name servers. To mitigate this issue, PDNS design re-

quires users to undertake iterative DNS lookups directly to authoritative name servers in the

event of a cache miss. This approach ensures the resolver’s cache is updated without reveal-

ing user identity at the resolver. Recognizing the performance challenges associated with

implementing PIR in DNS, the thesis presents various optimizations to make PDNS viable

while minimizing privacy exposure in the communication between users and authoritative

name servers.

From a practical perspective, the thesis outlines a strategic approach for the gradual de-

ployment of PDNS, highlighting its compatibility and coexistence with the existing DNS

infrastructure. This pragmatic approach to deployment emphasizes PDNS’s role as an aug-

mentative technology, rather than a replacement, facilitating its adoption alongside current

DNS technologies like DoH and ODoH. Through comprehensive benchmarking and analy-

sis, the thesis provides evidence of PDNS’s practicality and efficiency. It details the system’s

performance in real-world scenarios, including its computational and memory requirements,

thereby validating the proposed PDNS design’s feasibility and effectiveness in enhancing
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DNS privacy and security.

• The third contribution of this thesis is the introduction of semantic cookies, designed to ad-

dress privacy breaches inherent in contemporary HTTP cookie practices, alongside the devel-

opment of the Snatch system for comprehensive system component coordination. Semantic

cookies diverge from traditional practices by embedding non-identifiable user attributes di-

rectly within the cookies. This system premise revision enables preliminary data processing

and analytics at the network’s edge, eliminating the necessity of backend databases behind

the scenes and significantly enhancing user privacy protection.

The use of semantic cookies also transforms the landscape of online streaming analytics

by enabling in-network processing. This shift not only improves the efficiency and speed

of data analysis but also opens new possibilities for real-time insights and decision-making

based on user activities and preferences.

This thesis has demonstrated that semantic cookies can be deployed without altering existing

Web protocols, offering a seamless upgrade path for enhancing privacy and analytics capa-

bilities on the Internet. This ease of deployment encourages adoption and integration into

the current Web.

Overall, this thesis underscores the critical importance of re-evaluating existing Internet com-

ponents. By adopting a holistic approach that considers different Internet applications and services,

and by revising system premises, this work presents a sample blueprint for future innovations in

building resilient and efficient network systems for enhanced privacy and security.
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5.1 Limitations and Future Work

This thesis lays the groundwork, rather than serving as the definitive conclusion, in the evolving

quest to fortify network security and privacy. Recognizing the limitations of the projects discussed

herein, it underscores the imperative for continuous development towards more resilient systems

that elevate the standards of Internet security and privacy.

The first project conducts an in-depth examination of vulnerabilities in current DVPNs, high-

lighting the critical need to minimize trust reliance on proxies. It thus leaves a goal for future

research: to address the significant challenges associated with diminishing trust in proxies, thereby

realizing a fully secure and private proxy-based architecture

In the second project, the PDNS prototype showcases significant promise in enhancing the

privacy protections of contemporary DNS systems. However, there remains considerable scope

for optimizing its performance. Additionally, the real-world deployment of PDNS necessitates the

integration of numerous DNS features that have been developed over the past decades.

The third project of this thesis highlights the crucial role of differential privacy as a mechanism

to safeguard against unauthorized access and analysis by third parties or malicious entities. Yet, the

refinement of the differential privacy algorithm demands further development, alongside a detailed

evaluation of the data and analysis needs of the Web providers.

Further, while this thesis proposes enhancements to several core Web components, it acknowl-

edges a limitation in the uniformity of solutions across different systems. For instance, semantic

cookies and DVPN offer lower privacy assurances compared to PDNS, as they necessitate a de-

gree of trust in various system entities. This disparity stems partly from the thesis’s pragmatic

philosophy, which prioritizes practicality. However, further advancements are essential to bolster

the privacy protections of these components, aiming for a more cohesive alignment of privacy
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guarantees.

Moreover, this thesis focuses on technical enhancements to Web components. It is important

to acknowledge that policy significantly influences this area as well. Future research should also

explore the development of systems that adhere to policies, perform thorough reviews of policy

practices, and engage in discussions about policy directions.

Finally, the Internet encompasses a vast array of components beyond those covered in this

thesis, such as advertising systems, search engines, and more. These domains represent crucial

opportunities for ongoing research and innovation, essential for the continued evolution of the

Internet and to address the dynamic needs of its users.
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